
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Extension of neural network
architecture

Plzeň 2020 Roman Kalivoda

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, May 6, 2020

Roman Kalivoda

Abstract
Spiking neural networks (SNNs) are artificial neural networks designed to
mimic sparse and asynchronous nature of information processing observed in
biology. In recent years, deep spiking networks emerged with efforts to draw
on experiences with classic deep networks. There also appeared attempts
to reuse the available state-of-the-art analogue neural networks (ANNs)
completely, and replace the neurons for inference. This thesis contributes
with analysis of the dominant methods used in the development of SNNs,
and comparison of the major SNN simulation platforms. An application of
the SNNs was demonstrated on detection of event-related potentials in EEG
data.

Abstrakt
Impulsní neuronové sítě jsou variantou umělých neuronových sítí, které jsou
navrženy, aby simulovaly přirozenou rozptýlenost a asynchronii pozorovanou
u biologických neuronových sítí. Pokrok v nedávné době umožnil vytváření
vícevrstvých impulsních sítí. S tím se objevila i snaha dosáhnout podob-
ných úspěchů jako s klasickými vícevrstvými sítěmi. Objevily se také snahy o
opětovné využití již existujících a populárních architektur klasických neurono-
vých sítí. Ty mohou být například použity během procesu učení a nahrazeny
impulsními sítěmi až v provozu. Tato práce analyzuje hlavní metody vyu-
žité při vytváření impulsních sítí a porovnává nástroje pro jejich simulaci.
Také bylo ukázáno použití impulsní neuronové sítě na detekci kognitivních
evokovaných potenciálů v EEG datech.

Contents

1 Introduction 8

2 Analogue neural networks and spiking neural networks 9
2.1 Artificial neural networks . 9

2.1.1 Supervised learning in artificial neural networks . . . 9
2.1.2 Unsupervised learning in artificial neural networks . . 10

2.2 Spiking neural networks . 10
2.3 Deep spiking neural networks 11
2.4 State of the art . 12

2.4.1 Binary deep neural networks 14
2.4.2 Comparison . 14

3 Simulation platforms 16
3.1 The Neural Simulation Tool (NEST) 16
3.2 Brian . 17
3.3 NEURON . 17
3.4 Nengo . 18

3.4.1 Neural engineering framework 18
3.4.2 Semantic pointer architecture 19

3.5 Summary of platform comparison 20

4 Other libraries 24
4.1 SNN toolbox . 24
4.2 Keras / TensorFlow . 24
4.3 PyNN . 24

5 Exploratory use cases 27
5.1 Nengo . 27
5.2 Spaun 2.0 . 27
5.3 Using the same pre-trained model for the Nengo and SNN-

Toolbox . 28
5.3.1 Model architecture 28
5.3.2 Conversion with SNN Toolbox 29
5.3.3 Conversion with NengoDL Converter 31
5.3.4 Comparison of the tools and their results 33

6

6 Spiking classification on large multi-subject P300 dataset 36
6.1 Results . 39

7 Conclusion 41

Bibliography 42

7

1 Introduction

A neural network is a set or population of specialised cells (neurons) that
are interconnected by synapses. In biology, the neural network forms the
structure of a neural system in animals. The interconnection pattern, size
and spatial organisation of the population determines the architecture and
specialisation of the network. The network specialises in carrying out a
specific function when it is activated. These specialised networks then tie
to one another to develop larger systems (e.g. animal brain). These natural
phenomena inspired computer scientists to design a set of algorithms that
models some aspects of the animal brain.

Artificial (analogue) neural networks (ANNs) were initially inspired by
biological neural systems, but many concepts were simplified or modified
to conform to their practical applications. On the other hand, the spiking
neural networks (SNNs) were mostly meant to simulate their biological
models as closely as possible and thus improve our understanding of how
real biological networks achieve their cognitive abilities with incredibly low
energy consumption. Although the differences between those approaches still
last, some aspects of the two approaches are getting more interconnected as
the research advances and one approach can exploit the other. Nowadays,
deep ANNs achieve satisfying accuracy in many complex tasks, although
with extensive requirements on computation power. Because of that, new
goals for the improvement of their efficiency are being set. That is where
deep SNNs appear to be an exciting topic of research because of better power
efficiency [5, 40], although the applications generally do not accomplish the
same accuracy yet. Apart from the applications in which ANNs are used,
spiking networks open up new fields of utilisation.

There is a summary of principal differences between the two classes of
neural networks in chapter 2. There is also a survey of the current state of the
research in the area of spiking neural networks. Chapter 3 compares existing
simulators of spiking neural networks. The remaining tools used in this work
are described in chapter 4. Chapter 5 describes initial experiments with
spiking networks and selected software. Also, there is proposed an approach
on how to interconnect the two chosen SNN tools. Chapter 6 delineates a
conversion and consequent simulation of a neural network used for binary
classification of event-related potentials. Event-related potentials are brain
responses to a specific stimulus. These responses are measurable as small
voltage changes during electroencephalography (EEG).

8

2 Analogue neural networks
and spiking neural networks

2.1 Artificial neural networks
Artificial neural networks are built of idealised units which compute output
values from their weighted input values and continuous nonlinear activat-
ing functions [40]. The units interact with each other by propagating its
continuous output. These units connect themselves into distinct layers. If
there is more than one hidden layer (the hidden layer is the layer which takes
input from the previous layer and outputs own results to another layer, that
means it is neither input layer, nor output layer), the network is recognised
as a deep network. In deep networks, each layer works with a set of features
received from the output of the previous layer. This feature hierarchy en-
ables deep networks to operate accurately on large data sets with plenty of
parameters. Advances in the hardware computation power made it possible
to use very deep networks for various artificial intelligence tasks. However,
the (still quite) notable computation costs of these networks prevent them
from applications in embedded and power-constrained environments.

The resulting neural network needs to be learned to become functional.
Learning neural network means adjusting its connection weights and other
parameters to optimise the accuracy of the results. There exist two ma-
jor approaches to learning of a neural network, supervised learning and
unsupervised learning.

2.1.1 Supervised learning in artificial neural networks
A prerequisite for a supervised learning method is a labelled data set. Super-
vised learning is useful for classification or regression tasks when we need
to find a set of significant relationships or structure in the input data, that
means we need to approximate a regression function. The functionality of the
method is dependent on the complexity of the approximated function. Higher
complexity is needed to learn the full structure of the data, but there is a
threat of over-fitting the model, that means the model is too complicated and
fails on general data. In the neural network, the supervised learning method
takes advantage of the error backpropagation algorithm. The algorithm
learns the network on the learning data set and finds the difference between

9

the computed and desired output. Then the synaptic weights are adjusted
to minimise the difference [36].

2.1.2 Unsupervised learning in artificial neural net-
works

Unsupervised learning means that the data set is missing labels, and the
model attempts to find some structure in the underlying data set. Common
use-cases for unsupervised learning are exploratory analysis and dimensional
reduction. Exploratory analysis can get a fundamental inspection of the data
in situations where it is difficult or impossible for people to find trends in
the data. Typical applications for unsupervised learning methods are data
clustering or visualisation. Another example of unsupervised learning is a
concept of generative adversarial networks (GANs). GANs is an architecture
that uses two neural networks to generate new synthetic data with a structure
similar to real data [15].

2.2 Spiking neural networks
Although biological neural networks inspired the basic principles of artificial
neural networks, the processes in the biological networks differ from the
processes in ANNs. The spiking neural networks proceed from the knowledge
retrieved from observations of the biological neural networks. The basic
idea behind SNN is that the network consists of the spiking neurons which
have a different characteristic than artificial neurons. Each spiking neuron
has a membrane potential, a quantity related to the difference of electrical
potentials at the membrane of biological neurons. When the membrane
potential reaches a specified value (the threshold value of the neuron), a
spike (a sudden increase of voltage) is generated. It can also be said that
the neuron fired. Note that there is a difference between biological neurons
and their mathematical models. The resting membrane potential (the value
of the membrane potential when there is not received any activity from
previous neurons) of the real biological neuron is typically negative. However,
for mathematical simplification, it is convenient to assume in the spiking
neuron models that the resting membrane potential is zero, and thus the
current membrane potential is the sum of postsynaptic potentials [26]. The
postsynaptic potential is a result of an action potential (spike) generated by
previous neurons which connect to the observed neuron. The postsynaptic
potential can be either excitatory or inhibitory. The excitatory postsynaptic

10

potential (EPSP) increments (depolarises) the membrane potential and the
inhibitory postsynaptic potential decrements (hyper-polarises) the membrane
potential. Depending on the level of detail, various models of spiking neuron
exist. Popular spiking neuron models are the leaky integrate-and-fire model
(LIF), the Izhikevich neuron model or spike response model [40].

