ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

KATEDRA ELEKTROENERGETIKY A EKOLOGIE

DIPLOMOVÁ PRÁCE

Analýza vlivu přídavných konstrukčních prvků na činnost indukční kelímkové pece

autor:

vedoucí práce: prof. Ing. Jiří Kožený, CSc. **Bc.** Michal Tajer

2013

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2012/2013

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Michal TAJER
Osobní číslo:	E11N0138P
Studijní program:	N2612 Elektrotechnika a informatika
Studijní obor:	Elektroenergetika
Název tématu:	Analýza vlivu přídavných konstrukčních prvků na činnost in- dukční kelímkové pece
Zadávající katedra:	Katedra elektroenergetiky a ekologie

Zásady pro vypracování:

- 1. Uveďte teoretické základy pro konstrukci indukční kelímkové pece.
- 2. Určete vliv stínění a vliv přídavných závitů uzavřených a neuzavřených, umístěných nad a pod induktorem, na účinnost tavení.
- 3. K objasnění těchto konstrukčních prvků využijte počítačové simulace.
- 4. Proveďte vyhodnocení získaných výsledků.
- 5. Uveďte závěry pro praxi.

Rozsah grafických prací:

podle doporučení vedoucího Rozsah pracovní zprávy: 30 - 40 stran

Forma zpracování diplomové práce: tištěná/elektronická

Seznam odborné literatury:

Student si vhodnou literaturu vyhledá v dostupných pramenech podle doporučení vedoucího práce.

Vedoucí diplomové práce:

Konzultant diplomové práce:

Datum zadání diplomové práce: Termín odevzdání diplomové práce:

Prof. Ing. Jiří Kožený, CSc. Katedra elektroenergetiky a ekologie Ing. Oldřich Kroupa Katedra elektroenergetiky a ekologie

15. října 2012 9. května 2013

uer, Ph.D. Doc. Ing Jiří Hamme děkan

V Plzni dne 15. října 2012

Doc. Ing. Karel Noháč, Ph.D. vedoucí katedry

Anotace

Tato diplomová práce řeší vliv stínění a přídavných prvků na intenzitu magnetického pole uvnitř i vně induktoru. Pro zjištění tohoto vlivu bylo provedeno měření na modelu indukční pece, dále měření vlastní indukčnosti na fyzikálním modelu a simulace v programu RillFEM 2D.

První kapitola se zabývá principem indukčního ohřevu. Je v ní uvedeno odvození základních vztahů pro obecné a válcové elektromagnetické pole. Je zde také naznačen postup výpočtu indukčního zařízení. Druhá kapitola popisuje druhy stínění a jejich vliv na účinnost indukční pece. V dalších kapitolách je uveden popis provedených měření a simulací. Poslední kapitola se věnuje zhodnocení získaných dat.

Klíčová slova

Indukční ohřev, Maxwellovy rovnice, válcové elektromagnetické vlnění, intenzita magnetického pole, indukční kelímková pec, induktor, stínění, přídavné konstrukční prvky, účinnost tavení, model indukční pece, simulace, RillFEM 2D

Abstract

This diploma thesis solves the influence of the shielding and additional construction elements on the intensity of magnetic field inside and also outside of an inductor. For determination of this influence was made the measuring on the model of induction furnace. Also was made the measurement of the inductance on the physical model and the simulation in program RillFEM 2D.

First chapter is dealing with the principle of inductive heating. There is stated the derivation of fundamental equations for general and cylindrical electromagnetic field. Also is hinted the procedure for the calculation of inductive installation. Second chapter describes the types of the shielding and their influence on the efficiency of inductive furnace. In the next chapters is stated the description of performed measurement and simulation. The last chapter is evaluating the collected data.

Key worlds

Inductive heating, Maxwell's equations, cylindrical electromagnetic wave motion, intensity of magnetic field, induction crucible furnace, inductor, shielding, additional construction elements, melting efficiency, model of induction furnace, simulation, RillFEM 2D

Prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této diplomové práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

podpis

V Plzni dne 6.5.2013

Michal Tajer

Poděkování

Tímto bych rád poděkoval vedoucímu diplomové práce prof. Ing. Jiřímu Koženému, CSc. za cenné rady, připomínky a metodické vedení práce. Dále bych chtěl poděkovat panu Ing. Oldřichu Kroupovi za poskytnuté konzultace a rady v průběhu měření. Také děkuji Ing. Martinu Koppovi za pomoc při překladu z rusky psané literatury.

Obsah

S	SEZNAM SYMBOLŮ A ZNAČEK	
Ú		
1	TEORIE INDUKČNÍHO OHŘEVU	13
		12
	1.1 FRINCIP INDUKCNIHO OHREVU	13
	1.2 VEW TERMEABELT I NA INDUKCNI OTREV	13
	1.4 ODVOZENÍ OBECNÉHO ELEKTROMAGNETICKÉHO VLNĚNÍ	14
	1.5 ZÁŘIVÝ POYNTINGŮV VEKTOR	18
	1.6 VÁLCOVÉ HARMONICKÉ ELEKTROMAGNETICKÉ VLNĚNÍ	19
	1.6.1 Válcové elektromagnetické vlnění v plné válcové vodivé vsázce	21
	1.6.2 Impedance plné válcové vsázky	24
	1.0.5 Mnozstvi tepla nalnaukovaneno ve valcove vsazce	20 28
	1.7 V IPOCEI ELEKTROTEPELNICH INDUKCNICH ZARIZENI	20 28
	1.7.2 Druhý způsob výpočtu indukčních zařízení	
	1.8 ÚČINNOST INDUKČNÍHO ZAŘÍZENÍ	34
2	VLIV STÍNĚNÍ A PŘÍDAVNÝCH PRVKŮ NA ÚČINNOST TAVENÍ KELÍMKOVÉ PECE…	35
	2.1 INDUKČNÍ KELÍMKOVÁ PEC	35
	2.2 KELÍMKOVÁ PEC SE STÍNĚNÍM POMOCÍ SVAZKŮ TRANSFORMÁTOROVÝCH PLECHŮ	36
	2.3 KELÍMKOVÁ PEC S VODIVÝM STÍNÍCÍM PLÁŠTĚM	
	2.4 POROVNANI DRUHU STINENI	41
3	2.5 VLIV UZAVRENYCH PRIDAVNYCH PRVKU	42 44
5		
	3.1 NUMERICKÁ METODA VÝPOČTU	44
	3.2 OBECNÁ SIMULACE INDUKČNÍCH ZAŘÍZENÍ	44
	3.3 PROGRAM RILLFEM 2D	45
	3.5.1 KUIF EM - postup simulace	434 ۸6
	3.4.1 Induktor bez stínění	46
	3.4.1.1 Průběhy intenzity <i>H</i> nestíněného induktoru	
	3 4 9 Induktor stíněný vodivým pláčtěm	50
	3 4 2 1 Průběhy intenzity <i>H</i> induktoru stíněného vodivým pláštěm	
	3.4.5 Induktor stineny transformatorovymi plechy	
	5.4.5.1 Trubeny intenzity <i>II</i> inductor stilleneno transformatorovynii piceny	
	3.4.4 Induktor stíněný transformátorovými plechy s měděným prstencem	58 59
	5.4.4.1 Trubeny intenzity <i>II</i> stilleneno induktoru s pisteneem	
	3.4.5 Induktor stíněný transformátorovými plechy se dvěma uzavřenými závity	61
	3.4.5.1 Prubeny intenzity H stineneno induktoru s uzavrenymi zavity	62
	3.4.6 Induktor stíněný transformátorovými plechy s dutým kruhovým vodičem	65
	3.4.6.1 Průběhy intenzity <i>H</i> stíněného induktoru s dutým vodičem	66
	3.4.7 Induktor stíněný transformátorovými plechy s plným kruhovým vodičem	69
	3.4.7.1 Průběhy intenzity <i>H</i> stíněného induktoru s plným vodičem	70
	3.5 ZHODNOCENÍ A POROVNÁNÍ VÝSLEDKŮ ZÍSKANÝCH SIMULACÍ	72
4	MĚŘENÍ VLIVU STÍNĚNÍ NA VLASTNÍ INDUKČNOSTI INDUKTORU	75
	4.1 Postup měření	75

	4.2	ROZMĚRY MĚŘENÝCH CÍVEK A POUŽITÉHO STÍNĚNÍ	76					
	4.3 VÝPOČET VLASTNÍ INDUKČNOSTI		77					
	4.4	NAMĚŘENÉ HODNOTY VLIVU STÍNĚNÍ	77					
	4.5	NAMĚŘENÉ HODNOTY VLIVU PŘÍDAVNÝCH PRVKŮ	79					
	4.6	ZHODNOCENÍ VÝSLEDKŮ	80					
5	MĚ	ŘENÍ NA MODELU INDUKČNÍ PECE	81					
	5.1	MĚŘENÍ INTENZITY MAGNETICKÉHO POLE	81					
	5.2	POPIS MODELU INDUKČNÍ PECE, STÍNĚNÍ A PŘÍDAVNÝCH PRVKŮ	82					
	5.2.	1 Induktor						
	5.2.	2 Stínění	83					
	5.2.	3 Přídavné prvky	83					
	5.2.	4 Měřicí deska	84					
	5.3	POSTUP MĚŘENÍ						
	5.4	NAMERENE A VYPOCTENE HODNOTY PRO FREKVENCI 4 KHZ						
	5.4.	I Induktor bez stineni	80					
	5.4. 5.4	2 Induktor stiněný transformátorovými plechy 3 Induktor stíněný transformátorovými plechy s uzavřeným prstencem nad stíněním	00					
	5.4.	Induktor stiněný transformatorovými plechy s uzavřenými prislencem nad stiněním.	90					
	54	 Induktor stíněný transformátorovými plechy s uzavřenými zavity nad stiněním						
	5.4.	6 Induktor stíněný transformátorovými plechý s uzavřeným dutým vodičem nad stíněním 6						
	5.4.	7 Induktor stíněný transformátorovými plechy s otevřeným prstencem nad stíněním						
	5.4.	8 Induktor stíněný transformátorovými plechy s otevřenými závity nad stíněním						
	5.4.	9 Induktor stíněný transformátorovými plechy s otevřeným dutým vodičem nad stíněním	104					
	5.4.	10 Induktor stíněný transformátorovými plechy s otevřeným plným vodičem nad stíněním	107					
	5.5	NAMĚŘENÉ A VYPOČTENÉ HODNOTY PRO FREKVENCI 10 KHZ	109					
	5.5.	1 Induktor bez stínění	109					
	5.5.	2 Induktor stíněný transformátorovými plechy						
	5.5.	3 Induktor stíněný transformátorovými plechy s uzavřeným prstencem nad stíněním	114					
	5.5.	4 Induktor stineny transformatorovými plechy s uzavřenými zavity nad stinením 5 Induktor stíněný transformátorovými plechy s uzavřenými dutým vodižem nad stíněním.	11/					
	5.5.	5 Induktor stiněný transformátorovými plechy s uzavřeným dulym vodičem nad stiněním 6 Induktor stíněný transformátorovými plechy s uzavřeným plným vodičem nad stiněním	119 122					
	5.5	 Induktor stíněný transformatorovými plechy s uzavreným pinym vodicem nad stíněním Induktor stíněný transformátorovými plechy s otevřeným prstencem nad stíněním 	122 174					
	5.5	 Induktor stíněný transformátorovými plechy s otevřenými prsichcem nau stíněním Induktor stíněný transformátorovými plechy s otevřenými závity nad stíněním 	127					
	5.5	 Induktor stíněný transformátorovými plechý s otevřeným zavny nad stíněním Induktor stíněný transformátorovými plechy s otevřeným dutým vodičem nad stíněním 						
	5.5.	10 Induktor stíněný transformátorovými plechy s otevřeným plným vodičem nad stíněním						
6	ZH	ODNOCENÍ VÝSLEDKŮ	135					
	6.1	VLIV STÍNĚNÍ NA MODEL PECE						
	6.2	POROVNÁNÍ VLIVU UZAVŘENÝCH PŘÍDAVNÝCH PRVKŮ						
	6.3	POROVNÁNÍ VLIVU OTEVŘENÝCH PŘÍDAVNÝCH PRVKŮ	141					
Z	ÁVĚR		146					
Р	OUŽIT	Á LITERATURA						
•	OULII							
S	EZNAI	M PRILOH	149					
Příloha I – Nagaokovy součinitele <i>A</i> [3] Příloha II – Nagaokovy součinitele <i>F</i> [3] Příloha III – Konstanta <i>k</i> pro výpočet vzájemné indukčnosti [7] Příloha IV – Model indukční řece – fotografie								
						ΡΚΙLΟΙ ΡĎπ Δι	1A I V - WUDEL INDUKUNI PEUE – FUTUGKAFIE	155
						PŘÍLOHA VI – ANALYTICKÝ VÝPOČET PRO PRÁZDNÝ INDUKTOR [6].		

