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1. Introduction
Many important scientific and engineering problems require analysis of fluid-structure inter-
action (FSI). For example, aeroelastic flutter can produce large and potentially destructive vi-
brations in aircraft [7], turbines [1], and other structures [3] or biological applications such as
study of fluid flow inside human vocal tract [5]. The presented study deals with a high order
discontinuous Galerkin method for fluid-structure interaction.

2. Mathematical model
The model consists of the Navier-Stokes equations governing the motion of a compressible fluid
flow coupled to a rigid body dynamics, i.e., a movement of a structure, described by a second
order ordinary differential equation. Arbitrary Lagrangian Eulerian (ALE) method is used to
treat the deformable domain. The viscous gas dynamics in computational domain Ωt ⊂ R2

for any t ∈ (0, T ), T > 0 is described by the Navier-Stokes equations, see e.g. [2]. The
Navier-Stokes equations written in the conservative form reads
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where % is the fluid density, p is the pressure, v1, v2 are the velocity components of the velocity
vector v, and E is the total energy. The components of the viscous stress tensor τ and the heat
flux q are given by
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Fig. 1. Sketch of the computation domain Ωt

where µ is dynamic viscosity and Pr, assumed to be constant Pr = 0.72, is the Prandtl number.
For an ideal gas, the pressure p has the form
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where γ is the adiabatic gas constant, γ is set to 1.4 in presented study. Imposed boundary
conditions are either free-stream at the far field, or adiabatic no-slip conditions at the boundaries
of the structure, i.e., v|ΓWt

is equal to the velocity of the structure. System (1) is supplemented
with suitable initial conditions.

The motion of the structure in the one-direction is modeled by the second-order differential
linear equation, i.e.,

mḧ+ dḣ+ kh = L, (5)

where m is the oscillating mass of the system, d and k denote the mechanical damping and
stiffness of the oscillator unit, respectively, h is the displacement of the oscillator and L is the
force exerted by the fluid on the structure in the transverse direction, see Fig 1. Fluid flow model
(1) is coupled with the rigid body model (5) via L in the following manner, i.e.,
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where l is the depth of the structure, n = (n1, n2) is the unit outer normal to ∂Ωt on ΓWt

(pointing into the structure). System (5) is supplemented with initial suitable initial conditions.

3. Numerical approximation
The fluid flow model is discretized using a high-order discontinuous Galerkin formulation with
triangular grid elements and nodal basis functions and the domain movement is taken into ac-
count with aid of arbitrary Lagrangian-Eulerian method, see e.g. [7]. Following standard pro-
cedure for DG discretization of second-derivatives, first the auxiliary gradient variable g is
introduced, and then governing equations are rewritten as the system of first order equations,
i.e.,
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∇u = g, (8)
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where u = [%, %v1, %v2, %E]T is the solution vector, F i is inviscid flux given as

F i(u) =




%v1 %v2

%v1v1 %v2v1

%v1v2 %v2v2

(%E + p)v1 (%E + p)v2


 (9)

and F v is viscous flux given as
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The inviscid fluxes are computed using Roe’s method [6], and the numerical fluxes for
the viscous terms are chosen according to the compact discontinuous Galerkin (CDG) method
[4]. The computational domain Ω is discretized by the computational mesh with elements
Th = {K}. The solution (u, g) is sought in [V p

h ]4 and [V p
h ]4×2, respectively, where V p

h = {v ∈
L2(Ω), v|K ∈ P p(K),∀K ∈ Th} with P p being the space of polynomial functions of degree
at most p ≥ 1 on K. The semi-discrete DG formulation is expressed as: find uh ∈ [V p

h ]4 and
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p ]4×2 such that for all K ∈ Th
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Fluxes in Eqs. (11) and (12) are modified according to the ALE method, see e.g. [7]. All
integrals in Eqs. (11) and (12) are integrated using high-order Gaussian quadrature rules. Time
integration is done with aid of a high-order Runge-Kutta (RK) method.

4. Numerical results
To validate the high-order scheme, we considered a test problem consisting of flow-induced
vibration of a circular cylinder, where the cylinder is allowed to move in vertical direction, see
Fig. 1. The far field fluid has velocity v = (1, 0) m/s, density % = 1 kg/m3, Mach is equal to
0.2, and a Reynolds number with respect to diameter D is equal to 100. The constants chosen
for this problem were D = 1 m, m = 1 kg, k = 0.64 N/m, d = 10−3kNs/m, and l = 1 m.
Fig. 2 shows position h of the cylinder during the computation. Numerical solutions for two
cases of our discontinuous Galerkin scheme (RK2-DG1 – second order RK method, first order
of polynomials, RK4-DG3 – fourth order RK method, third order of polynomials) are compared
to finite volume approximation on very fine grid these solutions indicate very good converge of
our scheme.
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Fig. 2. Position of the cylinder h during selected time period
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