Besides the biological perspective on spiking neural networks, there also
exists a more technical point of view used in neuromorphic engineering. In
this perspective, the spikes are more often called events. This term originates
from the address event representation protocol [30, 2], which is used to
connect event-based neuromorphic peripherals. With this point of view, the
emphasis on the biological plausibility of the model and level of detail of the
neurons steps back to allow more pragmatic ways to use the networks in such
neuromorphic applications. The combination of the spiking neural networks
with event-based sensors is especially useful because it enables both parts to
utilise its full potential in terms of power efficiency [32].

2.3 Deep spiking neural networks
Similarly to ANNs, if the spiking neural network consists of multiple layers,
and at least one of them is hidden, the network is called deep. Deep neural
networks, both spiking and non-spiking, are more capable. The interconnected
neurons transfer information between themselves by firing trains of spikes
(spike trains). Strictly speaking, the information is coded in the number
of spikes and their frequencies, rather than amplitude characteristic of a
single spike. That means the communication in the network is discrete in
time in contrast to ANN, where the communication is going on continuous
activation functions. This characteristic makes the spiking neural networks
interesting to research because SNNs can be used to create more efficient
low-energy consuming neural networks. Also, SNNs can be implemented on
specialised dedicated hardware, which even more improves energy efficiency.
Another advantage of the deep spiking networks is that the approximation
of the final layer output is retrievable at the time of recording the first
input spikes and the approximation improves over time [32]. Deep spiking
neural networks have theoretically the same representational power as deep
ANNs with lower energy requirements. Nevertheless, there is a problem
with achieving the same results as with ANNs because optimal solutions
for supervised learning of the SNNs do not exist yet. The gradient-based
optimisation methods used in artificial neural networks require the activation
function to be differentiable [40]. The spike trains generated in spiking

11

neurons can be formally represented by sums of delta functions which do
not have derivatives. Multiple approaches proposed how to overcome this
problem, but the research of the learning methods for the SNNs is still at its
beginning [40].

2.4 State of the art
Recently there appeared many novel theories and experiments on the topic of
deep spiking neural networks and new approaches to learning such networks.
As stated above, traditional methods for deep learning can be hardly used
because of the distinct characteristics of the two models. One of the ap-
proaches to overcome this issue is using some sort of approximate derivatives
or other substitutes, although this may reduce bio-plausibility of the model.
[24] proposed a spiking network backpropagation rule with low-pass filtering
to handle discontinuity at the time of the spike. This method demonstrates
state-of-the-art results for deep SNNs.

A more biologically plausible approach is using local learning rules such
as spike-timing-dependent plasticity (STDP). STDP adjusts the synaptic
weights between presynaptic and postsynaptic neuron according to the rel-
ative difference of their spike times. If presynaptic neuron fires relatively
briefly before the postsynaptic neuron, its synaptic weight increments. The
weight decrements in the opposite case, that is in the case when presynaptic
neuron spikes briefly after the postsynaptic neuron. Local learning rules can
be used with unsupervised learning [40], but with supervised learning, there
is once again missing a plausible backpropagation method. This problem can
be covered, for example, by introducing recurrent connections to propagate
the error signal. The use of local learning rules is also interesting for efficient
implementations on dedicated hardware, such as SpiNNaker[14] or Brain-
Scales. At present, the efficiency of the networks which use this method falls
behind in terms of precision.

Another approach is to create a conversion between ANN and SNN. For
the conversion, a conventional deep network is trained using backpropagation
and other methods available in ANNs. Then the already trained network is
transformed into its spiking variant. The conversion is done by mapping the
analogue neurons onto spiking ones (the mapping can be both one-to-one and
one-to-many) and adjusting the weights and parameters of the spiking neurons
according to the trained analogue network. Pérez-Carrasco first proposed
the conversion approach in [31]. This approach can enhance the performance
of hardware implementations of deep neural networks. An advantage of this

12

approach is that the best, state-of-the-art deep networks can be transformed
into SNNs without previous modifications and the efficiency of the final SNN
is approaching the efficiency of the original network. However not every ANN
can be converted, because features or methods which are common in analogue
networks might not have its spiking equivalents. [35] introduced additional
techniques to convert more general class of ANNs by implementing features
such as soft-max, batch normalisation or max-pooling (using a maximum
filter for spatial reduction of the input feature set), which were previously
not available in the spiking networks. The resulting accuracy of experiments
which used the conversion approach is very promising [40, 32]. One of the
disadvantages of the conversion is that the most often used technique uses
rate codes which are quite inefficient. Rate-coding means that the activation
values of the original analogue deep network are translated into firing rates
of the spiking neurons, so multiple spikes are necessary to stand for a single
activation value. Alternative spike codes need to be developed to overcome
this. [44] proposes one such coding, which maintains the accuracy of the
modelled artificial network while reducing the total count of spikes needed in
comparison to other conversion methods.

There exists a modified hybrid approach known as constrain-then-train.
Instead of starting with conventional learning of the ANN, additional con-
straints needed for spiking networks simulation (or neuromorphic hardware)
are applied on the first network before its training. Then, the learned pa-
rameters of such constrained ANN can be used directly during the mapping
onto SNN without further re-scaling [32]. The retrieved parameters are
particular for just single settings of the spiking neuron model, so the network
needs retraining if these parameters should change. The final network has
an advantage that it adapts better to the target environment than generally
converted networks.

Above, four approaches to supervised learning of the spiking neural
networks are briefly described. The spike-based learning and local learning
methods have a common need for improvement of the accuracy to match
the results retrieved by the other two methods. However, they offer other
notable features such as potentially better energy efficiency and the ability
to exploit additional features of the neuromorphic hardware (e.g. precise
timing). Also, inferior performance efficiency is being improved by recent
works. On the other hand, the spiking networks created by the conversion
techniques are comparable to its original artificial network models, but due
to the used coding, its energy efficiency deteriorates.

13

2.4.1 Binary deep neural networks
Binary deep neural networks (BNNs) are an alternative to spiking neural
networks in terms of energy efficiency. BNNs are deep neural networks
that use binary activation values and binary-valued weights [37]. The state-
of-the-art binary neural networks achieve slightly degraded accuracy in
comparison with non-binary full precision networks, but with reduced memory
requirements and less power consumption [10]. This advantage is more evident
if both activation values and weights are binary. Then, more complicated
arithmetic operations can be replaced with simpler bitwise operations [20].
With binary activations, BNNs can also directly use spikes from event-
based hardware [25]. Compared to spiking networks, the information is still
propagated synchronously and does not allow the fast propagation of most
salient features [32].

2.4.2 Comparison
Standard classification benchmarks are usually used to compare the indi-
vidual works, although [32] points out that these benchmarks might not be
appropriate for evaluation of spiking networks and should be taken as a proof
of concept.

The most used benchmark for demonstrating the performance of the
spiking network is a classification of the modified NIST (MNIST) database
of handwritten digits [23]. It consists of 70000 examples of grey-level images.
The handwritten digits have been normalized to fit in a 20 × 20 pixels frame
and centred in a 28 × 28 image. This database is divided into a training set
with 60000 examples and a test set with 10000 examples.

Table 2.1 compares some of the reported classification accuracies on
the MNIST data set. There are shown ANNs and SNNs with the best
currently achieved accuracies. It can be seen that the SNNs are slightly
worse than ANNs. The best accuracy for SNN was reported with a converted
convolutional network by [35] in 2017. The other converted networks shown
in the table (rows 2 and 3) are mentioned because they used different spike
coding schemes, pulsed Sigma-Delta [44] and time-to-first-spike [43]. The SNN
in row 4 represents a non-converted SNN trained with the backpropagation
algorithm.

14

description type accuracy (%)

Rate-based conversion of 7-layer CNN with
max-pooling [35]

SNN 99.44

Converted SNN with pulsed Sigma-Delta coding
scheme [44]

SNN 99.14

Converted Lenet-5 with TTFS temporal coding
[34]

SNN 98.57

Spiking CNN with low-pass backpropagation rule
[24]

SNN 99.31

Branching & Merging CNN with Homogenous
filter capsules [19]

ANN 99.79

Multi-column deep neural network [9] ANN 99.77

Table 2.1: Comparison of selected deep neural networks.

15

3 Simulation platforms

Currently, there exist numerous platforms for simulation of biological neural
networks. The first objective is to analyse those platforms from the per-
spective of capabilities and choose the most suitable of them. The main
criterion is the current state of the community, and user base around the
platform, their ability to provide support to the users and state of the project
documentation. Because many of the projects are using GitHub to host its
repositories, the metrics like code frequency, contributors count, number of
issues and similar indicators displayed by GitHub can help to determine this.
The next criterion is whether the platform provides means to interact with
both spiking neural networks and artificial neural networks. Other criteria
are user-friendliness of the platform and license conditions.