Seznam symbolů a značek

а	[m]	hloubka vniku naindukovaných proudů
A	[Wb.m ⁻¹]	vektorový potenciál
B	[T]	magnetická indukce
С	[F]	kapacita
d	[m]	průměr
D	$[C.m^{-2}]$	elektrická indukce
E	$[V.m^{-1}]$	intenzita elektrického pole
f	[Hz]	frekvence
H	$[A.m^{-1}]$	intenzita magnetického pole
Ι	[A]	elektrický proud
J	$[A.m^{-2}]$	proudová hustota
l	[m]	délka
L	[H]	vlastní indukčnost
М	[H]	vzájemná indukčnost
Ν	[-]	počet závitů
N	$[W.m^{-2}]$	Poyntingův zářivý vektor
Р	[W]	činný výkon
Q	[VAr]	jalový výkon
R	$[\Omega]$	elektrický odpor
r	[m]	poloměr
S	$[m^2]$	plocha
t	[s]	čas
U	[V]	elektrické napětí
V	$[m^3]$	objem
W	[J]	energie
Ζ	[Ω]	impedance
γ	$[S.m^{-1}]$	měrná elektrická vodivost
3	$[F.m^{-1}]$	permitivita
E _r	[-]	poměrná permitivita
μ	$[H.m^{-1}]$	permeabilita
μ_r	[-]	relativní permeabilita materiálu
η	[-]	účinnost

 ρ [Ω .m] měrný elektrický odpor

- $\boldsymbol{\Phi}$ [Wb] indukční magnetický tok
- ω [rad.s⁻¹] úhlová frekvence

Použité konstanty

permitivita vakua	$\varepsilon_0 = 8,85 \cdot 10^{-12} [\text{F.m}^{-1}]$
permeabilita vakua	$\mu_0 = 4\pi \cdot 10^{-7} [\text{H.m}^{-1}]$

Použité matematické operátory

div	divergence
grad	gradient
rot	rotace

Fázory jsou v textu psány *tučně kurzívou*. Skalární veličiny jsou v textu psány *kurzívou*.

Úvod

Protéká-li vodičem střídavý elektrický proud, vzniká v jeho okolí elektromagnetické pole. Pokud se v tomto poli bude vyskytovat předmět z vodivého materiálu, naindukují se v něm vířivé proudy. Předmět, neboli vsázka, se tedy bude zahřívat. Tento jev se nazývá indukční ohřev. Jednou z jeho mnoha aplikací jsou tavicí indukční kelímkové pece.

Největší výhodou oproti jiným způsobům ohřevu je, že teplo vzniká přímo ve vsázce, což umožňuje její efektivnější a také rychlejší ohřev. Vsázka je nejteplejším místem celé soustavy a ostatní části konstrukce mohou zůstat studené. Mezi nevýhody indukčního ohřevu patří to, že se magnetické pole uzavírá mimo induktor. Tím se ohřívají okolní vodivé konstrukce, což vede ke ztrátám a poklesu účinnosti zařízení. Pro potlačení magnetického pole v okolí induktoru se používá stínění. I přes stínění se ale část magnetického pole uzavře v okolních konstrukčních prvcích. Podle vlastností těchto prvků se může projevit jejich vliv na původní magnetické pole.

Tato práce se zabývá určením vlivu stínění a různých druhů přídavných prvků na velikost intenzity magnetického pole. Změnou této velikosti uvnitř induktoru se změní množství tepla, které se indukuje do vsázky, což má vliv na účinnost tavení. Snížením intenzity mimo induktor se zmenší velikost proudů, které se naindukují do okolních prvků. Tím klesne celkové množství ztrát, což se projeví na celkové účinnosti pece. Pro určení vlivu prvků a stínění byla provedena simulace v programu RillFEM 2D a měření na modelu indukční pece. Měření bylo provedeno při frekvenci 4 a 10 kHz.

1 Teorie indukčního ohřevu

Indukční ohřev je jeden z nejvíce rozšířených způsobů pro ohřev materiálů. V průmyslu se hlavně používá k tavení kovů (indukční kelímkové a kanálkové pece), indukčnímu pájení a povrchovému kalení.

Vztahy a postupy uvedené v této kapitole vychází z literatury [1, 2, 3 a 4]

1.1 Princip indukčního ohřevu

Vychází z teorie elektromagnetického pole a využívá elektromagnetické indukce. Velikost indukovaného napětí se zjistí podle Faradayova indukčního zákona.

$$u_i = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} \tag{1.1}$$

Z něj je patrné, že k indukci napětí dochází pouze tehdy, pokud magnetický indukční tok je časově proměnný. V tomto případě musí být proměnné i magnetické pole. Toho lze nejlépe dosáhnout, když bude cívkou protékat střídavý harmonický proud o určité frekvenci f. Průchodem proudu induktorem se v okolí vodiče vytvoří magnetické pole o intenzitě H, která je úměrná magnetické indukci B. Vztah mezi indukcí a intenzitou je dán vztahem:

$$\boldsymbol{B} = \boldsymbol{\mu} \boldsymbol{H} \tag{2.1}$$

Indukční tok $\boldsymbol{\Phi}$ je dán rovnicí:

$$\boldsymbol{\Phi} = \int_{S} \boldsymbol{B} \, dS \tag{3.1}$$

Protože má vsázka nenulový elektrický odpor, vyvolá v ní naindukované napětí vířivé proudy. Vsázka je tedy ohřívána Joulovými ztrátami, které jsou úměrné kvadrátu velikosti efektivní hodnoty proudu.

$$P = R \cdot I_{ef}^2 \tag{4.1}$$

Indukčním ohřevem je tedy možné ohřívat pouze vodivé materiály. Tím, že vsázkou prochází proud, vzniká okolo ní další magnetické pole, které má opačný charakter než pole původní. Působí tedy proti změně budícího pole. Tento jev se nazývá Lenzův zákon.

1.2 Vliv permeability na indukční ohřev

Permeabilita, jako materiálová konstanta, ovlivňuje elektromagnetické pole. Její velikost ovlivňuje magnetickou indukci **B** (viz rov. 2.1). Dále ovlivňuje relativní hloubku vniku *a*. Diamagnetické a paramagnetické materiály mají hodnotu μ_r přibližně jedna a nemění se s teplotou. Není tedy ovlivněna velikost magnetického pole, nebo pouze nepatrně. Velikost pole závisí na **H** a **B**.

Feromagnetické materiály zesilují magnetické pole ($\mu_r >> 1$). Relativní permeabilita μ_r se také mění s teplotou a *B* je dána nelineární magnetizační křivkou. Při tavení feromagnetických materiálů dochází při dosažení tzv. Curierovy teploty ke skokové změně permeability. Pro železo je tato teplota 768°C. Při dosažení této teploty se materiál změní na paramagnetický, tj. μ_r je přibližně 1. Tím se změní hloubka vniku naindukovaných proudů. Pro pokračování tavení je potřeba změnit frekvenci, viz níže.

1.3 Závislost indukčního ohřevu na frekvenci

Při průchodu střídavého proudu vsázkou dochází k tzv. skin efektu. Proudová hustota J je vytlačována na povrch ohřívaného tělesa. Protože se mění průřez vodiče *S*, roste také jeho odpor. Ten se vypočítá podle vztahu:

$$R = \rho \frac{l}{S} \tag{5.1}$$

Skin efekt je fyzikálně popsán za pomoci relativní hloubky vniku naindukovaných proudů, která se vypočte:

$$a = \sqrt{\frac{2}{\omega \cdot \gamma \cdot \mu_0 \cdot \mu_r}} \tag{6.1}$$

Hloubka vniku je nepřímo úměrná frekvenci. S rostoucí frekvencí hloubka vniku klesá. V uvažované vrstvě o tloušťce rovnající se hodnotě hloubky vniku se přemění převážná část dopadajícího elektromagnetického vlnění (86,47%) na teplo. V trojnásobné hloubce vniku se teoreticky přemění veškeré elektromagnetické vlnění na teplo.

Nežádoucím jevem je, pokud se spotřebovává elektrická energie, ale materiál se neohřívá. Ohřívaný materiál je pak elektromagneticky průzařný. Elmag. vlna se ve vsázce nedostatečně utlumí a projde jí, aniž by se přeměnila na teplo. Dochází k tomu při nevhodně zvolené frekvenci, vzhledem ke geometrickému tvaru vsázky.

1.4 Odvození obecného elektromagnetického vlnění

Indukční ohřev je založen na elektrodynamice, která vyplývá z Maxwellových rovnic v diferenciálním tvaru. Ty jsou základem pro odvození vlnových rovnic, které popisují elektromagnetické pole pomocí intenzit H a E. Předpokládáme, že rychlost šíření vlnění nebude nekonečná. Pokud by rychlost šíření nekonečná byla, elmag. pole by se vyskytovalo okamžitě v celém prostoru a tím by vlnění nemohlo vzniknout.

Jak bylo uvedeno výše, pro odvození vlnových rovnic je vhodné použít Maxwellovy rovnice (MR) v diferenciálním tvaru:

1.
$$rot \boldsymbol{H} = \boldsymbol{\gamma} \cdot \boldsymbol{E} + \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{\varepsilon}_r \cdot \frac{\partial \boldsymbol{E}}{\partial t}$$
 (7.1)

2.
$$rot \mathbf{E} = -\mu_0 \cdot \mu_r \cdot \frac{\partial \mathbf{H}}{\partial t}$$
 (8.1)

3.
$$div \ \varepsilon_0 \cdot \varepsilon_r \cdot \boldsymbol{E} = \varrho$$
 (9.1)

$$4. \quad div \ \mu_0 \cdot \mu_r \cdot \boldsymbol{H} = 0 \tag{10.1}$$

Tím, že u první rovnice provedeme rotaci, získáme:

$$rot(rot\mathbf{H}) = rot\,\gamma \cdot \mathbf{E} + rot\varepsilon_0 \cdot \varepsilon_r \cdot \frac{\partial \mathbf{E}}{\partial t} = \gamma \cdot rot\mathbf{E} + \varepsilon_0 \cdot \varepsilon_r \cdot \frac{\partial(rot\mathbf{E})}{\partial t}$$

Získaný tvar dosadíme do druhé MR:

$$rot(rot\mathbf{H}) = -\gamma \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial \mathbf{H}}{\partial t} - \varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial^2 \mathbf{H}}{\partial t^2}$$

Dále platí rovnice:

$$rot(rot\mathbf{H}) = grad(div\mathbf{H}) - \nabla^2 \mathbf{H}$$

díky které můžeme napsat:

$$grad(div\mathbf{H}) - \nabla^{2}\mathbf{H} = -\gamma \cdot \mu_{0} \cdot \mu_{r} \cdot \frac{\partial \mathbf{H}}{\partial t} - \varepsilon_{0} \cdot \varepsilon_{r} \cdot \mu_{0} \cdot \mu_{r} \cdot \frac{\partial^{2}\mathbf{H}}{\partial t^{2}}$$

Podle 4. Maxwellovy rovnice platí, že div H = 0. Předcházející vztah upravíme a získáme výslednou rovnici:

$$\nabla^{2} \boldsymbol{H} = \boldsymbol{\gamma} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial \boldsymbol{H}}{\partial t} + \boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{r} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial^{2} \boldsymbol{H}}{\partial t^{2}}$$
(11.1)

V případě elektrického pole vycházíme z druhé Maxwellovy rovnice. Opět nejprve provedeme její rotaci:

$$rot(rot\mathbf{E}) = -\mu_0 \cdot \mu_r \cdot \frac{\partial(rot\mathbf{H})}{\partial t}$$

Z 1. rovnice známe vztah pro *rot H* a tedy:

$$rot(rot\mathbf{E}) = -\gamma \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial \mathbf{E}}{\partial t} - \varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$grad(div\mathbf{E}) - \nabla^{2}\mathbf{E} = -\gamma \cdot \mu_{0} \cdot \mu_{r} \cdot \frac{\partial \mathbf{E}}{\partial t} - \varepsilon_{0} \cdot \varepsilon_{r} \cdot \mu_{0} \cdot \mu_{r} \cdot \frac{\partial^{2}\mathbf{E}}{\partial t^{2}}$$

Podle 3. Maxwellovy rovnice platí, že:

$$div \mathbf{E} = \frac{\varrho}{\varepsilon_0 \cdot \varepsilon_r}$$

Tím dostaneme:

$$\nabla^{2} \boldsymbol{E} = \boldsymbol{\gamma} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial \boldsymbol{E}}{\partial t} + \boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{r} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} + grad \frac{\boldsymbol{\varrho}}{\boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{r}}$$
(12.1)

Rovnice 11.1 a 12.1 obecně popisují elektromagnetické vlnění v prostředí s konstantním ε , μ a γ . V praxi ale můžeme většinou zanedbat γ v nevodivém prostředí, nebo ε v prostředí vodivém. Dále také zanedbáme volné náboje a budeme tedy uvažovat, že $\varrho = 0$

Dostaneme tedy následující rovnice:

$$\nabla^{2} \boldsymbol{E} = \boldsymbol{\gamma} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial \boldsymbol{E}}{\partial t} + \boldsymbol{\varepsilon}_{0} \cdot \boldsymbol{\varepsilon}_{r} \cdot \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}$$
(13.1)