The Neural Simulation Tool (NEST) [17], Brian [39], Neuron [6] and
Nengo [1] are platforms, which were analysed more precisely. Multiscale
Object-Oriented Simulation Environment (MOOSE), STochastic Engine of
Pathway Simulation (STEPS), Topographica, Neocortical Simulator (NCS),
The Parallel Circuit SIMulator (PCSIM) and the GEneral NEural SImulation
System (GENESIS) were other considered simulators. However, they were not
included, out of consideration for their small community, range of supported
models, or because they are no longer actively developed.

3.1 The Neural Simulation Tool (NEST)
NEST is a simulator for spiking neural network models. NEST provides
approximately 50 neuron models and over ten synapse models. Its primary
focus is on the dynamics, size and structure of the network rather than
on the exact morphology of individual neurons. NEST is implemented in
C++ and contains a scripting interface for Python and its native simulation
language interpreter (SLI). Recently, the NEST initiative, which coordinates
the development of NEST, developed a new markup language NESTML to
make the creation of new neuron models easier [33]. NEST can be used on
many computer architectures from low-end laptops to supercomputers. The
project’s page explicitly mentions Linux, MacOS X and IBM BlueGene as
supported platforms. A windows operating system can utilise a prepared vir-
tual machine image. The scaling of the existing model on a high-performance
cluster or multi-core computer is convenient and minimal, or no changes are
required, which is an advantage over other simulation platforms [41]. NEST

16

is applied in projects like the Human Brain Project or BrainScaleS. NEST
appears in over 290 papers as the simulator which was used [18].

3.2 Brian
Brian is a spiking neural network simulator written in Python. It is an
equation oriented simulator, i.e. neural models are defined in its mathematical
form with differential equations rather than written in programming language
function. This feature makes the simulator very flexible. To increase the
speed of simulation, Brian can run in several runtime code generation modes,
for example, NumPy, Cython or generate a standalone C++ code (although
some limitations apply). A downside of the Brian software is limited support
for parallel computations and total lack of support for cluster computations
[41]. The project’s page does not state any numbers of its users, but there
exists a Google group [3] with support topics, which has over 300 users.
Maintainers of the project do not track any information about publications,
which use Brian.

3.3 NEURON
NEURON is a simulation environment for modelling single neurons or neural
networks. It specialises in empirically-based simulations. NEURON is more
suitable for simulating single neuron models with more complex structure.
NEURON contains a graphical user interface (GUI), which can be used to
manipulate an existing model or create a new one. The GUI can be used to
create both single neuron model and a network model. Neural networks and
neuron models can be described with NEURON’s own interpreted language
called "hoc" or with Python script. New modules for neuron dynamics can
be developed in its native simplified language NMODL [41]. NEURON
utilises several methods to optimise the efficiency of its code. For example, it
provides routines for tabulating values of often used equations to avoid their
computation every time. It also supports optimisations for high-performance
computing, such as embarrassingly parallel computation without the need
to use other software. NEURON is the only simulator which can distribute
computations for a single complex neuron over a cluster [41]. According to
its web page, its user base is extensive with more than 1500 registered users
at the forum and more than 1900 of scientific articles that reported the use
of NEURON. Software installers are available for MS Windows, macOS and
Linux.

17

3.4 Nengo
Nengo is a tool for simulating large neural models. Nengo exploits the theo-
retical modelling approach described by the Neural Engineering Framework.
The Neural Engineering Framework proposes three principles (representation,
transformation, and dynamics) for the construction of large-scale neural
models which are simulator independent. Nengo decouples model creation
and simulation so that multiple simulators can run created models. NengoDL
is one such simulator built on top of the deep learning framework TensorFlow.
Nengo also provides a backend for neuromorphic hardware Intel Loihi. From
version 2 onwards, Nengo is written in the Python programming language.
It provides packages for all major operating systems. Figure 3.1 shows a
relation between the Nengo components. Nengo incorporates a proprietary
license which allows free manipulation with Nengo and its source code for
any non-commercial purpose as long as the copyright notice is included.
According to the project’s webpage, more than 100 publications mentioned
Nengo. Nengo forum has over 200 registered users of which about 40 were
active last month.

3.4.1 Neural engineering framework
The neural engineering framework (NEF) is a general method for building
neural models. It offers a method to solve connection weights between
network components by specifying properties of the used neuron models, the
values which they represent and the functions which should be computed
[38]. The NEF defines three principles for building large-scale neural models.
These principles are called representation, transformation and dynamics.

The representation principle states that a population of neurons repre-
sents information. Neural populations represent time-varying signals through
their spiking responses, and a signal is regarded as a vector of real num-
bers of arbitrary length. This way, neural computations can be defined by
manipulating the information using conventional mathematics [1]. During
the encoding process, a specific amount of current is released into a single
neuron. The tuning curve of the neuron determines how likely it is that
the neuron spike, as a function of the input signal. The spike frequency of
the population represents the encoded information. The information can
be decoded by observing these spike trains. First, the spike frequencies are
filtered with exponentially decaying filter. The decoding weights multiply the
filtered spike trains, and then the spike trains sum together. The accuracy
of the decoded information increases with the increasing number of neurons

18

Figure 3.1: The Nengo ecosystem. Source: https://www.nengo.ai/
documentation/

in the population.
The transformation principle describes how to decode spike trains to

compute transformations of signals. It provides a way to compute the
connection weights between populations to represent an arbitrary function.

When the neurons are connected recurrently, the vectors represented by
neural populations can be interpreted as state variables of the dynamical
system and methods of control theory can be applied [1].

3.4.2 Semantic pointer architecture
The semantic pointer architecture provides an approach to build cognitive
models with large-scale spiking neural networks. As stated in [13], the

19

https://www.nengo.ai/documentation/
https://www.nengo.ai/documentation/

semantic pointers are neural representations that carry partial semantic
content and are composable into the representational structures to support
complex cognition. The Semantic Pointer Architecture (SPA) uses vectors
to represent concepts. The Nengo-SPA package contains the implementation
of the SPA for the Nengo simulator.

Nengo used with SPA is an underlying foundation for the proof-of-concept
Spaun 2.0 [8] model, which is according to the author, the largest functional
brain model. The Spaun 2.0 model consists of several neural networks,
each specialised for a different cognitive task. Spaun 2.0 deals with digit
recognition, list memory, question answering and other tasks.

3.5 Summary of platform comparison
Out of available neural simulation platforms, four were chosen as the best
candidates for further analysis. As a starting point for the comparison of
Neuron, Brian and NEST, a previous comparative study [41] was used. Each
of the platforms has some sort of forum or mailing list for communication
of its users. Statistics retrieved from these pages were used to compare the
number of users of the platform. Other statistics were retrieved from the
GitHub sites of the projects. They can be used as an indicator of the activity
of the projects in the last years. The collected statistics are shown in table 3.1
below. The Neuron simulator has by far the largest community on its user
forum and is cited by other researchers most often. It is probably because
the Neuron simulator is developed for the longest time.

On the other hand, The NEST simulator has almost three times more
contributors to its source code than any other platform. Nengo is the only
simulator which offers utilisation of the artificial neural networks to improve
simulations of the spiking neural networks. A table in table 3.2 contains
information about the state of the documentation of the four compared
projects. Table 3.3 contains a table with an overview of some additional
characteristics of the simulators.

20

N
am

e
C
on

tr
ib
ut
or
s

M
ai
lin

g
lis
t

m
em

be
rs

G
itH

ub
iss

ue
s

G
itH

ub
wa

tc
he
rs

Li
ce
ns
e

N
ES

T
77

N
/A

63
0

36
G
PL

-2
.0

N
eu
ro
n

19
15
16

95
13

BS
D
-3
-

C
la
us
e

Br
ia
n

27
32
4

67
5

42
C
eC

IL
L-
2.
1

N
en
go

24
23
4

73
0

69
Pr

op
rie

ta
ry

Table 3.1: Metrics of the community support for the selected simulation
platforms

21

N
ES

T
N
eu
ro
n

Br
ia
n

N
en
go

A
bo

ok
de
sc
rib

in
g
th
e

sim
ul
at
or

C
om

pu
ta
tio

na
l

Sy
st
em

s
N
eu
ro
bi
ol
og
y

[2
2]

T
he

N
EU

RO
N

Bo
ok

[6
]

H
ow

to
bu

ild
a

br
ai
n:

A
ne
ur
al

ar
ch
ite

ct
ur
e
fo
r

bi
ol
og
ic
al

co
gn

iti
on

[1
3]

St
at
e
of

th
e

do
cu
m
en
ta
tio

n
m
in
or

im
pe

rfe
ct
io
ns

in
th
e
Py

th
on

in
te
rfa

ce
do

cu
m
en
ta
tio

n

co
m
pl
et
e
A
PI

re
fe
re
nc
e,

po
or
ly

ar
ra
ng

ed

m
in
or

la
ck
s
in

A
PI do
cu
m
en
ta
tio

n

de
ta
ile
d
A
PI

re
fe
re
nc
e
an

d
tu
to
ria

ls

Is
th
e
so
ur
ce

co
de

fo
r
th
e

tu
to
ria

ls
av
ai
la
bl
e?