Pro nevodivé prostředí:

$$\nabla^2 \boldsymbol{H} = \varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial^2 \boldsymbol{H}}{\partial t^2}$$
(14.1)

$$\nabla^2 \boldsymbol{E} = \varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r \cdot \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$
(15.1)

Pro vodivé prostředí:

$$\nabla^2 \boldsymbol{H} = \boldsymbol{\gamma} \cdot \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \frac{\partial \boldsymbol{H}}{\partial t}$$
(16.1)

$$\nabla^2 \boldsymbol{E} = \boldsymbol{\gamma} \cdot \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \frac{\partial \boldsymbol{E}}{\partial t}$$
(17.1)

Po úpravě rovnic 14.1 a 15.1 dostaneme:

$$\frac{1}{\varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r} \cdot \nabla^2 \boldsymbol{H} = \frac{\partial^2 \boldsymbol{H}}{\partial t^2}$$

A obdobně:

$$\frac{1}{\varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r} \cdot \nabla^2 \boldsymbol{E} = \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$

Z obecné rovnice vlnění pro trojrozměrný prostor můžeme zjistit rychlost šíření vlny. Obecná rovnice vlnění:

$$v^2 \cdot \nabla^2 \boldsymbol{u} = \frac{\partial^2 \boldsymbol{u}}{\partial t^2} \tag{18.1}$$

Pro intenzity tedy platí, že rychlost šíření vlnění v daném prostředí je:

$$v = \sqrt{\frac{1}{\varepsilon_0 \cdot \varepsilon_r \cdot \mu_0 \cdot \mu_r}}$$
(19.1)

Pro harmonické proměnné veličiny *E* a *H* platí:

$$\boldsymbol{E} = E_m \cdot e^{j\omega t}, \quad \frac{\partial \boldsymbol{E}}{\partial t} = j\omega \cdot \boldsymbol{E}, \quad \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = -\omega^2 \cdot \boldsymbol{E}$$
(20.1)

$$\boldsymbol{H} = H_m \cdot e^{j\omega t}, \quad \frac{\partial \boldsymbol{H}}{\partial t} = j\omega \cdot \boldsymbol{H}, \quad \frac{\partial^2 \boldsymbol{H}}{\partial t^2} = -\omega^2 \cdot \boldsymbol{H}$$
(21.1)

Dále také uvažujme, že: $\mu_0 \cdot \mu_r = \mu$ a $\varepsilon_0 \cdot \varepsilon_r = \varepsilon$

Odvozené rovnice upravíme do fázorového tvaru:

$$\nabla^2 \boldsymbol{E} - \boldsymbol{\gamma} \cdot \boldsymbol{\mu} \frac{\partial \boldsymbol{E}}{\partial t} - \boldsymbol{\varepsilon} \cdot \boldsymbol{\mu} \cdot \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$

 $\nabla^{2}\boldsymbol{E} - j\boldsymbol{\omega}\cdot\boldsymbol{\mu}\cdot\boldsymbol{\gamma}\cdot\boldsymbol{E} + \boldsymbol{\omega}^{2}\cdot\boldsymbol{\mu}\cdot\boldsymbol{\varepsilon}\cdot\boldsymbol{E} = \nabla^{2}\boldsymbol{E} + (\boldsymbol{\omega}^{2}\cdot\boldsymbol{\mu}\cdot\boldsymbol{\varepsilon} - j\boldsymbol{\omega}\cdot\boldsymbol{\mu}\cdot\boldsymbol{\gamma})\cdot\boldsymbol{E} = 0$ (22.1)

Výraz v závorce před E označíme jako k^2 a jeho tvar tedy bude:

$$k^{2} = (\omega^{2} \cdot \varepsilon \cdot \mu - j\omega \cdot \mu \cdot \gamma) = -j\omega \cdot \mu \cdot (\gamma + j\omega \cdot \varepsilon)$$
(23.1)

Postup pro úpravu sH je totožný a tedy výsledné rovnice budou:

$$\nabla^2 \boldsymbol{E} + k^2 \cdot \boldsymbol{E} = 0, \quad \nabla^2 \boldsymbol{H} + k^2 \cdot \boldsymbol{H} = 0 \tag{24.1}$$

Konstanta k^2 , nazývaná konstanta šíření, určuje vlastnosti prostředí, ve kterém se elektromagnetické vlnění šíří, pokud mají fázory *H* a *E* harmonické průběhy při úhlové frekvenci ω .

Rovnice 24.1 jsou obecné rovnice pro harmonické elektromagnetické vlnění pro fázory *E*, *H*. Platí pro prostředí nevodivé, vodivé, pro elmag. vlnění rovinné i válcové.[1].

Jako každé komplexní číslo má i konstanta šíření k^2 reálnou a imaginární část, stejně jako její odmocnina. Reálnou část označíme α a imaginární β . Dostaneme tedy výrazy:

$$k = \alpha - j\beta \quad a \qquad \qquad k^2 = \alpha^2 - 2j\alpha \cdot \beta - \beta^2 \tag{25.1}$$

Pro určení α a β , které jsou závislé na γ , ε , μ , využijeme rovnice 23.1 a 25.1. Nejprve vyjádříme k^2 z rov. 25.1 a dále porovnáme s rov. 23.1. Také platí, že jednotlivé reálné a imaginární části se rovnají. Tím dostaneme:

$$\omega^2 \cdot \varepsilon \cdot \mu = \alpha^2 - \beta^2 \quad a \quad j\omega \cdot \mu \cdot \gamma = 2j\alpha \cdot \beta \tag{26.1}$$

Nejprve získáme α z rovnosti imaginárních částí a to dosadíme do rovnosti reálných částí. Tím dostaneme pro β^2 kvadratickou rovnici. Jedno z řešení této rovnice by bylo imaginární, což není přípustné. Výsledné β , které se nazývá měrný útlum, po úpravě vychází:

$$\beta = \sqrt{\left[\left[\frac{\varepsilon \cdot \mu}{2} \cdot \left\{-1 + \sqrt{\left[1 + \left(\frac{\gamma}{\omega \cdot \varepsilon}\right)^2\right]}\right\}\right]\right]}$$
(27.1)

Hodnotu α , jinak také fázovou konstantu, získáme z rovnosti reálných částí. Za β dosadíme vztah pro měrný útlum.

$$\alpha = \omega \sqrt{\left[\left[\frac{\varepsilon \cdot \mu}{2} \cdot \left\{1 + \sqrt{\left[1 + \left(\frac{\gamma}{\omega \cdot \varepsilon}\right)^2\right]}\right\}\right]\right]}$$
(28.1)

1.5 Zářivý Poyntingův vektor

Pro výpočty indukčních ohřevů, nebo přídavných ztrát ve vinutí, je pro výpočet vhodné použít zářivý vektor N [W.m⁻²]. Ten udává směr a hustotu toku elektromagnetické energie v prostoru za jednotku času.[1]

Pro odvození N v závislosti na H a E v určitém bodě, budeme vycházet z množství energie v jednotkovém prostoru, neboli z hustoty energie. Také budeme uvažovat, že v prostoru konstantně tato energie klesá. V tomto prostoru V, je jak určité množství elektrické energie W_e , tak i magnetické energie W_m . Ty jsou určeny výrazy:

$$W_e = 0.5 \cdot \int_V \mathbf{D} \cdot \mathbf{E} dV = 0.5 \cdot \varepsilon \cdot \int \mathbf{E}^2 dV$$
(29.1)

$$W_m = 0.5 \cdot \int_V \boldsymbol{B} \cdot \boldsymbol{H} dV = 0.5 \cdot \boldsymbol{\mu} \cdot \int \boldsymbol{H}^2 dV$$
(30.1)

Množství elmag. energie v objemu V je úměrné času t, protože amplitudy E a H jsou sice konstantní, ale hustota elektromagnetické energie v každém bodě je časově harmonicky proměnná. Rychlost úbytku energie získáme jako zápornou derivaci podle času.

$$-\frac{\partial}{\partial t}(W_e + W_m) = -\int_V \varepsilon \cdot \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} dV - \int_V \mu \cdot \mathbf{H} \cdot \frac{\partial \mathbf{H}}{\partial t} dV$$
(31.1)

Pro další úpravy využijeme vyjádření pomocí 1. a 2. Maxwellovy rovnice. Tímto a následnými úpravami získáme vztah:

$$-\frac{\partial}{\partial t}(W_e + W_m) = \int_V \gamma \cdot \mathbf{E}^2 dV + \int_V div \left(\mathbf{E} \times \mathbf{H}\right)$$
(32.1)

První člen na pravé straně určuje, kolik energie v objemu se za jednotku času přemění na teplo, nebo také Joulovy ztráty za předpokladu, že materiál není dokonalý izolant, tedy $\gamma \neq 0$.

V druhém členu nahradíme objemový integrál za plošný:

$$\int_{V} div \left(\boldsymbol{E} \times \boldsymbol{H} \right) dV = \oint_{A} \left(\boldsymbol{E} \times \boldsymbol{H} \right) dA = \oint_{A} \boldsymbol{N} dA$$
(33.1)

Výraz $N = E \times H$ je hledané vyjádření Poyntingova vektoru.

Obr 1.1:Vzájemná orientace vektorů N, E a H [1]

1.6 Válcové harmonické elektromagnetické vlnění

Jeho zdrojem je válcová plocha. Ta má poloměr r_1 a protéká jí střídavý proud, přičemž proudová vlákna leží v rovinách kolmých k ose válce.

To se realizuje cívkou, která má vodič obdélníkového průřezu. Pokud budeme uvažovat nulovou tloušťku izolace mezi závity a pokud bude stoupání závitů zanedbatelné oproti poloměru r_1 , můžeme říci, že je splněna podmínka, aby proudová vlákna byla v kolmých rovinách s osou cívky. Také předpokládáme, že šíření proudové vlny v závitech cívky je nekonečně rychlé.

Obr 1.2: Soustava válcových souřadnic [1]

Pokud bude proudová hustota i_{11} na části válcové plochy o osové délce 1 m v jakémkoliv vybraném časovém okamžiku po celé délce cívky stejná, bude tato plocha vyzařovat do dutiny válcové elektromagnetické vlnění.

Umístíme-li vyzařující válec tak, aby jeho osa splynula s osou z válcového souřadnicového systému, viz Obr 1.2, pak vektory E, H a N v kterémkoliv místě A o souřadnicích (r, φ, z)

v dutině válce, jsou pouze funkcí poloměru r a nezávisí na úhlu natočení φ od zvolené výchozí polohy, ani na vzdálenosti z od zvolené výchozí roviny.[1]

Ve válcové ploše o poloměru r, jejíž osou je osa z, budou hodnoty E a H stejné.

Pro vyjádření rovnic pro válcové vlnění vycházíme z obecných fázorových rovnic (24.1)

$$\nabla^2 \boldsymbol{E} + k^2 \cdot \boldsymbol{E} = 0, \quad \nabla^2 \boldsymbol{H} + k^2 \cdot \boldsymbol{H} = 0$$

Pro tento typ vlnění nepoužíváme pravoúhlou soustavu souřadnic, ale válcovou. Mezi pravoúhlými souřadnicemi a válcovými platí vztahy:

$$x = r \cdot \cos \varphi$$
 $y = r \cdot \sin \varphi$ $z = z$

Také Laplaceův operátoru ∇^2 je potřeba převést do této soustavy. To lze, pouze pokud daný vektor má směr osy Z válcového souřadnicového systému. To splňuje pouze vektor H. Obecný tvar pro $\nabla^2 H$ v soustavě válcových souřadnic:

$$\nabla^2 \boldsymbol{H} = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \boldsymbol{H}}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \boldsymbol{H}}{\partial \varphi^2} + \frac{\partial^2 \boldsymbol{H}}{\partial z^2}$$
(34.1)

Jak bylo uvedeno výše, intenzita H u tohoto druhu vlnění závisí jen na poloměru r a v souřadnicích φ a z se nemění. Platí tedy:

$$\frac{\partial H}{\partial \varphi} = 0 \quad a \quad \frac{\partial H}{\partial z} = 0$$

Po využití této znalosti a následné úpravě dostaneme:

$$\nabla^2 \boldsymbol{H} = \frac{d^2 \boldsymbol{H}}{dr^2} + \frac{1}{r} \cdot \frac{d \boldsymbol{H}}{dr}$$
(35.1)

Dosazením do rov. 24.1:

$$\frac{d^2\boldsymbol{H}}{dr^2} + \frac{1}{r} \cdot \frac{d\boldsymbol{H}}{dr} + k^2 \cdot \boldsymbol{H} = 0$$
(36.1)

Pokud tuto rovnici vydělíme konstantou šíření k^2 , dostaneme Besselovu diferenciální rovnici nultého řádu pro argument (*kr*). Ta má tvar:

$$\frac{d^2 \boldsymbol{H}}{d(kr)^2} + \frac{1}{(kr)} \cdot \frac{d\boldsymbol{H}}{d(kr)} + \boldsymbol{H} = 0$$
(37.1)

Řešením je pak lineární kombinace cylindrických funkcí ve tvaru:

$$\boldsymbol{H} = \boldsymbol{C}_1 \cdot J_0(kr) + \boldsymbol{C}_2 \cdot N_0(kr) \tag{38.1}$$

 $J_0(kr)$ a $N_0(kr)$ jsou cylindrické funkce prvního a druhého druhu nultého řádu pro argument (*kr*). Integrační konstanty C_1 a C_2 se určují z mezních podmínek. Provádí se vždy pro konkrétní situaci, jako je vlnění v prázdné dutině cívky, nebo v mezeře mezi cívkou a vsázkou, nebo v plné vodivé vsázce.