Ye
s

Ye
s

Ye
s

Ye
s

Table 3.2: Overview of the state of the documentation of the simulators.

22

N
ES

T
N
eu
ro
n

Br
ia
n

N
en
go

G
PU

co
m
pu

ta
tio

n
su
pp

or
t

N
o

Ye
s

(c
or
eN

EU
RO

N
lib

ra
ry
)

Ye
s

(B
ria

n2
G
eN

N
pa

ck
ag
e)

Ye
s
(O

pe
nC

L)

pa
ra
lle
l

co
m
pu

ta
tio

n
su
pp

or
t

Ye
s

Ye
s
(s
pe

ci
al

ve
rs
io
n)

In
de

ve
lo
pm

en
t

(O
pe

nM
P)

Ye
s

su
pp

or
t
fo
r

di
st
rib

ut
ed

co
m
pu

ta
tio

ns

Ye
s

Ye
s

N
o

Ye
s

su
pp

or
te
d

pl
at
fo
rm

s
Li
nu

x,
m
ac
O
S,

IB
M

Bl
ue
G
en
e

W
in
do

w
s,

Li
nu

x,
m
ac
O
S,

IB
M

Bl
ue
G
en
e,

C
ra
y
X
T
3

W
in
do

w
s,

Li
nu

x,
m
ac
O
S

W
in
do

w
s,

m
ac
O
S,

Li
nu

x,
In
te
lL

oi
hi

Table 3.3: Parallelization, high-performance computation support and sup-
ported platforms.

23

4 Other libraries

This chapter contains a short description of the rest of the software, li-
braries and frameworks encountered during research. PyNN [11], a simulator-
independent language for building neuronal network models, is mentioned at
the end of this chapter. PyNN works as a frontend for Neuron, NEST and
Brian simulators mentioned in the previous chapter.

4.1 SNN toolbox
SNN toolbox (SNN-TB) [35] is a conversion tool which automates the pro-
cess of conversion of trained ANN to an SNN. The toolbox uses a deep
learning model written in one of the supported ANN frameworks (Currently
Keras / TensorFlow [7], Lasagne [12], Caffe [16] and PyTorch [29]). The
provided input model is parsed, and a general abstract model in Keras is
derived. This internal model is used to achieve the actual conversion to
the spiking network. That is achieved by replacing the analogue neurons to
spiking integrate-and-fire neurons and altering the connection weights corre-
spondingly. The resulting spiking model can be exported to several spiking
simulators or deployed on dedicated neuromorphic chip-sets. Currently, the
supported simulation platforms are PyNN, Brian2 and built-in MegaSim
and INIsim simulators. Intel Loihi and SpiNNaker project are the supported
hardware platforms at the moment. Figure 4.1 illustrates the workflow of
the SNN toolbox.

4.2 Keras / TensorFlow
Keras is a high-level deep learning API which can be used with multiple neural
network or machine learning toolkits, mainly with TensorFlow. TensorFlow
is an open-source machine learning platform. It consists of an interface for
formulating machine learning algorithms and system-specific implementations
to perform such algorithms.

4.3 PyNN
PyNN is a language for building models of neuronal networks independently
of the used simulator. It provides a common API in the Python language

24

Figure 4.1: The illustration of the SNN toolbox workflow. An arbitrary
supported deep learning model is transformed into an abstract Keras model,
which is subsequently converted to a spiking network. Source: https:
//snntoolbox.readthedocs.io/en/latest/guide/intro.html

to write the code and run it on multiple backends. PyNN API is designed
to support neural networks models at a high-level of abstraction. Currently,
Neuron, Brian (version 1) and NEST are supported simulators. PyNN also
supports the SpiNNaker and BrainScaleS neuromorphic hardware and is
partially compatible with NeuroML model description language. Figure in
fig. 4.2 shows the architecture of the PyNN interface [4].

25

https://snntoolbox.readthedocs.io/en/latest/guide/intro.html
https://snntoolbox.readthedocs.io/en/latest/guide/intro.html

Py
NN

Sim
ula

to
r-s

pe
cifi

c
Py

NN
 m

od
ule

Py
th

on
 in

te
rp

re
te

r

Na
tiv

e
int

er
pr

et
er

Sim
ula

to
r k

er
ne

l

Di
re

ct
 co

m
m

un
ica

tio
n

Co
de

 g
en

er
at

ion
Im

ple
m

en
te

d
In

 d
ev

elo
pm

en
t

py
NN

.n
es

t

Py
NE

ST SL
I

NE
ST

py
NN

.p
cs

im

PC
SI

M

Py
PC

SI
M

py
NN

.b
ria

n

Br
ian

py
NN

.n
eu

ro
n

nr
np

y ho
c

NE
UR

ON

py
NN

.ne
ur

om
l

Ne
ur

oM
L

py
NN

.m
oo

se

Py
MO

OS
E

MO
OS

E

py
NN

.h
ar

dw
ar

e.
br

ain
sc

ale
s

Py
HA

L

Br
ain

Sc
ale

S
HM

F
Sp

iN
Na

ke
r

ha
rd

wa
re

py
NN

.sp
iN

Na
ke

r

PA
CM

AN

Figure 4.2: PyNN architecture

26

5 Exploratory use cases

This chapter describes the initial experiments with the Nengo simulator
and the SNN-Toolbox, which were selected as the most appropriate tools
for subsequent use in this work. The decision was based on the pieces of
information stated about the individual tools in the previous chapters. Both
tools make it possible to use analogue neural networks to train the model
and then convert it to the corresponding spiking neural network for inference.
This approach is more utilisable for practical needs at the moment because
other approaches of using SNNs suffer from issues described in chapter 2
above. Thus, it is complicated to use them for any practical application such
as image recognition. However, they are still necessary for research in the
area of spiking networks and scientific experiments. Furthermore, the other
simulators proved to be quite hard to work with, for example, because of
unreliable interfaces of their dependencies or other issues.

5.1 Nengo
In the beginning, the Nengo simulator was inspected more thoroughly. It
helps new users with its simple graphical interface, which contains several
tutorials and examples. The tutorials focus mainly on an explanation of the
Neural Engineering Framework and Semantic Pointer Architecture methods
introduced by authors of the Nengo simulator, rather than on SNNs generally.
The GUI is divided into a script editor and visualisation area, where the
objects, created in the script editor, are visualised in current time. These
visualisations help understand the whole course of the simulation of the
spiking neural network. An additional package nengo-gui must be installed
to access the graphical environment. The environment is an HTML5-based
application, which is accessed through an internet browser. The interactive
editor supports Nengo and NengoDL backends for running the simulation.

5.2 Spaun 2.0
The next goal was to execute the Spaun 2.0 model to inspect the capabilities
of the Nengo even further. The objective was to simulate the handwritten
digit recognition, which is one of the cognitive tasks that Spaun 2.0 supports.
Although this use case should be quite straightforward according to the

27

documentation of the Nengo, a few issues appeared. Firstly, there does not
exist any documentation for the model. It means that the only way how to
get information about its execution is to correspond with its authors about
every detail, for example, to discover that the model is not compatible with
recent versions of the Nengo package. The other problem is probably caused
by the fact that the Spaun 2.0 model can require more than 26 gigabytes of
memory to execute. Even though the model was executed on a cloud platform,
which provides such resources, the program still finished the simulation with
memory allocation errors.

5.3 Using the same pre-trained model for the
Nengo and SNN-Toolbox

The next objective was to assess conversion abilities of both Nengo and SNN
conversion toolbox on a similar use case. Conversion of a simple neural
network model represented by Keras interface was selected as a suitable
use case. The model was assembled and trained as an ordinary analogue
neural network on a MNIST dataset. The model architecture must have
been constrained to allow comparison of the two converters because Nengo
currently does not support batch normalisation. Although, the NengoDL
converter should be able to handle unsupported layers (by falling back to
ANN, as explained below), it did not work if batch normalisation layers were
in the model.

There was an issue with using the same network model directly because
there exist two versions of Keras framework at this time. SNN-TB uses
a standalone multi-backend version of Keras, which supports Theano and
CNTK toolkits alongside with the TensorFlow backend. However, this version
of Keras will not be further developed in the future. The other version of
Keras is integrated directly into TensorFlow as its high-level API for neural
network development. This version of Keras interface is used in Nengo
platform. However, both versions work similarly, and the model exported
from the multi-backend version can be migrated into the other without
further complications.

5.3.1 Model architecture
The final selected model was a convolutional network, which consisted of
multiple consecutive convolutional layers, and contained an average pooling
layer. A visualisation of the network architecture is shown in fig. 5.1. The

28

first convolution layer has consisted of thirty-two filters. The kernel size was
3 × 3. The second convolutional layer had sixty-four 3 × 3 filters with a stride
length of 2 × 2. All layers have rectified linear unit (ReLU) as activation
function, and the weight matrices were initialised with He uniform initialiser.
The only exception is the last dense layer, which uses softmax activation.
The presented model was configured to use the Adam [21] optimizer and
categorical cross-entropy as a loss function. 25% of the training set was held
out to serve as validation data. The ANN was trained on the remaining 75%
of the MNIST training set for 2 epochs. The batch size was set to 1024. The
trained Keras model was exported to the file system to be accessible to the
conversion tools.

5.3.2 Conversion with SNN Toolbox
Conversion of the network with SNN-TB is quite straightforward. There must
be created a configuration file, which contains all necessary parameters that
must be passed to the snntoolbox.bin.run.main() function of the toolbox.
The configuration file can be written with a few simple utility functions of the
SNN-TB. The configuration file contains paths to the model and dataset as
well as a specification of the used simulator and its parameters, parameters
of the simulated spiking neuron cells or plots and variable logs, which should
be generated by the toolbox. The SNN-TB then automatically performs the
conversion of the network and evaluates it on the given test samples. There
is an option to evaluate the ANN input model so the results can be compared
instantly.

The configuration file specified following values for the execution of SNN-
TB: The toolbox was set to evaluate the input model and parse it to SNN-TB
internal representation. The activation value in the 99.9 percentile was
used to normalise the parameters of each layer. Then, integrate-and-fire
neurons replaced analogue neurons and by that was the ANN converted into
SNN. The SNN was then evaluated on the whole test set of the MNIST
dataset. The default simulator of the SNN-TB (INI simulator) was used
because it supports most of the potential functionality of the conversion
toolbox, so it was not necessary to introduce other limitations to the selected
model. Simulation of each sample was configured to run for 120 ms time
interval with a time resolution of 0.1 ms. Because the built-in INI simulator
supports parallel simulations, the test samples were processed in batches
of 500 samples. The simulated spiking neurons had a refractory period (a
recovery phase of the neuron during which it can not spike again) and a
delay parameters equal to the time resolution of the simulator (dt = 0.1 ms).

29

There is an example of the configuration in listing 5.1.

Listing 5.1: Configuration of the SNN-TB
import SNN−Toolbox f unc t i on s
from snntoolbox . u t i l s . u t i l s import import_conf igparser
i n i t i a l parameters
dt = 0 .1 # Time r e s o l u t i o n o f s imu la tor .
snn_sim = ’ INI ’ # Name of the used s imu la tor .
t imes teps = 30 # Time o f s imu la t i on o f one sample in

ms .
sim_batch = 500 # Number o f samples s imu la ted in

p a r a l l e l .

Create a con f i g f i l e wi th an exper imenta l se tup f o r
SNN Toolbox .

c on f i g p a r s e r = import_conf igparser ()
c on f i g = con f i g p a r s e r . Conf igParser ()

c on f i g [’ paths ’] = {
’path_wd ’ : path_wd , # Path to model .
’ dataset_path ’ : path_wd , # Path to da t a s e t .
’ f i lename_ann ’ : model_name # Name of input model .

}
con f i g [’ t o o l s ’] = {

’ evaluate_ann ’ : True , # Test ANN on da t a s e t
b e f o r e convers ion .

’ normal ize ’ : True , # Normalize we i gh t s
}
con f i g [’ s imu la t i on ’] = {

’ s imu la to r ’ : snn_sim ,
’ durat ion ’ : t imesteps ,
’ num_to_test ’ : n_samples ,
’ batch_size ’ : sim_batch ,
’ dt ’ : dt

}
c on f i g [’ c e l l ’] = {

’ tau_re f rac ’ : dt , # Refrac tory per iod
’ de lay ’ : dt

}

30

5.3.3 Conversion with NengoDL Converter
Several adjustments were needed to execute the selected model of the spiking
network in the Nengo simulator. The input samples had to be reformatted
to conform with the format which is required by the Nengo simulator. A
new dimension was added to the data array to spread the data over the time
of the simulation. The input image was flattened into a single dimension.
The nengo_dl.Converter class served for the conversion of the ANN.

The converter can be configured to allow a fallback option for features
which are not supported by the core Nengo simulator. This option causes
that the layers which do not have spiking equivalents are wrapped into
NengoDL’s TensorNode class. This option makes it possible to use NengoDL
to run even more complex network models. However, networks which contain
TensorNodes can be run only with NengoDL simulator and cannot be ported
to other Nengo environments such as Nengo-core simulator or Nengo backends
for hardware platforms.

The last layer of the used model was excluded to avoid this silent drop
back to a hybrid analogue network before it was used with Nengo. That
was necessary because Nengo does not define a conversion of the softmax
activation function. Then, NengoDL converter parsed the Keras model into
the Nengo model. However, this model still consisted of non-spiking neurons.
NengoDL’s RectifiedLinear neurons were used because they provided an
approximation for the spiking neurons and would be replaced with the
nengo.SpikingRectifiedLinear neurons later. This model was used for
training during which parameter optimizations were performed. A Nengo
Probe object was needed to obtain the output of the last network layer. That
output was needed to train the network. The converted model was compiled
and trained with the same or equivalent arguments as the original Keras
model, that means that Adam optimizer and categorical cross-entropy were
specified during the compilation of the model. There is demonstrated a part
of the code to convert and train network in listing 5.2. The nengo_dl module
implements a simple interface for compilation, training and evaluation of the
model in addition to the standard Nengo syntax. The implemented interface
is designed to be highly similar to the Keras API as can be seen from the
compile and fit methods in listing 5.2.

31

Listing 5.2: Conversion with NengoDL Converter class.
conver t keras model to nengo network
conve r t e r = nengo_dl . Converter (model)

add a probe to the output l a y e r
with conve r t e r . net :

output_p = conver t e r . outputs [conve r t e r . model .
output]

Compile the model f o r NengoDL
with nengo_dl . S imulator (conve r t e r . net , minibatch_size=

sim_batch) as sim :
sim . compile (

opt imize r=t f . op t im i z e r s .Adam() ,
l o s s={

output_p : t f . l o s s e s .
Categor i ca lCros s ent ropy (f rom_log i t s=True
)

} ,
lo s s_weights={output_p : 1}

)
run t r a i n i n g
sim . f i t (

{ conve r t e r . inputs [conve r t e r . model . input] :
x_train } ,

{output_p : y_train } ,
epochs=epochs ,
v a l i d a t i o n_ sp l i t =0.25

)

save the parameters to f i l e
sim . save_params (model_params)

The model fitted on 75% of the training set, and the remaining 25% was
used for validation. The training was performed in two epochs, as was with
the original Keras model. The retrieved parameters were saved on the file
system for the testing phase.

For the evaluation, the original Keras model was converted with the
NengoDL Converter again, but this time, the non-spiking analogue neurons

32

were swapped for spiking leaky integrate-and-fire neurons. A low-pass synap-
tic smoothing with parameter 0.01 was applied to all the neurons. This
operation causes that the spikes in the network are averaged over a short
time window. This method helped to remove excess noise from the network
output. The input data needed to be repeated once for each timestep of the
simulation.

Finally, NengoDL simulator ran the prediction of the MNIST test set.
Each sample was simulated for 30 timesteps. The parameters exported from
the previously created NengoDL model were applied against the spiking
network.

5.3.4 Comparison of the tools and their results
Both tools were tested on a subset of 8000 images of the MNIST test set,
which has 10000 images in total. The set must have been reduced because
the Nengo demanded too much memory. The simulation required more
than 25 GB when it was executed on the 10000 samples. Although, the
SNN-TB did not have such problems with the whole testing set, the number
of tested samples was made equal to compare the results. The original
Keras model was also tested on the 8000 samples subset for the same reason.
The base Keras ANN achieved an accuracy of 96.55%. The SNN converted
with SNN-TB performed slightly worse, and that is affirmative to results
reported by previous works about spiking networks. The NengoDL simulator
demonstrated the best accuracy, which is comparable with results of similar
network architectures built with Nengo platform. The results can be seen in
table 5.1. It should be stated that these results were not validated in any
way. The primary purpose of this part of the work was to find out if the
tools can be used for conversion of the same base model and how to achieve
that.

Model Test accuracy (%)

Keras base model 96.55
SNN in SNN-TB 94.67
SNN in NengoDL 98.45

Table 5.1: Test accuracies achieved on 8000 samples of the MNIST test set.

Several findings about the used tools emerged during this experiment.
From the software engineering point of view, it seems that the Nengo ecosys-
tem is better designed and might be extended easily. However, it takes time

33

to fully understand it and use its full potential, which is far beyond the
illustrated bits. It would probably require a more profound knowledge of the
associated methods from NEF and SPA. The SNN conversion toolbox is, on
the other hand, well suited for quick trials or familiarization with spiking
networks. It offers an uncomplicated way to convert state-of-the-art ANNs to
spiking alternatives, which works out of the box. However, it is also probably
its sole purpose because it does not offer any interfaces for modifications of
its functioning. All potential extensions have to be integrated directly into
its source code.