Pro odvození intenzity elektrického pole E využijeme vzájemný vztah daný 1. MR.

$$rot \mathbf{H} = \gamma \cdot \mathbf{E} + j\omega \cdot \varepsilon \cdot \mathbf{E} = (\gamma + j\omega \cdot \varepsilon) \cdot \mathbf{E}$$
(39.1)

Obr 1.3: Obrázek pro odvození rot H v dutině cívky [1]

Na Obr 1.3 je vyznačen vektor H na poloměru r. Na poloměru (r + dr) je intenzita H o diferenciál větší tedy:

$$\boldsymbol{H} + \left(\frac{\partial \boldsymbol{H}}{\partial r}\right) dr$$

Dále vezmeme část cívky o osové délce 1 m. Vznikne nám tak plocha. Pokud vyjádříme práci, která se vykoná po obvodu této plochy a vydělíme jí velikostí plochy, získáme tak rotaci intenzity *H*. Tento vektor má oproti ose záporný smysl.

$$-rot \mathbf{H} = \frac{\left(\mathbf{H} + \frac{\partial \mathbf{H}}{\partial r}dr\right) - \mathbf{H}}{1dr} = \frac{\partial \mathbf{H}}{\partial r}$$
(40.1)

Spojením rovnic 39.1 a 40.1 dostaneme:

$$\boldsymbol{E} = -\frac{1}{\gamma + j\omega \cdot \varepsilon} \cdot \frac{\partial \boldsymbol{H}}{\partial r}$$
(41.1)

Výsledný tvar pro intenzitu *E* získáme za pomoci cylindrických funkcí:

$$\boldsymbol{E} = \frac{k}{\gamma + j\omega \cdot \varepsilon} \cdot \left[\boldsymbol{C}_1 \cdot J_1(kr) + \boldsymbol{C}_2 \cdot N_1(kr) \right]$$
(42.1)

1.6.1 Válcové elektromagnetické vlnění v plné válcové vodivé vsázce

Jak je uvedeno výše, v dutině cívky je válcové elektromagnetické vlnění. Pokud do ní vložíme vsázku, bude do ní vstupovat elektromagnetické vlnění. Jeho hustota bude odpovídat zářivému vektoru *N*. Tím, že tok proniká do vsázky, utlumuje se a přeměňuje na tepelnou energii. Protože je vsázka vodivá, platí $\gamma >> \omega \varepsilon$. Konstanty α , β a *k* se změní:

$$k^{2} = -j\omega \cdot \mu(\gamma + j\omega \cdot \varepsilon) = -j\omega \cdot \gamma \cdot \mu$$
(43.1)

$$k = (1-j) \cdot \sqrt{\frac{(\omega \cdot \gamma \cdot \mu)}{2}} = \frac{1-j}{a}$$
(44.1)

Pro fázovou konstantu α a měrný útlum β platí:

$$\alpha = \beta = \frac{1}{a} = \sqrt{\frac{(\omega \cdot \gamma \cdot \mu)}{2}}$$
(45.1)

Vektor magnetické intenzity H bude stejný jako v kapitole 1.6, tedy:

$$\boldsymbol{H} = \boldsymbol{C}_1 \cdot J_0(kr) + \boldsymbol{C}_2 \cdot N_0(kr)$$

Tvar pro elektrickou intenzitu E, z rovnice 42.1, můžeme díky vodivé vsázce zjednodušit.

$$\boldsymbol{E} = \frac{k}{\gamma} \cdot \left[\boldsymbol{C}_1 \cdot J_1(kr) + \boldsymbol{C}_2 \cdot N_1(kr) \right]$$
(46.1)

Rovnice 38.1 a 46.1 jsou vlnové rovnice pro fázory H a E válcového elmg. vlnění ve válcové vodivé vsázce. C_I a C_2 jsou integrační konstanty, jejichž hodnoty získáme z mezních podmínek. $J_0(kr)$, $N_0(kr)$ jsou cylindrické funkce nultého řádu, prvního a druhého druhu, pro komplexní argument (kr). $J_1(kr)$ a $N_1(kr)$ jsou cylindrické funkce prvního řádu, prvního a druhého druhu, pro stejný argument. Cylindrické funkce prvního druhu $J_0(kr)$, $J_1(kr)$ se také nazývají Besselovy funkce a funkce $N_0(kr)$, $N_1(kr)$ funkce Neumannovy.[1]

Komplexní argument (kr) má tvar:

$$(kr) = \frac{1-j}{a} \cdot r = \frac{1-j}{\sqrt{2}} \cdot \frac{r \cdot \sqrt{2}}{a} = x \cdot \sqrt{(-j)} \implies x = \frac{r}{a} \cdot \sqrt{2}$$
(47.1)

Reálné číslo *x* určuje poměr mezi poloměrem *r* a hloubkou vniku *a*, vynásobeno $\sqrt{2}$. Komplexní argument je tedy součin tohoto reálného čísla a komplexního čísla $\sqrt{(-j)}$.

Cylindrické funkce jsou definovány řadami. Pro komplexní argument (kr) má Besselova funkce nultého řádu $J_0(kr)$ tvar:

$$J_{\mathbf{0}}(kr) = 1 - \frac{\left[x \cdot \sqrt{(-j)}\right]^2}{2^2} + \frac{\left[x \cdot \sqrt{(-j)}\right]^4}{(2 \cdot 4)^2} - \frac{\left[x \cdot \sqrt{(-j)}\right]^6}{(2 \cdot 4 \cdot 6)^2} + \frac{\left[x \cdot \sqrt{(-j)}\right]^8}{(2 \cdot 4 \cdot 6 \cdot 8)^2} - \dots$$
(48.1)

U této řady se reálné členy střídají s imaginárními. Součet reálných členů se značí *ber x* a součet imaginárních *bei x*. Obdobně značíme reálné a imaginární členy u Neumannovy funkce, a to *ner x* a *nei x*. Tyto funkce tedy můžeme zapsat:

$$J_0(kr) = J_0\left[x \cdot \sqrt{(-j)}\right] = ber \ x - jbei \ x \tag{49.1}$$

a také:

$$N_0(kr) = N_0\left[x \cdot \sqrt{(-j)}\right] = ner \ x - jnei \ x$$
(50.1)

Funkce prvního řádu získáme jako záporné derivace funkcí nultého řádu. Tedy:

$$-J_1(kr) = -J_1\left[x \cdot \sqrt{(-j)}\right] = \sqrt{j} \cdot (ber' x - jbei' x)$$
(51.1)

$$-N_1(kr) = -N_1\left[x \cdot \sqrt{(-j)}\right] = \sqrt{j} \cdot (ner' x - jnei' x)$$
(52.1)

Hodnoty těchto řad a jejich derivací je možné získat z tabulek.

Jak je uvedeno výše, integrační konstanty C_1 a C_2 vypočítáme z mezních, okrajových, podmínek. Pro poloměr r = 0 v ose válce je intenzita $E_0 = 0$. V mezeře mezi cívkou a vsázkou je homogenní magnetické pole o intenzitě H_1 . Intenzita H_2 na poloměru r_2 , tedy na povrchu vsázky, se rovná H_1 . Pokud tyto podmínky dosadíme do rovnic 38.1 a 46.1, získáme výsledné vztahy pro intenzity:

$$H = H_2 \cdot \frac{J_0[x \cdot \sqrt{(-j)}]}{J_0[x_2 \cdot \sqrt{(-j)}]}$$
(53.1)

$$\boldsymbol{E} = \frac{1}{\gamma} \boldsymbol{J} = \sqrt{(-j)} \cdot \frac{\sqrt{2}}{a \cdot \gamma} \cdot \boldsymbol{H}_2 \cdot \frac{J_1 \left[x \cdot \sqrt{(-j)} \right]}{J_0 \left[x_2 \cdot \sqrt{(-j)} \right]}$$
(54.1)

Pro grafické vyjádření, Obr 1.4 a Obr 1.5, se hodnoty v místě o poloměru r dělí hodnotami na povrchu vsázky. Na vodorovnou osu se vynáší poměr r/r_2 . Tyto diagramy jsou platné pro libovolnou frekvenci a vodivý materiál.

Obr 1.4: Rozložení intenzity magnetického pole ve válcové vsázce pro různé argumenty x2[1]

Obr 1.5: Rozložení proudové hustoty ve válcové vsázce pro různé argumenty x2 [1]

Na Obr 1.4 je patrné, že pro malé hodnoty parametru x_2 , kde

$$x_2 = \frac{r_2}{a_2} \cdot \sqrt{2}$$

je intenzita H po celém průřezu vsázky téměř konstantní. Se vzrůstajícím x_2 se magnetické pole zeslabuje. Pokud je hloubka vniku oproti poloměru r_2 malá, přibližně při $x_2 > 10$, klesne H téměř na nulu, protože proti magnetickému toku o konstantní intenzitě H_1 působí magnetický tok vybuzený proudem indukovaným ve vsázce.

Hustota proudu, viz Obr 1.5, pro malé hodnoty x_2 , klesá lineárně od povrchu k ose. Pro velké x_2 zůstává velká část naindukovaného proudu na povrchu vsázky.

1.6.2 Impedance plné válcové vsázky

Při výpočtech se impedance vsázky převádí do cívky. Nejdříve se určí magnetické toky ve vsázce a v mezeře mezi cívkou a vsázkou. Zvolíme část cívky o délce 1 m. Zde vybudí časová změna toků indukované napětí. Pro vytvoření takovýchto toků musíme dodávat do zvolené části cívky napětí, rovnající se velikosti indukovaného napětí, ale opačného smyslu. Podělíme-li toto napětí proudem cívky, získáme hledanou impedanci vsázky převedenou do cívky.

Vztah pro velikost napětí lze zapsat:

$$N_{11} \cdot \boldsymbol{U}_1 = N_{11} \cdot \left(\frac{d\boldsymbol{\Phi}_m}{dt} + \frac{d\boldsymbol{\Phi}_v}{dt}\right)$$
(55.1)

kde

 N_{11} počet závitů cívky na 1 m délky

- U_1 napětí, které indukuje časová změna obou toků
- $\boldsymbol{\Phi}_{m}$ magnetický tok v mezeře
- $\boldsymbol{\Phi}_{v}$ magnetický tok ve vsázce

$$\frac{d\boldsymbol{\Phi}_m}{dt} = j\boldsymbol{\omega} \cdot \boldsymbol{\pi} \cdot (r_1^2 - r_2^r) \cdot \boldsymbol{\mu} \cdot \boldsymbol{H}$$
(56.1)

$$\frac{d\boldsymbol{\Phi}_{v}}{dt} = j\boldsymbol{\omega}\cdot\boldsymbol{\pi}\cdot\boldsymbol{\mu}\cdot\boldsymbol{a}^{2}\cdot\frac{\boldsymbol{H}_{1}}{J_{0}\left[\boldsymbol{x}_{2}\cdot\sqrt{(-j)}\right]}\cdot\int_{0}^{\boldsymbol{x}_{2}}J_{0}\left[\boldsymbol{x}\cdot\sqrt{(-j)}\right]\cdot\boldsymbol{x}d\boldsymbol{x}$$
(57.1)

Vyřešením integrálu získáme rovnici:

$$\frac{d\boldsymbol{\Phi}_{v}}{dt} = j\boldsymbol{\omega}\cdot\boldsymbol{\pi}\cdot\boldsymbol{\mu}\cdot\boldsymbol{a}^{2}\cdot\boldsymbol{H}_{1}\cdot\sqrt{j}\cdot\boldsymbol{x}_{2}\cdot\frac{J_{1}[\boldsymbol{x}_{2}\cdot\sqrt{(-j)}]}{J_{0}[\boldsymbol{x}_{2}\cdot\sqrt{(-j)}]}$$
(58.1)

Poměr cylindrických funkcí lze zapsat:

$$\frac{J_1[x_2 \cdot \sqrt{(-j)}]}{J_0[x_2 \cdot \sqrt{(-j)}]} = -\sqrt{j} \cdot [P(x) + jQ(x)]$$
(59.1)

kde

P(x) reálná složka poměru

Q(x) imaginární složka poměru

Hodnoty těchto funkcí je možné najít v tabulkách. Jejich průběh je zobrazen na Obr 1.6. Rovnice pro magnetické toky dosadíme do vztahu 55.1. Impedanci na 1 metr délky a převedenou na cívku (Z_{2I}) získáme tím, že výraz dělíme proudem I_I . Za H_I dosadíme $H_1 = N_{11} \cdot I_1$. Ze vzorce pro hloubku vniku vyjádříme: $\omega \cdot \mu = 2/\gamma \cdot a^2$.