Further investigation of the tools should be carried out to evaluate their
time and memory requirements because there might be a significant difference
as became apparent because of the reason described earlier. That could be
achieved by averaging memory consumption and run-time across multiple
repetitions of the simulations or by looking into the source code for possible
design dissimilarities.

34

inp_layer: InputLayer
input:

output:
(None, 28, 28, 1)
(None, 28, 28, 1)

conv1: Conv2D
input:

output:
(None, 28, 28, 1)
(None, 26, 26, 32)

average_pooling2d_1: AveragePooling2D
input:

output:
(None, 26, 26, 32)
(None, 13, 13, 32)

conv2: Conv2D
input:

output:
(None, 13, 13, 32)

(None, 6, 6, 64)

flatten_1: Flatten
input:

output:
(None, 6, 6, 64)

(None, 2304)

dense_1: Dense
input:

output:
(None, 2304)
(None, 100)

dense_2: Dense
input:

output:
(None, 100)
(None, 10)

out_layer: Activation
input:

output:
(None, 10)
(None, 10)

Figure 5.1: The Keras model of a convolutional network used for classification
of the MNIST dataset.

35

6 Spiking classification on
large multi-subject P300
dataset

A convolutional neural network described in [42] was converted with the SNN
conversion toolbox. SNN-TB was selected for the conversion over Nengo
simulation platform because the CNN contained batch normalisation layer
and softmax activation function, which prevented Nengo to convert the
network successfully.

The original CNN was used for binary classification of event-related
potential (ERP) signals retrieved from large multi-subject P300 dataset,
which was presented in [27]. The dataset was retrieved from EEG experiments,
where subjects were told to concentrate on a single-digit number (from 0
to 9). Experimenters were trying to guess the number, which the subject
selected, from recorded EEG data while the subject was stimulated with
random sequences of all digits. It is described in [42] how were extracted
short intervals of signal around all target stimuli from this dataset. An equal
amount of non-target samples was acquired randomly from the remaining
data. This newly-emerged dataset consisted of two distinct equal-sized classes,
the target epochs (i.e. short time intervals of EEG data around the stimulus,
which was the subject’s thought number) and the non-target epochs. Each
epoch contained three EEG channels and was 1200 ms long. The sampling
frequency was 1 kHz. That means that each sample of the network input
was a 3 × 1200 matrix.

The input data were preprocessed in a similar fashion as in [42]. A
modified subset [28] of the original dataset was used for this work. This
dataset was created during the classification with the original CNN. The input
file contained one matrix of feature vectors for all target data and one matrix
of feature vectors for all non-target data. Those matrices were concatenated
to create the input vectors. The corresponding ground truth labels were
produced by one-hot-encoding of the input data. Then, severely damaged
epochs were discarded from the input the same way as in the original article
[42]. It was done by discarding all epochs, where amplitudes were higher
than 100 µV in any of the three channels. The steps of preprocessing is
visualised in fig. 6.1.

These preprocessed data were divided into training and test subsets by

36

All target
data

All non-
target data

 All featuresConcatenate

Preprocessed data
Discard
damaged data

(1,0) for
target data

(0,1) for non-
target data

 All labelsConcatenate

Figure 6.1: Flow of data preprocessing.

randomly picking out 25% of the dataset samples into the test set. The test
set was saved to the file system so it could be passed to SNN-TB during
conversion later.

The network architecture of the CNN model was replicated entirely from
the original work. This model was cross-validated the same way as in the
original article. That means 30 iterations of the Monte-Carlo cross-validation
were performed, and each iteration held out 25% of the training set to create
validation subset. In each iteration, a new instance of the network was
created and trained. The training was done in 30 epochs while early stopping
with patience value of 5 was used. After that, the trained ANN was evaluated
on the test set. 10% of the dataset samples, which were used during the
training, were saved for normalisation of the layer weights. SNN-TB did this
normalisation before the conversion process. All the divisions of the dataset
are shown in fig. 6.2.

The conversion toolbox parsed the evaluated ANN into its internal Keras

37

Figure 6.2: Data splitting. Proportions of the split are marked by percentages
along the edges.

38

representation, weights of the parsed model were normalised with previously
saved part of the training data. The normalised model was converted into
a spiking model, and the spiking model was evaluated on the test set each
iteration. The evaluation of each input sample of the spiking network was
simulated for 50 timesteps. The simulator evaluated the whole test set
gradually in batches of 49 samples.

Accuracies from the 30 iterations of cross-validation were recorded for
both networks. The other metrics, which are shown in the article about the
original neural network (AUC, precision, recall), could not be computed,
because SNN-TB does not provide a simple way to define arbitrary metrics
at this time 1.

6.1 Results
The average accuracy and sample standard deviation from the 30 cross-
validation iterations of the experiment are shown in table 6.1. Figure 6.3
shows a comparison of the accuracies from the individual iterations. The
decrease of accuracy on the SNN was expected as previous works from the
field reports similar drops of performance. Also, this experiment validated
only a single combination of network parameters, which is stated in the
previous section. There are plenty of parameters (for the used neuron type,
network or the whole simulator), so there surely is a space for fine-tuning
and optimization. Whole other area of experimentation would appear if the
SNN-TB was used with any other supported backend. That would possibly
allow using other neuron types.

Model Average test accuracy Sample standard deviation

Original model 0.6370 0.0066
Converted model 0.5720 0.0156

Table 6.1: Average accuracy and sample standard deviation of the classifica-
tion results received during cross-validation.

1This issue was discussed with a contributor to the SNN conversion toolbox on the
project’s GitHub page. The discussion did not lead to a successful implementation of the
custom metrics before this work was completed. A link to the website https://github.
com/NeuromorphicProcessorProject/snn_toolbox/issues/56 is provided with a hope
that the solution might appear there in future.

39

https://github.com/NeuromorphicProcessorProject/snn_toolbox/issues/56
https://github.com/NeuromorphicProcessorProject/snn_toolbox/issues/56

Figure 6.3: The accuracies across all iterations of the experiment.

40

7 Conclusion

This thesis clarifies the main distinctions between analogue neural networks
and spiking neural networks, depict the current state of research in the area
of the spiking networks and demonstrate the findings on a selected machine
learning problem with the help of selected instruments. It was described how
spiking networks could be beneficial in research for their biological similarities
with biological neural systems, and their fitness for utilisation in embedded
applications. The work later focuses on the collation of the most advanced
simulators of spiking networks. Nengo ecosystem and SNN-Toolbox were
selected for the subsequent experiments. It was outlined how these tools
work on a use case where a base analogue network was converted with both
tools and evaluated on the MNIST image classification dataset. It was shown
that both instruments were able to convert an original non-spiking network
to a spiking alternative with some modifications. There were also described
personal experiences and impressions from using the tools. The results of
both converted networks were comparable with the results of the base model.

The main contribution of this work is a conversion of an earlier convo-
lutional network for event-related potentials classification. The achieved
average accuracy (57.2%) does not surpass the accuracy of the original net-
work. Values of other metrics could not be compared with original work
because the used conversion toolbox does not make it possible to calculate
those metrics. The results of this experiment could be improved with a more
profound research of the effects of individual simulation parameters on the
performance of the spiking networks and using algorithms for optimization of
those parameters. Another improvement in the classification of event-related
potentials could be achieved if a new model, which would exploit specific
qualities of the spiking networks, was created.

This work focused on computer simulations of the spiking networks and
overlooked available neuromorphic platforms such as Intel Loihi or SpiNNaker
chips. It would be an impressive continuation of this work to experiment
with these novel hardware architectures.

All source codes of the used and created applications were made public1.
Even though the achieved results of any of the applications are not ground-
breaking, the work and the personal experiences with the mentioned tools
might be helpful to subsequent works in this field.

1All materials related to this thesis were published on https://github.com/RKCZ/
Extension-of-neural-network-architecture.

41

https://github.com/RKCZ/Extension-of-neural-network-architecture
https://github.com/RKCZ/Extension-of-neural-network-architecture

Bibliography

[1] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf,
Terrence C. Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker,
and Chris Eliasmith. 2014. Nengo: a Python tool for building large-scale
functional brain models. Frontiers in Neuroinformatics, 7, 48. issn:
1662-5196. doi: 10.3389/fninf.2013.00048. Retrieved 03/11/2020
from https://www.frontiersin.org/articles/10.3389/fninf.
2013.00048/full.

[2] K.A. Boahen. 2000. Point-to-point connectivity between neuromorphic
chips using address events. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, 47, 5, (May 2000), 416–434.
issn: 1558-125X. doi: 10.1109/82.842110.