$$Z_{21} = \frac{N_{11} \cdot U_1}{I_1}$$

$$Z_{21} = \left\{ \frac{2 \cdot \pi \cdot x_2}{\gamma} \cdot N_{11}^2 \cdot P(x_2) + j \left[\omega \cdot \mu \cdot \pi (r_1^2 - r_2^2) \cdot N_{11}^2 + \frac{2 \cdot \pi \cdot x_2}{\gamma} \cdot N_{11}^2 \cdot Q(x_2) \right] \right\}$$
(60.1)

Obr 1.6: Průběh funkcí P(x) a Q(x) v závislosti na argumentu x_2 [2]

1.6.3 Množství tepla naindukovaného ve válcové vsázce

Jak již bylo zmíněno v kapitole 1.1, při průchodu proudu vsázkou vzniká teplo. Pro určení množství tepla vyjdeme z Obr 1.7. Na poloměru r uvažujeme proudový element. Ten má délku $2 \cdot \pi \cdot r$ a průřez $dr \cdot 1$. Dále jím protéká proud $dI_{21} = (dr \cdot 1) \cdot J$. Množství tepla získáme pomocí Jouleových ztrát a tedy potřebujeme znát odpor elementu. Ten je:

$$dR_{21} = \rho \cdot \frac{2\pi \cdot r}{dr}$$

a tedy množství tepla dP_{21} :

$$dP_{21} = dR_{21} \cdot \frac{1}{2} \cdot dI_{21}^2 = \pi \cdot \rho \cdot J^2 \cdot r \cdot dr$$
(61.1)

Obr 1.7: Obrázek pro odvození množství tepla ve vsázce [1]

Hledané množství tepla v části vsázky o osové délce 1 m získáme integrací rov. 61.1:

$$P_{21} = \pi \cdot \rho \cdot \int_{0}^{r_2} J^2 \cdot r \, dr \tag{62.1}$$

Místo poloměru r použijeme argument x.

$$x = \frac{r}{a} \cdot \sqrt{2}, \qquad r \, dr = \frac{a^2}{2} \cdot x \, dx$$

$$P_{21} = \pi \cdot \rho \cdot \frac{a^2}{2} \cdot \int_0^{r_2} J^2 \cdot x \, dx$$
(63.1)

U tavicích pecí má vsázka velký poloměr oproti hloubce vniku a tedy argument x_2 je velký. Absolutní hodnota proudové hustoty **J** při velkém argumentu x_2 se vypočítá:

$$J = \frac{\sqrt{2}}{a} \cdot \sqrt{\frac{r_2}{r}} \cdot H_2 \cdot e^{-\left(\frac{z}{a}\right)}$$
(64.1)

kde

z vzdálenost uvažovaného bodu od povrchu vsázky $z = r_2 - r$

Dosazením do rovnice 62.1 a úpravou získáme vyvinuté množství tepla na jeden metr délky vsázky.

$$P_{21} = \rho \cdot \frac{\pi \cdot r_2}{a} \cdot \boldsymbol{H}_2^2 \cdot \left[1 - e^{-\frac{2r_2}{a}}\right] \quad \left[\frac{W}{m}\right]$$
(65.1)

Pokud je $r_2 \gg a$, můžeme druhý člen v závorce zanedbat, protože je oproti *1* zanedbatelně malý. Můžeme vyjádřit H_2 pomocí proudu v cívce a tepelný příkon bude:

$$H_2 = H_1 = N_{11} \cdot I_1 = N_{11} \cdot \sqrt{2} \cdot I_{1ef}$$
(66.1)

$$P_{21} = \rho \cdot \frac{2 \cdot \pi \cdot r_2}{a} \cdot \left(N_{11} \cdot \boldsymbol{I}_{1ef} \right)^2 \tag{67.1}$$

V závislosti na parametru x_2 bude mít rovnice pro příkon tvar:

$$P_{21} = \rho \cdot \frac{\pi \cdot r_2}{a} \cdot \boldsymbol{H}_2^2 \cdot \sqrt{2} \cdot \boldsymbol{P}(\boldsymbol{x}_2)$$
(68.1)

Na Obr 1.8 je závislost absorbované elektromagnetické energie, která se ve válcové vsázce přemění na teplo, na parametru x_2 . Je patrné, že při malém x_2 vlnění prochází, ale nepřemění se. Obě vlnění postupují proti sobě a vzájemně se zeslabují. Materiál je průzařný a účinnost přenosu energie do vsázky malá. Pro vývin tepla je vhodnější, aby $r_2 \gg a$, tedy parametr x_2 byl velký. Pokud toto platí, teplo se vyvíjí v tenké vrstvě na povrchu vsázky. Je-li pec správně navržena, teplo se přenese do celé vsázky vlivem elektrodynamického víření, které vzniká vždy, při připojení pece ke zdroji.

Obr 1.8: Množství absorbované energie v závislosti na parametru x₂ [1]

1.7 Výpočet elektrotepelných indukčních zařízení

Při výpočtu indukčního zařízení je potřeba stanovit ideální tvar vsázky, anebo soustavy vsázek. Dále je nutné navrhnout tvar, parametry a uspořádání ohřívací cívky tak, aby odebírala potřebný výkon ze zdroje.

Principiální uspořádání indukčního ohřevu tvoří dva indukčně spřažené (vázané) obvody, viz Obr 1.9. Ohřívací cívka (induktor) tvoří obvod primární, sekundární tvoří vsázka. Vsázka je buď v dutině induktoru, nebo v její blízkosti a má s ní vzájemnou indukčnost *M*.[2]

Obr 1.9: Indukčně spřažené obvody [2]

1.7.1 Přibližný výpočet

Pro výpočet používáme střední hodnotu délky l_s . Je to z toho důvodu, že je potřeba, aby délka cívky a vsázky byla stejná. V praxi je většinou cívka delší.

$$l_s = 0.5 \cdot (l_1 + l_2) \tag{69.1}$$

kde

*l*₁ délka cívky

*l*₂ délka vsázky

Dále určíme impedanci vsázky a cívky.

$$\mathbf{Z} = \mathbf{Z}_{21} \cdot l_s^2 \tag{70.1}$$

 Z_{21} je impedance soustavy vsázka a cívka o délce 1 m. Impedance vsázky je převedena do cívky, viz rov. 60.1 a spočítá se:

$$Z_{21} = \left\{ R_1 + \frac{2\pi \cdot x_2}{\gamma_2} \cdot N_{11}^2 \cdot P(x_2) + j \left[\omega \cdot \mu \cdot \pi \cdot (r_1^2 - r_2^2) \cdot N_{11}^2 + \frac{2\pi \cdot x_2}{\gamma_2} \cdot N_{11}^2 \cdot Q(x_2) \right] \right\}$$
(71.1)

Pro další úpravy potřebujeme znát odpor cívky R_1 . Ten určujeme jako odpor vnitřní povrchové vrstvy cívky o tloušť ce rovné hloubce vniku *a*.

$$R_1 = \rho \cdot \frac{2\pi \cdot r_1}{a} \qquad [\Omega \cdot m^{-1}] \tag{72.1}$$

Výraz pro odpor dosadíme do vztahu pro impedanci a také vytkneme N_{11}^2 .

$$Z = \left\{ \frac{2\pi \cdot r_1}{a} + \frac{2\pi \cdot x_2}{\gamma_2} \cdot P(x_2) + j \left[\omega \cdot \mu \cdot \pi \cdot (r_1^2 - r_2^2) + \frac{2\pi \cdot x_2}{\gamma_2} \cdot Q(x_2) \right] \right\} \cdot N_{11}^2 \cdot l_s^2$$
(73.1)

Reálnou složku výrazu označíme R'a imaginární (jalovou) L'. Tím dostaneme:

$$\mathbf{Z} = [R' + j\omega \cdot L'] \cdot N_{11}^2 \cdot l_s^2 = \mathbf{Z}' \cdot N_{11}^2 \cdot l_s^2$$
(74.1)

Velikost (absolutní hodnota) impedance bude:

$$|\mathbf{Z}| = Z = \sqrt{[(R')^2 + (\omega \cdot L')^2]} \cdot N_{11}^2 \cdot l_s^2 = Z' \cdot N_{11}^2 \cdot l_s^2$$
(75.1)

Dále uvažujeme, že zdroj, kterým zařízení napájíme, má napětí U a dodává činný výkon P. Z výsledné impedance můžeme získat proud cívky I_1 .

$$I_1 = \frac{U}{Z} = \frac{U}{Z' \cdot N_{11}^2 \cdot l_s^2}$$
(76.1)

Účiník určíme:

$$\cos\varphi = \frac{R'}{Z'} \tag{77.1}$$

Ten dosadíme do vzorce pro výpočet činného výkonu a dále rovnici upravíme tak, abychom získali vztah pro proud:

$$P = U \cdot I_1 \cdot \cos \varphi = U \cdot I_1 \cdot \frac{R'}{Z'} \quad \Longrightarrow \quad I_1 = \frac{P \cdot Z'}{U \cdot R'}$$
(78.1)

Nyní již můžeme vyjádřit vztah pro počet závitů cívky:

$$I_{1} = \frac{U}{Z' \cdot N_{11}^{2} \cdot l_{s}^{2}} = \frac{P \cdot Z'}{U \cdot R'} \implies N_{11}^{2} = \frac{U^{2} \cdot R'}{P \cdot Z'^{2} \cdot l_{s}^{2}}$$
(79.1)

Pokud bude mít cívka vypočtený počet závitů, bude při napětí zdroje *U* odebírat požadovaný výkon *P*.

Tento způsob výpočtu nerespektuje skutečnost, že se indukčnost cívky a vsázky o délce l_s zmenší. To je vyvolané tím, že vztah impedance je odvozen z nekonečně dlouhé soustavy cívka + vsázka. Zmenšení nebude tak velké, pokud bude délka l_s výrazně větší než průměr cívky. Tento způsob výpočtu je tedy možné využít pro prohřívací zařízení.

Naopak, pro tavicí pece, kde průměr cívky a její délka jsou srovnatelné, je tento výpočet nevhodný.

1.7.2 Druhý způsob výpočtu indukčních zařízení

Při výpočtu se využije Poyntingův vektor. Ten svým směrem udává tok příkonu. Reálná část vektoru vyjadřuje činný výkon, protože je ve fázi s proudem a imaginární část určuje jalový výkon. Pro výpočet uvažujeme, že ohřívací cívka má pouze jeden závit. Takto počítané hodnoty značíme indexem (1). Např. $U_{I(I)}$ je napětí, které přivedeme na induktor s jedním závitem, aby ohřívací cívka se vsázkou odebírala příkon P_I . Pro válcovou vsázku bude mít Poyntingův vektor, za použití rovnic 53.1 a 54.1, tvar:

$$N_{2ef} = \frac{H_{2m}^2}{\sqrt{2a \cdot \gamma}} \cdot \left[P(x_2) + jQ(x_2) \right]$$
(80.1)

kde

 N_{2ef} příkon na jednotku plochy pláště válce

 H_{2m} amplituda intenzity magnetického pole na povrchu válce

Pro zjednodušení uvažujeme, že funkce $Q(x_2)$ má pro argument $x_2 > 5$ limitu:

$$\lim_{x_2 \to \infty} Q(x_2) = \frac{1}{\sqrt{2}} = 0,707$$

Pro funkci $P(x_2)$ bude stejné zjednodušení platit pro argument $x_2 > 15$. Jak je patrné na Obr 1.6 v kapitole 1.6.2, mají funkce $P(x_2)$ a $Q(x_2)$ malé hodnoty pro malé argumenty x_2 . To znamená, že vsázka neabsorbuje ani činný výkon ani výkon jalový a je tedy průzařná. Pro ohřev vsázky je potřeba zvýšit frekvenci a tím snížit hloubku vniku.

Příkon do vsázky se rovná součinu povrchu vsázky s Poyntingovým vektorem. Jako povrch se počítá pouze plocha, daná průmětem induktoru na výšku vsázky.

$$N_{2ef} = 2\pi \cdot r_2 \cdot l_2 \cdot \frac{H_{2m}^2}{\sqrt{2a \cdot \gamma}} \cdot \left[P(x_2) + jQ(x_2) \right]$$
(81.1)

Délka vsázky l_2 je stejná anebo kratší než délka cívky l_1 . Pokud by bylo l_2 delší, proudy by se za hranicí cívky téměř neindukovaly. Vsázku přetransformujeme na primární obvod.

$$N_{2ef} = \mathbf{Z}_2 \cdot l_{1ef(1)}^2 \tag{82.1}$$

kde

$$\mathbf{Z}_{2} = p_{(1)}^{2} \cdot (R_{2} + j\omega \cdot L_{2z})$$
(83.1)

kde

Z₂ impedance vsázky přetransformovaná na primární obvod

 p_1 transformační převod vsázky

*R*₂ odpor vsázky

*L*_{2z} zbytková indukčnost vsázky. Odpovídá zbytkovému magnetickému toku, který prochází vsázkou (viz níže).

Odpor a indukčnost převedené na cívku:

$$p_{(1)}^2 \cdot R_2 = 2\pi \cdot x_2 \cdot \frac{l_2 \cdot \alpha_{11}^2}{\gamma \cdot l_1^2} \cdot P(x_2)$$
(84.1)

$$p_{(1)}^{2} \cdot L_{2z} = 2\pi \cdot x_{2} \cdot \frac{l_{2} \cdot \alpha_{11}^{2}}{\omega \cdot \gamma \cdot l_{1}^{2}} \cdot Q(x_{2})$$
(85.1)

kde

$$\alpha_{11}$$
 podobnostní činitel. Respektuje pokles magnetického toku uvnitř cívky vlivem
vnějšího magnetického odporu cívky. Dále také respektuje nehomogenní
rozložení hustoty tohoto toku. Velikost je vždy menší než 1. Pro dlouhé cívky
se stanovuje výpočtem. U krátkých cívek, anebo při přesnějších výpočtech,
získáváme podobnostní činitel měřením na modelech, nebo na hotových
pecích.

Pro výpočet je dále potřeba určit odpor a indukčnost ohřívací cívky, respektive ekvivalentní jednozávitovou cívku. Pro kruhovou cívku, která má poloměr r_1 , bude velikost odporu:

$$R_{1(1)} = k \cdot \frac{l}{\gamma \cdot a \cdot l_1} \tag{86.1}$$

kde

l délka cívky na poloměru $r_1 + a/2$

 l_1 osová délka cívky

k konstanta respektující vzrůst odporu vinutí s *N* závity. Pohybuje se mezi 1,04 až 1,2.

Odpor cívky a vsázky se spočítá:

$$R_{I(1)} = R_{1(1)} + p_{(1)}^2 \cdot R_2 \tag{87.1}$$

Indukčnost primární cívky získáme za předpokladu, že veškerý proud $I_{I(I)}$ prochází středem hloubky vniku.

Poté indukčnost bude:

$$L_{1(1)} = \mu \cdot \frac{A_1}{l_1} \cdot \alpha_1 \tag{88.1}$$

kde

*A*₁ plocha průřezu dutiny cívky. Pro kruhovou cívku

$$A_1 = \pi \cdot \left(r_1 + \frac{a}{2}\right)^2$$

 α_1 koeficient, který zahrnuje vliv tvaru cívky. Pro dlouhá vinutí se $\alpha = 1$ a se zkracujícím se vinutím klesá.

Tento výpočet indukčnosti platí pro prázdnou cívku a jen pro některé případy cívky se vsázkou.

Indukčnost cívky a vsázky $L_{I(1)}$ je určena magnetickým tokem v mezeře mezi cívkou a vsázkou a zbytkovým tokem ve vsázce. Reálná část rovnice 81.1 určuje příkon, který se dostane do vsázky. Imaginární část rovnice udává magnetizační příkon. Je to primární magnetický tok, který ve vsázce "zbyl", když byla reakcí vířivých proudů ve vsázce vytlačena určitá část magnetického toku. [2]

Obr 1.10 ukazuje průběh magnetické indukce pro nemagnetickou a magnetickou válcovou vsázku.

Obr 1.10: Magnetické pole ve válcové vsázce [2]

Jev na Obr 1.10a nastává, je-li vsázka nemagnetická a nemohou se v ní vytvořit vířivé proudy, např. pokud je ze slabých vzájemně izolovaných plechů. V případě, že je nemagnetická vsázka masivní, viz Obr 1.10b, vytvoří se v ní vířivé proudy. Ty vytlačí primární indukci B_{θ} a zbytková indukce B_{vz} se zmenší. U magnetické vsázky, jak u slabé (Obr 1.10c), tak u masivní (Obr 1.10d), může být B_{vz} vlivem relativní magnetické permeability

mnohonásobně větší než indukce v mezeře. Díky tomu je rozptylový tok malý a vzniká velmi dobrá vazba mezi vsázkou a cívkou. Výkon se dobře absorbuje a účinnost ohřevu je vysoká.

Pro $L_{I(1)}$ platí:

$$L_{I(1)} = L_{m(1)} + p_{(1)}^2 \cdot L_{2z}$$
(89.1)

kde

 $L_{m(1)}$ indukčnost příslušná prostoru mezi vsázkou a vodivým průřezem S_m kolmým na magnetické siločáry a vypočítá se:

$$L_{m(1)} = \mu_0 \cdot \frac{S_m}{l_1} \alpha_{11} \tag{90.1}$$

 S_m dán průřezem dutiny cívky zmenšeným o průřez vsázky

Stále předpokládáme, že délka vsázky l_2 je přibližně stejná jako délka cívky l_1 . Pokud je vsázka delší, počítáme její délku jako délku cívky, viz výše. Pokud je naopak $l_2 >> l_1$, je lepší, aby nevznikla velká chyba, uvažovat že:

$$L_{I(1)} \approx L_{1(1)}$$
 (91.1)

Nyní již můžeme spočítat napětí $U_{I(1)}$. Podle toho, pokud známe výkon napájecího zdroje *P* anebo výkon, kterým chceme vsázku zahřívat P_2 , volíme jeden z následujících vztahů:

$$U_{1(1)} = \sqrt{\frac{P}{R_{I(1)}}} \cdot \sqrt{R_{I(1)}^2 + \omega^2 \cdot L_{I(1)}^2}$$
(92.1)

$$U_{1(1)} = \sqrt{\frac{P_2}{p_{(1)}^2 \cdot R_2}} \cdot \sqrt{R_{I(1)}^2 + \omega^2 \cdot L_{I(1)}^2}$$
(93.1)

Potřebný počet závitů N primární cívky vypočítáme:

$$N = \frac{U_1}{U_{1(1)}}$$
(94.1)

Výsledek málokdy vyjde jako celé číslo, které potřebujeme získat. Zaokrouhlením se změní příkon jdoucí do vsázky a je potřeba zvážit, zda zaokrouhlení vyhovuje, anebo se změní některé parametry ohřevu. Pokud některý parametr změníme, výpočet se zopakuje. Podle přesného počtu závitů a se známými rozměry vodiče a izolace zpřesníme konstantu k pro výpočet odporu cívky (rov. 86.1).

Takto získáme základní parametry indukčního zařízení. Při návrhu se dále provádí např. kontroly výpočtu, výpočet účinnosti pece, nebo návrh kompenzace účiníku.

Tento způsob návrhu dovoluje počítat i více vsázek různých rozměrů, elektrických i magnetických vlastností za předpokladu, že dutina cívky je ve směru osy co nejvíce vyplněna.

Pokud by nebyla, platí vztah 91.1. Výsledný příkon je pak součtem dílčích příkonů jednotlivých vsázek.

1.8 Účinnost indukčního zařízení

Část příkonu, který dodává zdroj, se přemění na teplo v konstrukčních částech (např. přívodní vedení, kondenzátorové baterie, induktor, stínění) a ne ve vsázce. Tyto ztráty je potřeba odvádět pryč ze zařízení, aby nedošlo k poškození, nebo dokonce ke zničení. Účinnost u kelímkové pece značí, jaký výkon se přemění ve vsázce na teplo v poměru k celkovému příkonu dodávaného zdrojem.

Elektrická účinnost indukční kelímkové pece bývá 0,7 až 0,75. Ztráty v cívce (P_1) jsou přibližně 20% z příkonu a je potřeba je odvádět chladicí vodou. [3]

Celkový příkon zdroje můžeme vyjádřit jako součet všech ztrát a užitečného výkonu:

$$P = R_I \cdot I_{1ef}^2 = P_1 + P_2 + P_c = R_1 \cdot I_{1ef}^2 + p_1 R_2 \cdot I_{1ef}^2 + R_c \cdot I_{1ef}^2$$
(95.1)

kde

*P*₁ ztráty v pecní cívce

 P_2 užitečný výkon, který se přemění ve vsázce na teplo

 P_c ztráty na ostatních konstrukčních prvcích (stínění, kondenzátory,...)

 $p_1 R_2$ činný odpor vsázky převedený na napájecí cívku

Pro výslednou elektrickou účinnost platí:

$$\eta_{el} = \frac{P_2}{P} = \frac{R_I}{R_1 + p_1 R_2 + R_c} \tag{96.1}$$

2 Vliv stínění a přídavných prvků na účinnost tavení kelímkové pece

Vztahy a postupy uvedené v této kapitole vychází z literatury [3 a 7].

2.1 Indukční kelímková pec

Tavicí indukční pece jsou jednou z nejdůležitějších aplikací indukčního tepla. Používají se ve slévárnách a v hutnictví pro tavení a výrobu různých druhů ocelí a speciálních slitin. Jejich hlavní výhodou je dokonalá homogenita taveniny, která je způsobena intenzivním vířením roztavené vsázky. Víření nastává, prochází-li cívkou elektrický proud. Takto získaná homogenita slitiny není dosažitelná v žádném jiném typu pece. Další výhodou je, že vliv ohřevu na životní prostředí je nulový, pokud nepočítáme znečištění, které vzniká při výrobě elektrické energie pro napájení. Největší nevýhodou těchto pecí je však jejich pořizovací cena. Jejich velikost záleží na hmotnosti vsázky, která se pohybuje od 10 kg až po 100 tun. Frekvence napájecího proudu u malých laboratorních pecí se používá 4 až 10 kHz. U velkých pecí se frekvence pohybuje mezi 600 Hz a 1 kHz. Na Obr 2.1 je znázorněno schéma kelímkové pece.

Obr 2.1: Indukční kelímková pec [2]

 Kruhová ohřívací cívka: nejčastěji se používá dutý měděný vodič s čtverhranným průřezem, s otvorem pro průtok chladící vody. Navíjí se jako jednovrstvá.

- Keramický kelímek pece: vyrábí se pěchováním nejčastěji ze suracitu (96% oxidu křemičitého a oxid hlinitý). Životnost jednoho kelímku je v průměru 60 taveb
- Svazky elektrotechnických plechů: svádí magnetický tok cívky, aby nevnikal do pláště a jiných konstrukčních prvků pece. Jsou uspořádány svisle po vnitřním obvodu pláště
- 4) Středící trámce pro cívku
- 5) Ocelový plášť pece
- 6) Cihlová vyzdívka na dně pece
- 7) Stínící plech: brání magnetickému toku cívky, aby nevnikal do dna pece
- 8) Mřížové dno pece
- 9) Hubice pece: slouží pro odlévání taveniny z pece
- 10) Osa: pro otáčení pece při vyklápění

Při průchodu střídavého proudu cívkou vzniká magnetické pole. Toto pole se uzavírá vně cívky. V okolí pece jsou různé ocelové konstrukce, a pokud by nebyly odstíněny, procházely by těmito konstrukcemi vířivé proudy, které by je zahřívaly. To by způsobilo zvýšení ztrát a pokles elektrické účinnosti pece. Stínění pece se může provést válcovým pláštěm, souosým s cívkou, vyrobeným z dobře vodivého materiálu. Nebo použijeme svazky transformátorových plechů, které uložíme vně cívky.

Magnetický tok, procházející stíněním, vybudí proud. Tento proud stínění zahřívá a také budí další magnetický tok, který působí proti toku vybuzeného cívkou. Velikost toku je úměrná odporu stínění. Pro co nejnižší ztráty je tedy potřeba použít materiál s minimálním odporem a zároveň s co nejvyšší indukčností. Nejvhodnější by bylo použití supravodivých materiálů, u kterých se žádný proud nevybudí.

2.2 Kelímková pec se stíněním pomocí svazků transformátorových plechů

Většina magnetického toku, buzeného cívkou, se uzavírá vně cívky dobře vodivou cestou. Pokud zařadíme transformátorové plechy mezi konstrukci pece a cívku, viz Obr 2.2, magnetický tok jimi bude procházet a prvky za plechy budou odstíněny.