[3] [n. d.] Brian. Retrieved 03/11/2020 from https://groups.google.
com/forum/#!aboutgroup/briansupport.

[4] Daniel Brüderle. 2009. Neuroscientific Modeling with a Mixed-Signal
VLSI Hardware System. Dissertation. University of Heidelberg. doi:
10.11588/heidok.00009656. Retrieved 03/11/2020 from http://
archiv.ub.uni-heidelberg.de/volltextserver/9656/.

[5] Yongqiang Cao, Yang Chen, and Deepak Khosla. 2015. Spiking Deep
Convolutional Neural Networks for Energy-Efficient Object Recognition.
International Journal of Computer Vision, 113, 1, (May 1, 2015), 54–
66. issn: 1573-1405. doi: 10.1007/s11263-014-0788-3. Retrieved
03/11/2020 from https://doi.org/10.1007/s11263-014-0788-3.

[6] Nicholas T. Carnevale and Michael L. Hines. 2006. The NEURON
Book. Cambridge University Press, (January 12, 2006). 399 pages. isbn:
978-1-139-44783-6.

[7] François Chollet. 2015. Keras. (2015). Retrieved 03/30/2020 from
https://keras.io.

[8] Feng-Xuan Choo. 2018. Spaun 2.0: Extending the World’s Largest
Functional Brain Model. University of Waterloo, (May 17, 2018). https:
//uwspace.uwaterloo.ca/handle/10012/13308.

42

https://doi.org/10.3389/fninf.2013.00048
https://www.frontiersin.org/articles/10.3389/fninf.2013.00048/full
https://www.frontiersin.org/articles/10.3389/fninf.2013.00048/full
https://doi.org/10.1109/82.842110
https://groups.google.com/forum/#!aboutgroup/briansupport
https://groups.google.com/forum/#!aboutgroup/briansupport
https://doi.org/10.11588/heidok.00009656
http://archiv.ub.uni-heidelberg.de/volltextserver/9656/
http://archiv.ub.uni-heidelberg.de/volltextserver/9656/
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1007/s11263-014-0788-3
https://keras.io
https://uwspace.uwaterloo.ca/handle/10012/13308
https://uwspace.uwaterloo.ca/handle/10012/13308

[9] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column
deep neural networks for image classification. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition. 2012 IEEE Conference
on Computer Vision and Pattern Recognition. (June 2012), 3642–3649.
doi: 10.1109/CVPR.2012.6248110.

[10] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. 2016. Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or
-1, (March 17, 2016). arXiv: 1602.02830 [cs]. Retrieved 03/25/2020
from http://arxiv.org/abs/1602.02830.

[11] Andrew P. Davison, Daniel Brüderle, Jochen M. Eppler, Jens Kremkow,
Eilif Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. 2009.
PyNN: a common interface for neuronal network simulators. Frontiers
in Neuroinformatics, 2, 11. issn: 1662-5196. doi: 10.3389/neuro.11.
011.2008. Retrieved 03/11/2020 from https://www.frontiersin.
org/articles/10.3389/neuro.11.011.2008/full.

[12] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae
Sønderby, Daniel Nouri, Daniel Maturana, Martin Thoma, Eric Bat-
tenberg, Jack Kelly, Jeffrey De Fauw, Michael Heilman, diogo149,
Brian McFee, Hendrik Weideman, takacsg84, peterderivaz, Jon, in-
stagibbs, Dr. Kashif Rasul, CongLiu, Britefury, and Jonas Degrave.
2015. Lasagne: First release. Zenodo, (August 13, 2015). doi: 10.5281/
zenodo.27878. Retrieved 03/30/2020 from https://zenodo.org/
record/27878#.XoJJW4gzaMo.

[13] Chris Eliasmith. 2013. How to Build a Brain: A Neural Architecture
for Biological Cognition. Oxford University Press, (June 27, 2013).
476 pages. isbn: 978-0-19-979454-6.

[14] Steve B. Furber, Francesco Galluppi, Steve Temple, and Luis A. Plana.
2014. The SpiNNaker Project. Proceedings of the IEEE, 102, 5, (May
2014), 652–665. issn: 1558-2256. doi: 10.1109/JPROC.2014.2304638.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2014. Generative Adversarial Nets. In Advances in Neural Information
Processing Systems 27. Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors. Curran Associates, Inc.,
2672–2680. Retrieved 03/11/2020 from http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf.

43

https://doi.org/10.1109/CVPR.2012.6248110
https://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008/full
https://www.frontiersin.org/articles/10.3389/neuro.11.011.2008/full
https://doi.org/10.5281/zenodo.27878
https://doi.org/10.5281/zenodo.27878
https://zenodo.org/record/27878#.XoJJW4gzaMo
https://zenodo.org/record/27878#.XoJJW4gzaMo
https://doi.org/10.1109/JPROC.2014.2304638
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[16] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Caffe: Convolutional Architecture for Fast Feature Embedding. In
Proceedings of the 22nd ACM International Conference on Multimedia
(MM ’14). Association for Computing Machinery, Orlando, Florida,
USA, (November 3, 2014), 675–678. isbn: 978-1-4503-3063-3. doi:
10.1145/2647868.2654889. Retrieved 03/30/2020 from https://doi.
org/10.1145/2647868.2654889.

[17] Jakob Jordan, Håkon Mørk, Stine Brekke Vennemo, Dennis Terhorst,
Alexander Peyser, Tammo Ippen, Rajalekshmi Deepu, Jochen Martin
Eppler, Alexander van Meegen, Susanne Kunkel, Ankur Sinha, Tan-
guy Fardet, Sandra Diaz, Abigail Morrison, Wolfram Schenck, David
Dahmen, Jari Pronold, Jonas Stapmanns, Guido Trensch, Sebastian
Spreizer, Jessica Mitchell, Steffen Graber, Johanna Senk, Charl Linssen,
Jan Hahne, Alexey Serenko, Daniel Naoumenko, Eric Thomson, Itaru
Kitayama, Sebastian Berns, and Hans Ekkehard Plesser. 2019. NEST
2.18.0. Version 2.18.0. (June 27, 2019). https://doi.org/10.5281/
zenodo.2605422.

[18] Jülich Aachen Research Alliance. 2015. NEST: The Neural Simula-
tion Tool. (2015). Retrieved 03/11/2020 from https://www.nest-
simulator.org/wp-content/uploads/2015/04/JARA_NEST_final.
pdf.

[19] T. Kalganova, A. Byerly, and I. Dear. 2020. A Branching and Merging
Convolutional Network with Homogeneous Filter Capsules.

[20] Minje Kim and Paris Smaragdis. 2016. Bitwise Neural Networks, (Jan-
uary 22, 2016). arXiv: 1601.06071 [cs]. Retrieved 03/25/2020 from
http://arxiv.org/abs/1601.06071.

[21] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochas-
tic Optimization, (January 29, 2017). arXiv: 1412.6980 [cs]. Retrieved
04/13/2020 from http://arxiv.org/abs/1412.6980.

[22] Nicolas Le Novère. 2012. Computational Systems Neurobiology. Springer
Science & Business Media.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86,
11, (November 1998), 2278–2324. issn: 1558-2256. doi: 10.1109/5.
726791.

44

https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.5281/zenodo.2605422
https://www.nest-simulator.org/wp-content/uploads/2015/04/JARA_NEST_final.pdf
https://www.nest-simulator.org/wp-content/uploads/2015/04/JARA_NEST_final.pdf
https://www.nest-simulator.org/wp-content/uploads/2015/04/JARA_NEST_final.pdf
https://arxiv.org/abs/1601.06071
http://arxiv.org/abs/1601.06071
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

[24] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training
Deep Spiking Neural Networks Using Backpropagation. Frontiers in
Neuroscience, 10, 508. issn: 1662-453X. doi: 10.3389/fnins.2016.
00508. Retrieved 03/11/2020 from https://www.frontiersin.org/
articles/10.3389/fnins.2016.00508/full.

[25] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards Accurate Binary
Convolutional Neural Network. In Advances in Neural Information
Processing Systems 30. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors. Curran Associates,
Inc., 345–353. Retrieved 03/25/2020 from http://papers.nips.cc/
paper/6638-towards-accurate-binary-convolutional-neural-
network.pdf.

[26] Wolfgang Maass. 1997. Networks of spiking neurons: The third genera-
tion of neural network models. Neural Networks, 10, 9, (December 1,
1997), 1659–1671. issn: 0893-6080. doi: 10.1016/S0893-6080(97)
00011-7. Retrieved 03/09/2020 from http://www.sciencedirect.
com/science/article/pii/S0893608097000117.