Obr 2.2: Uspořádání pece s železným jádrem vně cívky [3]

Zařazením magneticky vodivých svazků se sníží odpor, takže magnetický tok vzroste. Dále se zvýší hodnoty indukčnosti cívky a vsázky z L_1 na L'_1 a L_2 na L'_2 . Naroste také vzájemná indukčnost M_{12} na M'_{12} . Pro výpočet se uvažuje místo skutečného obvodu náhradní obvod se třemi náhradními válci nulové tloušťky. Dále také musí platit, že $a \ll r$, což je u tavicích pecí splněno. Tyto veličiny získáme ze vztahů:

$$L_{1}^{'} = \mu_{0} \cdot \pi \cdot r_{c}^{2} \cdot \frac{N_{1}^{2}}{l_{1}} \cdot \alpha_{1}^{'}$$
(1.2)

$$L_2 = \mu_0 \cdot \pi \cdot r_v^2 \cdot \frac{N_2^2}{l_2} \cdot \alpha_2$$
(2.2)

$$M_{12} = \mu_0 \cdot \pi \cdot r_v^2 \cdot \frac{N_1 \cdot N_2}{l_2} \cdot F_{12}$$
(3.2)

kde

 N_2 u vsázky se téměř vždy počítá, že má 1 závit takže: $N_2 = I$

- α_1, α_2 Nagaokovy součinitele, závislé na poměru d/l, dostupné v tabulkách (Příloha I)
- α'_1, α'_2 zvýšené součinitele α_1 a α_2
- F_{12} součinitel závislý na poměru délek l_1/l_2 , r_c a r_v , který získáme v tabulkách (Příloha II)

 F'_{12} zvýšený součinitel F_{12}

*r*_c náhradní poloměr cívky

 r_v náhradní poloměr vsázky

Náhradní průměry vypočítáme:

$$r_c = \frac{d_c}{2} = \frac{d_1 + a_1}{2} \tag{4.2}$$

$$r_{\nu} = \frac{d_{\nu}}{2} = \frac{d_2 - a_2}{2} \tag{5.2}$$

Zvýšené součinitele se získají měřením na podobné peci. Lze je také získat měřením na zmenšeném modelu, protože nejsou závislé na rozměrech, ale na poměru rozměrů. Přibližná hodnota těchto součinitelů:

$$\alpha_1 = 1,14 \cdot \alpha_1$$
$$\alpha_2 = 1,06 \cdot \alpha_2$$
$$F_{12} = 1,14 \cdot F_{12}$$

Pro dimenzování stínění nejdříve provedeme výpočet pece bez stínění s upravenými indukčnostmi, viz kapitola 1.7.2. Určíme indukčnost L_I . Z ní získáme výsledný magnetický tok Φ_I :

$$\Phi_I = \frac{L_I}{N_1} \cdot \sqrt{2} \cdot I_{1ef} \tag{6.2}$$

kde

$$\sqrt{2} \cdot I_{1ef} = \frac{U_1}{\sqrt{R_I^2 + \omega \cdot L_I^2}}$$

Zvolíme magnetickou indukci *B* v jádře, kde se tok Φ_I uzavírá a podle pracovní frekvence z diagramu na Obr 2.3, získáme měrné ztráty *P* [W/kg]. Celkovou plochu stínění vypočteme:

$$S = \frac{\Phi}{B} \tag{7.2}$$

Tato plocha se rozdělí na vhodný počet svazků. Dále určíme délku stínění l_3 . Každý výrobce si zpravidla volí vlastní délku, ale často se uvádí, že $l_3 = 1,2 \cdot l_1$. Nyní je možné vypočítat hmotnost stínění. Vynásobením měrnými ztrátami získáme celkové ztráty v jádru, P_{Fe} . Nakonec je potřeba zkontrolovat, jak se stínění zahřívá.

Obr 2.3: Diagram pro určení měrných ztrát [3]

2.3 Kelímková pec s vodivým stínícím pláštěm

Při popisu vodivého pláště opět nahrazujeme reálný obvod náhradními souosými válci nulové tloušťky. Dále, pro jednodušší znázornění principu stínění, uvažujeme pouze vodivý plášť a cívku bez vsázky, viz Obr 2.4. Použití všech 3 částí by vedlo ke složitým výrazům.

Obr 2.4: Uspořádání cívky a vodivého pláště kelímkové pece [3]

Nejprve vypočítáme proudy tekoucí v obou částech.

$$\boldsymbol{I}_{1} = \frac{\boldsymbol{U}_{1}}{\boldsymbol{\omega} \cdot \boldsymbol{L}_{1} \cdot (1 - \boldsymbol{\varkappa}^{2})} \cdot \left(\frac{\boldsymbol{Q}'}{1 - \boldsymbol{\varkappa}^{2}} - \boldsymbol{j}\right)$$
(8.2)

$$\boldsymbol{I}_{3} = \frac{\boldsymbol{U}_{1}}{\boldsymbol{\omega} \cdot \sqrt{L_{1} \cdot L_{3}} \cdot (1 - \boldsymbol{\varkappa}^{2})} \cdot \left(\frac{\boldsymbol{Q}^{\prime\prime}}{1 - \boldsymbol{\varkappa}^{2}} - \boldsymbol{j}\right)$$
(9.2)

kde

 \varkappa součinitel vzájemné vazby. Jeho velikost získáme pomocí Nagaokových součinitelů α a součinitele F_{13} .

$$\kappa^{2} = \frac{M_{13}^{2}}{L_{1} \cdot L_{3}} = \left(\frac{d_{s}}{d_{c}}\right)^{2} \cdot \frac{1}{l_{3}} \cdot \frac{F_{13}^{2}}{\alpha_{1} \cdot \alpha_{3}}$$
(10.2)

 d_s náhradní průměr stínění $d_s = d_3 + a_3$

Q´a Q´´ značí

$$Q' = \frac{\kappa^2 \cdot Q_1 + Q_3}{Q_1 \cdot Q_3}$$
 $Q'' = \frac{Q_1 + Q_3}{Q_1 \cdot Q_3}$

 Q_1 a Q_3 činitelé jakosti obvodů

$$Q_1 = \frac{\omega \cdot L_1}{R_1} \qquad Q_3 = \frac{\omega \cdot L_3}{R_3}$$
 (11.2)

Tyto proudy jsou v protifázi. Absolutní hodnoty těchto proudů se vypočtou:

$$I_{1} = \frac{U_{1}}{\omega \cdot L_{1} \cdot (1 - \varkappa^{2})} \cdot \left[1 + \frac{1}{2} \left(\frac{Q'}{1 - \varkappa^{2}} \right)^{2} \right]$$
(12.2)

$$I_{3} = \frac{U_{1} \cdot \varkappa}{\omega \cdot \sqrt{L_{1} \cdot L_{3}} \cdot (1 - \varkappa^{2})} \cdot \left[1 + \frac{1}{2} \left(\frac{Q''}{1 - \varkappa^{2}} \right)^{2} \right]$$
(13.2)

Z efektivních hodnot těchto proudů se vypočítají ztráty jak ve stínění, tak v cívce.

$$P_1 = R_1 \cdot I_{1ef}^2 \qquad P_3 = R_3 \cdot I_{3ef}^2 \tag{14.2}$$

Na Obr 2.5 je znázorněna závislost ztrát ve stínění, v procentech příkonu pece, na poměru průměru pláště (d_3) k průměru cívky (d_1). Tento diagram je vynesen pro plášt² z mědi a duralu.

Obr 2.5: Ztráty ve vodivém stínícím plášti [3]

Je patrné, že ztráty klesají při zvětšujícím se průměru stínění. S ohledem na ztráty, a aby pec nebyla příliš velká, volí se zpravidla průměr d_3 jako dvojnásobek d_1 . Optimální tloušťka pláště \tilde{s}_3 se rovná:

$$\check{s}_3 = \frac{\pi}{2} \cdot a_3$$

V praxi tato hodnota mírně zvětšuje, aby nedošlo k jeho poškození. Výšku volíme podobně jako u stínění svazky transformátorových plechů jako $l_3 = 1,2 \cdot l_1$.

U takto navrženého stínění budou ztráty v duralovém plášti přibližně 2,5 % a u měděného pláště 1,5% příkonu pece. U reálných pecí, pokud je respektován vliv vsázky, tyto ztráty vychází zhruba poloviční.

2.4 Porovnání druhů stínění

Pro porovnání jednotlivých druhů stínění je zde uveden výsledek výpočtu indukční kelímkové pece provedený v literatuře [3]. Tato pec je navrhována pro vsázku o hmotnosti 900 kg roztavené oceli. Příkon pece je 550 kW na napětí 2,2 kV a frekvenci 825 Hz. Výpočet je proveden bez stínění, s měděným vodivým pláštěm a se železným jádrem vně cívky. Tabulka 2.1, uvádí vypočtený proud cívkou (I_1), počet závitů (N_1), indukčnost samotné cívky (L_1), výslednou indukčnost cívky (L_1), odpor samotné cívky (R_1), výsledný odpor cívky (R_1), výkon pohlcovaný vsázkou (P_2), ztráty v cívce (P_1), účinnost cívky (μ_c) a účinnost celé indukční pece (μ).

		Bez stínění	Měděný vodivý plášť	Svazky transformátorových plechů
I_1	[A]	3120	3240	3090
N_{I}	[závity]	22,3	22,9	21,9
L_1	[mH]	0,216	0,228	0,224
L_I	[mH]	0,136	0,131	0,137
R_1	$[m\Omega]$	13,6	14,4	13,2
R_I	$[m\Omega]$	56,3	52,0	57,05
P_2	[kW]	389,0	368,0	392,0
P_1	[kW]	132,5	151,0	126,0
μ_c	[%]	74,6	71,0	75,8
μ	[%]	71,0	67,0	71,6

Tabulka 2.1: Výsledky výpočtu indukční kelímkové pece s různými typy stínění [3]

Výpočet potvrdil, že stínění z transformátorových plechů zvyšuje účinnost pece. To přináší, hlavně při nepřetržitém chodu, výraznou úsporu elektrické energie. Jejich nevýhodou je velká hmotnost a také vysoká pořizovací cena. Dále, pokud se protaví keramický kelímek,

může dojít k výrazně většímu poškození pece, anebo i k jejímu úplnému zničení. Tento druh se používá u velkých pecí a u pecí s nepřetržitým provozem.

Použitím vodivého pláště snížíme účinnost pece. Zároveň je potřeba pro stínění více místa, protože s větším průměrem klesají ztráty. Naopak, oproti transformátorovým plechům, je pořizovací cena menší a hmotnost pláště nižší. Tento druh stínění se používá pro malé pece s obsahem oceli 100 - 250kg.

2.5 Vliv uzavřených přídavných prvků

Jako přídavný prvek se může u indukční kelímkové pece považovat například stínící plech pod tavicí cívkou. Je zde umístěn proto, aby ochránil dolní konstrukci pece před jejím nadměrným ohříváním. Protože je plech dobře vodivý, indukuje se v něm proud, který vytváří pole. To působí proti poli původnímu.

Pro následující naznačení výpočtu magnetického toku Φ_4 , který se vybudí v prvku, předpokládáme, že prvek bude mít kruhový tvar. Dále také uvažujeme, že se plech nedotýká induktoru.

Nejprve se určí vzájemná indukčnost mezi prvkem a cívkou M_{14} . Abychom ji mohli vypočítat, je potřeba zavést několik konstant:

$$\delta = \frac{d}{D}$$
 $\beta^2 = \frac{D^2}{D^2 + 4 \cdot l_1^2}$ (15.2)

kde

D, *d* průměry prvku a induktoru. Velkým písmenem se označuje větší z hodnot

*l*₁ výška induktoru

$$\gamma^2 = \frac{(1-\delta)^2}{4\cdot\delta} \qquad \xi^2 = \frac{1-\beta^2}{4\cdot\delta\cdot\beta^2} \tag{16.2}$$

$$M_{14} = \frac{\mu_0}{4} \cdot N_1 \cdot \sqrt{D \cdot d} \cdot k \left(\ln \frac{16}{\xi^2 + \gamma^2} - 2 \cdot \frac{\gamma}{\xi} \cdot \tan^{-1} \frac{\xi}{\gamma} - 2 \right)$$
(17.2)

Konstantu *k* je možné zjistit z tabulek uvedených v příloze III. Její hodnota závisí na velikosti γ^2 a ξ^2 .

Pro další výpočty je potřeba měřením anebo výpočtem určit činný odpor a indukčnost prvku (R_4 , L_4) a induktoru (R_1 , L_1).

Nyní je možné podle vztahu 10.2 vypočítat součinitel vzájemné vazby *n*:

$$\varkappa_{14}^2 = \frac{M_{14}^2}{L_1 \cdot L_4}$$

Proud vybuzený v prvku podle rovnice 9.2:

$$I_{4} = \frac{U_{1}}{\omega \cdot \sqrt{L_{1} \cdot L_{4}} \cdot (1 - \varkappa_{14}^{2})} \cdot \left(\frac{Q''}{1 - \varkappa_{14}^{2}} - j\right)$$

kde stejně jako v kapitole 2.3 se $Q^{\prime\prime}$ se určí:

$$Q^{\prime\prime} = \frac{Q_1 + Q_4}{Q_1 \cdot Q_4}$$

kde

 Q_1, Q_4 činitelé jakosti cívky a prvku viz rov. 11.2

Magnetický tok vybuzený prvkem je možné zapsat:

$$\boldsymbol{\Phi}_{I} = \frac{L_{4}}{N_{4}} \cdot \sqrt{2} \cdot \boldsymbol{I}_{4ef} \tag{18.2}$$

3 Simulace indukčního zařízení

3.1 Numerická metoda výpočtu

Většinu fyzikálních dějů lze v dnešní době popsat diferenciálními a integrálními rovnicemi. Analytické řešení takovýchto rovnic je však možné pouze pro jednoduché děje. Pro složité děje je takové řešení téměř nemožné bez značných zjednodušení, které výsledku ubírají na přesnosti. Použitím numerické metody lze dojít k přesným výsledkům. Jednou z nejznámějších numerických metod je metoda konečných prvků (MKP). Principem je rozdělit nadefinovaný objekt na určitý počet částí (elementy). Aby byla zajištěna přesnost, je potřeba objekt rozdělit na co nejvíce elementů. Jedná se o takzvané zasíťování (mesh). Nejčastěji se oblast rozděluje na trojúhelníky. Elementy jsou vzájemně spojeny v tzv. uzlech, které mají známé souřadnice v prostoru. Zjednodušeně lze říci, že výpočet neznámých parametrů se provádí v těchto uzlech. Vlastnosti jednotlivých elementů se popíší matematickou funkcí a tím pro popis celého objektu potřebujeme soustavu rovnic. Řešení pomocí diferenciálních (integrálních) rovnic je tak převedeno na soustavu algebraických rovnic. Pro získání jednoznačného řešení je nutné znát okrajové podmínky. Pokud bychom je neznali, úloha by měla nekonečně řešení. MKP je možné řešit nejen pole ve 2D, ale také ve 3D. Tato metoda je velmi náročná na výkon počítače. Potřebný výkon a paměť se zvyšuje s narůstajícím počtem elementů. Obzvláště při řešení rozsáhlejších 3D úloh je vhodné použít superpočítač, aby doba výpočtu nebyla příliš dlouhá. Jedny z programů, které používají pro řešení MKP, jsou programy: Agros 2D, ANSYS, QuickField a RillFEM.