[27] R. Mouček, L. Vařeka, T. Prokop, J. Štěbeták, and P. Brůha. 2017.
Event-related potential data from a guess the number brain-computer
interface experiment on school children. Scientific Data, 4, 1, (March 28,
2017), 1–11, 1, (March 28, 2017). issn: 2052-4463. doi: 10.1038/sdata.
2016.121. Retrieved 04/01/2020 from https://www.nature.com/
articles/sdata2016121.

[28] Roman Mouček, Lukáš Vařeka, Tomáš Prokop, Jan Štěbeták, and
Petr Brůha. 2019. Replication Data for: Evaluation of convolutional
neural networks using a large multi-subject P300 dataset. (July 30,
2019). doi: 10.7910/DVN/G9RRLN. Retrieved 04/28/2020 from https:
//dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/G9RRLN.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. H. Wallach,
H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox,
and R. Garnett, editors. Curran Associates, Inc., 8026–8037. Retrieved

45

https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://www.frontiersin.org/articles/10.3389/fnins.2016.00508/full
https://www.frontiersin.org/articles/10.3389/fnins.2016.00508/full
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network.pdf
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network.pdf
http://papers.nips.cc/paper/6638-towards-accurate-binary-convolutional-neural-network.pdf
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
http://www.sciencedirect.com/science/article/pii/S0893608097000117
http://www.sciencedirect.com/science/article/pii/S0893608097000117
https://doi.org/10.1038/sdata.2016.121
https://doi.org/10.1038/sdata.2016.121
https://www.nature.com/articles/sdata2016121
https://www.nature.com/articles/sdata2016121
https://doi.org/10.7910/DVN/G9RRLN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN

03/30/2020 from http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.
pdf.

[30] R. Paz, F. Gomez-Rodriguez, M. A. Rodriguez, A. Linares-Barranco,
G. Jimenez, and A. Civit. 2005. Test Infrastructure for Address-
Event-Representation Communications. In Computational Intelligence
and Bioinspired Systems (Lecture Notes in Computer Science). Joan
Cabestany, Alberto Prieto, and Francisco Sandoval, editors. Springer,
Berlin, Heidelberg, 518–526. isbn: 978-3-540-32106-4. doi: 10.1007/
11494669_64.

[31] José Antonio Pérez-Carrasco, Bo Zhao, Carmen Serrano, Begoña Acha,
Teresa Serrano-Gotarredona, Shouchun Chen, and Bernabé Linares-
Barranco. 2013. Mapping from Frame-Driven to Frame-Free Event-
Driven Vision Systems by Low-Rate Rate Coding and Coincidence
Processing–Application to Feedforward ConvNets. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35, 11, (November 2013),
2706–2719. issn: 1939-3539. doi: 10.1109/TPAMI.2013.71.

[32] Michael Pfeiffer and Thomas Pfeil. 2018. Deep Learning With Spiking
Neurons: Opportunities and Challenges. Frontiers in Neuroscience,
12. issn: 1662-453X. doi: 10.3389/fnins.2018.00774. Retrieved
03/11/2020 from https://www.frontiersin.org/articles/10.
3389/fnins.2018.00774/full.

[33] Dimitri Plotnikov, Bernhard Rumpe, Inga Blundell, Tammo Ippen,
Jochen Martin Eppler, and Abgail Morrison. 2016. NESTML: a model-
ing language for spiking neurons, (June 9, 2016). arXiv: 1606.02882.
Retrieved 03/11/2020 from http://arxiv.org/abs/1606.02882.

[34] Bodo Rueckauer and Shih-Chii Liu. 2018. Conversion of analog to
spiking neural networks using sparse temporal coding. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS). 2018 IEEE
International Symposium on Circuits and Systems (ISCAS). (May
2018), 1–5. doi: 10.1109/ISCAS.2018.8351295.

[35] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeif-
fer, and Shih-Chii Liu. 2017. Conversion of Continuous-Valued Deep
Networks to Efficient Event-Driven Networks for Image Classification.
Frontiers in Neuroscience, 11. issn: 1662-453X. doi: 10.3389/fnins.
2017.00682. Retrieved 03/09/2020 from https://www.frontiersin.
org/articles/10.3389/fnins.2017.00682/full.

46

http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/11494669_64
https://doi.org/10.1007/11494669_64
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/articles/10.3389/fnins.2018.00774/full
https://www.frontiersin.org/articles/10.3389/fnins.2018.00774/full
https://arxiv.org/abs/1606.02882
http://arxiv.org/abs/1606.02882
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/full
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/full

[36] R. Sathya and Annamma Abraham. 2013. Comparison of supervised
and unsupervised learning algorithms for pattern classification. Inter-
national Journal of Advanced Research in Artificial Intelligence, 2, 2,
34–38.

[37] Taylor Simons and Dah-Jye Lee. 2019. A Review of Binarized Neural
Networks. Electronics, 8, 6, (June 2019), 661, 6, (June 2019). doi:
10.3390/electronics8060661. Retrieved 03/25/2020 from https:
//www.mdpi.com/2079-9292/8/6/661.

[38] Terrence C Stewart. 2012. A Technical Overview of the Neural Engi-
neering Framework. Centre for Theoretical Neuroscience, University of
Waterloo.

[39] Marcel Stimberg, Romain Brette, and Dan FM Goodman. 2019. Brian
2: an intuitive and efficient neural simulator. eLife, 8. issn: 2050-084X.
doi: 10.7554/eLife.47314. pmid: 31429824. Retrieved 03/11/2020
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786860/.

[40] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh,
Timothée Masquelier, and Anthony Maida. 2019. Deep learning in
spiking neural networks. Neural Networks, 111, (March 1, 2019), 47–
63. issn: 0893-6080. doi: 10.1016/j.neunet.2018.12.002. Re-
trieved 03/11/2020 from http://www.sciencedirect.com/science/
article/pii/S0893608018303332.

[41] Ruben A. Tikidji-Hamburyan, Vikram Narayana, Zeki Bozkus, and
Tarek A. El-Ghazawi. 2017. Software for Brain Network Simulations:
A Comparative Study. Frontiers in Neuroinformatics, 11, 46. issn:
1662-5196. doi: 10.3389/fninf.2017.00046. Retrieved 03/11/2020
from https://www.frontiersin.org/articles/10.3389/fninf.
2017.00046/full.

[42] Lukáš Vařeka. 2020. Evaluation of convolutional neural networks using
a large multi-subject P300 dataset. Biomedical Signal Processing and
Control, 58, (April 1, 2020), 101837. issn: 1746-8094. doi: 10.1016/
j . bspc . 2019 . 101837. Retrieved 04/08/2020 from http : / / www .
sciencedirect.com/science/article/pii/S1746809419304185.

[43] Julius von Kügelgen. 2017. On Artificial Spiking Neural Networks:
Principles, Limitations and Potential. (June 18, 2017).

[44] Davide Zambrano and Sander M. Bohte. 2016. Fast and Efficient
Asynchronous Neural Computation with Adapting Spiking Neural
Networks, (September 7, 2016). arXiv: 1609.02053 [cs]. Retrieved
03/11/2020 from http://arxiv.org/abs/1609.02053.

47

https://doi.org/10.3390/electronics8060661
https://www.mdpi.com/2079-9292/8/6/661
https://www.mdpi.com/2079-9292/8/6/661
https://doi.org/10.7554/eLife.47314
31429824
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786860/
https://doi.org/10.1016/j.neunet.2018.12.002
http://www.sciencedirect.com/science/article/pii/S0893608018303332
http://www.sciencedirect.com/science/article/pii/S0893608018303332
https://doi.org/10.3389/fninf.2017.00046
https://www.frontiersin.org/articles/10.3389/fninf.2017.00046/full
https://www.frontiersin.org/articles/10.3389/fninf.2017.00046/full
https://doi.org/10.1016/j.bspc.2019.101837
https://doi.org/10.1016/j.bspc.2019.101837
http://www.sciencedirect.com/science/article/pii/S1746809419304185
http://www.sciencedirect.com/science/article/pii/S1746809419304185
https://arxiv.org/abs/1609.02053
http://arxiv.org/abs/1609.02053

	Introduction
	Analogue neural networks and spiking neural networks
	Artificial neural networks
	Supervised learning in artificial neural networks
	Unsupervised learning in artificial neural networks

	Spiking neural networks
	Deep spiking neural networks
	State of the art
	Binary deep neural networks
	Comparison

	Simulation platforms
	The Neural Simulation Tool (NEST)
	Brian
	NEURON
	Nengo
	Neural engineering framework
	Semantic pointer architecture

	Summary of platform comparison

	Other libraries
	SNN toolbox
	Keras / TensorFlow
	PyNN

	Exploratory use cases
	Nengo
	Spaun 2.0
	Using the same pre-trained model for the Nengo and SNN-Toolbox
	Model architecture
	Conversion with SNN Toolbox
	Conversion with NengoDL Converter
	Comparison of the tools and their results

	Spiking classification on large multi-subject P300 dataset
	Results

	Conclusion
	Bibliography