3.2 Obecná simulace indukčních zařízení

Pro simulaci indukčního ohřevu je potřeba znát hlavně teplotní a elektromagnetické pole. Programy, používající MKP k výpočtu těchto polí, využívají vektorový potenciál *A*. Tato veličina nemá žádnou fyzikální podstatu. Jedná se pouze o pomocnou fyzikální veličinu, která výpočty polí usnadňuje. Jeho důležitou vlastností je, že je spojitý na rozhraní. Pro vektorový potenciál platí:

$$\boldsymbol{B} = rot \, \boldsymbol{A} \tag{1.3}$$

Nejdůležitějšími veličinami těchto polí jsou hodnoty E, H a J. Celkové teplo pak lze získat z průběhu proudové hustoty, a to její integrací.

Jak je uvedeno výše, s velkým počtem elementů stoupají nároky na výpočetní techniku, proto se používají různá zjednodušení. Největším zjednodušením je provedení simulace pouze ve 2D prostoru. U indukčních kelímkových pecí se také simulace provádějí ve válcových

souřadnicích jako osově symetrické. Cívka pece se nahradí ekvivalentní vodivou vrstvou. Ta se zakreslí o velikosti induktoru. Také stínění vodivým pláštěm se zakresluje podle skutečné velikosti. U stínění transformátorovými plechy nelze u 2D modelu zobrazit jednotlivé svazky. Je tedy nutné jeho velikost přepočítat na náhradní dutý válec, viz kapitola 2.2.

Aby měla simulace jen jedno řešení, je potřeba zadat okrajové podmínky. Ty se zadávají pomocí vektorového potenciálu A. Jak v ose symetrie, tak na půlkružnici, která ohraničuje simulovaný prostor, je A = 0.

3.3 Program RillFEM 2D

RillFEM 2D je multifyzikální program založený na metodě konečných prvků. Je možné řešit elektrostatické, elektromagnetické a mechanické pole. Tato pole je možné slučovat a počítat různé sdružené úlohy. [5] Pro řešení indukčního ohřevu je vhodné spojit teplotní, deformační a elektromagnetické pole.

Tento program je možné stáhnout bezplatně ve studentské verzi. Tato verze má omezený maximální počet uzlů (nodes) na 1000. Pokud je toto omezení překročeno, program nedovolí provést výpočet. Při zakoupení plné verze je program limitován jen výkonem počítače.

Program umožňuje přes grafické rozhraní simulovat i bez větších znalostí numerických metod. Rozhraní je pouze v anglickém jazyce. Jako oddělovač se používá desetinná tečka. Simulace probíhá ve třech částech: preprocesor, solver a postprocesor. Během preprocesoru se vytvoří geometrie simulované oblasti. To se provádí pomocí bodů (key points) a čar (lines). Dále se zavedou okrajové podmínky a nastaví vlastnosti materiálů. Solver provede výpočty zadaných dat a postprocesor tyto výsledky zobrazí v požadovaném formátu. Součástí programu je i knihovna materiálů s přednastavenými konstantami, vhodná pro všechna 3 pole.

3.3.1 RillFEM – postup simulace

- Vytvoření nového souboru, nastavení typu úlohy, např. pro simulaci cívky bez vsázky se nastaví Physical problem jako: 1 Harmonic Magnetic RZ.
- Zakreslení geometrie pomocí key points a jejich spojení rovnými čarami (straight lines) a oblouky (circle lines)
- 3. Volba materiálů Material modeler
- 4. Přiřazení materiálů do jednotlivých oblastí Attribute
- 5. Volba velikosti elementů v jednotlivých oblastech (mesh)
- 6. Vytvoření sítě elementů (adaptive mesh, případně non-adaptive mesh)
- 7. Spuštění výpočtu solve
- 8. Vizualizace vypočtených hodnot

3.4 Simulace jednotlivých prvků

Simulace jednotlivých prvků je provedena tak, aby geometrické rozměry odpovídaly fyzikálnímu modelu, na kterém je provedeno měření těchto prvků, viz kapitola 5.2. Tím je umožněno porovnat dosažené výsledky. V programu RillFEM 2D je provedena simulace induktoru bez stínění a s oběma druhy stínění. Dále je provedena simulace induktoru stíněného transformátorovými plechy, spolu s uzavřenými přídavnými prvky, umístěnými nad induktorem. Pokud bychom umístily přídavné prvky místo nad induktor pod něj, dosáhli bychom stejných výsledků. Otevřené přídavné prvky není možné ve 2D prostředí nasimulovat, bylo by potřeba použít program, umožňující vytvářet 3D simulace, např. ANSYS.

Simulace byla provedena pro frekvenci 4 kHz a 10 kHz. Zavedením zjednodušujících předpokladů jsou výsledky v obou případech stejné. Níže jsou tedy uvedeny hodnoty pouze pro frekvenci 4 kHz.

Všechny úlohy jsou shodně ohraničeny spojnicí bodů 0, 1 a 2, která tvoří osu symetrie. Dále spojením bodů 1 a 2 vznikla půlkružnice, z 18 přímek. Ta tvoří hranici simulovaného prostoru a je na ní, stejně jako na ose symetrie, nastavena okrajová podmínka A = 0.

Kapitoly 3.4.1 až 3.4.7 popisují parametry jednotlivých simulací. Dále jsou v nich uvedeny průběhy intenzity magnetického pole, získané při těchto parametrech. Zhodnocení a porovnání dosažených výsledků je provedeno v kapitole 3.5

3.4.1 Induktor bez stínění

Tabulka 3.1 udává nadefinovanou geometrii jednotlivých bodů pomocí Key points.

un	na 5.1. Sour adrice pro inductor bez sinteni							
	key point	0	1	2	3	4	5	6
	r [m]	0	0	0	0,1105	0,1132	0,1105	0,1132
	z [m]	0	3	-3	-0,158	-0,128	0,158	0,158

Tabulka 3.1: Souřadnice pro induktor bez stínění

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor $\mu_r = 1$

Vzduch $\mu_r = 1$

Výsledná geometrie je zobrazena na Obr 3.1. V pravé části je zvětšený tvar cívky.

Obr 3.1: Geometrie nestíněného induktoru

3.4.1.1 Průběhy intenzity H nestíněného induktoru

Obr 3.2:Intenzita H v celé simulované oblasti

Na Obr 3.2 je zobrazena velikost magnetické intenzity H v celém simulovaném prostoru. Je patrné, že ke změně H dochází pouze v blízkém okolí induktoru. Pro další případy je vykreslena pouze tato oblast viz Obr 3.3.

Obr 3.3: Intenzita H v okolí induktoru bez stínění

Následující grafy (Obr 3.4 a Obr 3.5) vykreslují velikost intenzity H v ose, respektive 4 cm od osy induktoru. Ukazují tedy, jak se bude H měnit po délce induktoru a nad ním. Bod nula pro osu x odpovídá polovině výšky induktoru. Tyto hodnoty byly zvoleny pro lepší porovnatelnost simulace s hodnotami naměřenými na modelu indukční pece (kapitola 5).

Graf na Obr 3.6 vykresluje intenzitu H v různé vzdálenosti od osy induktoru v polovině jeho výšky.

Pro lepší přehlednost a následné porovnání byly hodnoty pro danou oblast vyjmuty z programu RillFEM 2D a zpracovány v programu Microsoft Excel 2007.

Výše uvedené platí pro všechny simulované případy.

Obr 3.4:Intenzita H v ose induktoru bez stínění

Obr 3.5 Intenzita H 4 cm od osy induktoru bez stínění

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.4 a Obr 3.5), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,8 m od středu.

Intenzita *H* v poloviční výšce induktoru (Obr 3.6) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší. *H* se utlumí na nulu přibližně ve vzdálenosti 0,6 m od středu.

Obr 3.6: Intenzita H v polovině výšky induktoru bez stínění

3.4.2 Induktor stíněný vodivým pláštěm

Pro simulaci se uvažuje, že plášť je z mědi.

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Vodivý plášť	$\mu_r = 1$
	$\gamma = 5600000$

Výpočet optimální velikosti stínícího pláště:

výška stínícího pláště, viz kapitola 2.3:

 $l_3 = 1,2 \cdot l_1 = 1,2 \cdot 31,6 = 38,028 \ cm$

S.m⁻¹

poloměr:

$$r_3 = 2 \cdot r_1 = 2 \cdot 11,05 = 22,1 \ cm$$

hloubka vniku naindukovaných proudů ve stínění pro frekvenci 4 kHz:

$$a = \sqrt{\frac{2}{\omega \cdot \gamma \cdot \mu_0 \cdot \mu_r}} = \sqrt{\frac{2}{2\pi \cdot 4000 \cdot 56000000 \cdot 4\pi \cdot 10^{-7}}}$$

a = 1,1 mm

optimální tloušťka pro frekvenci 4 kHz:

$$\check{s} = \frac{\pi}{2} \cdot a = \frac{\pi}{2} \cdot 1, 1 = 1,7mm$$

Tabulka 3.2 udává geometrii vodivého pláště pro 4 kHz. Souřadnice bodů pro cívku jsou shodné jako u simulace induktoru bez stínění.

Tabulka 3.2: Souřadnice pro vodivý plášť při 4 kHz

key point	24	25	26	27
r [m]	0,221	0,221	0,2227	0,2227
<i>z</i> [<i>m</i>]	-0,1901	0,1901	-0,1901	0,1901

hloubka vniku naindukovaných proudů ve stínění pro frekvenci 10 kHz:

$$a = \sqrt{\frac{2}{\omega \cdot \gamma \cdot \mu_0 \cdot \mu_r}} = \sqrt{\frac{2}{2\pi \cdot 10000 \cdot 56000000 \cdot 4\pi \cdot 10^{-7}}}$$

$$a = 0,7 mm$$

optimální tloušťka pro frekvenci 10kHz:

$$\check{s} = \frac{\pi}{2} \cdot a = \frac{\pi}{2} \cdot 0,7 = 1,1mm$$

Tabulka 3.3 udává geometrii vodivého pláště pro 10 kHz. Souřadnice bodů pro cívku jsou shodné jako u simulace induktoru bez stínění.

Tabulka 3.3: Souřadnice pro vodivý plášť při 10 kHz

Výsledná geometrie je zobrazena na Obr 3.7. V pravé části je zvětšený tvar cívky a vodivého pláště.

Obr 3.7: Geometrie induktoru s vodivým pláštěm

3.4.2.1 Průběhy intenzity *H* induktoru stíněného vodivým pláštěm

Obr 3.8: Intenzita H v okolí induktoru se stínícím pláštěm

Obr 3.9: Intenzita H v ose induktoru se stínícím pláštěm

Intenzita 4 cm od osy induktoru

Obr 3.10: Intenzita H 4 cm od osy induktoru se stínícím pláštěm

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.9 a Obr 3.10), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,65 m od středu.

Intenzita *H* v poloviční výšce induktoru (Obr 3.11) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se utlumí zcela.

Intenzita v polovině výšky induktoru

Vzdálenost od osy induktoru [m]

Obr 3.11: Intenzita H v polovině výšky induktoru se stínícím pláštěm

3.4.3 Induktor stíněný transformátorovými plechy

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Plechy	$\mu_r=25500$
	$\gamma = 0 \text{ S.m}^{-1}$

Výpočet náhradního válce:

objem náhradního stínícího válce ($V_{vál}$) se musí rovnat objemu transformátorových plechů (V_{trp}). Stejně jako na měřeném modelu se uvažuje 10 svazků. Rozměry jednoho svazku jsou uvedeny v kapitole 5.2.2

$$V_{v\acute{a}l} = V_{trp} = n \cdot S \cdot l_3 = n \cdot b \cdot \check{s} \cdot l_3$$
$$V_{trp} = n \cdot b \cdot \check{s} \cdot l_3 = 10 \cdot 4 \cdot 3,7 \cdot 48,8 = 7222,4 \ cm^3$$

tloušťka náhradního válce š:

$$V_{trp} = 2\pi \cdot r_3 \cdot l \cdot \mathring{s}$$
$$\mathring{s} = \frac{V_{trp}}{2\pi \cdot r_3 \cdot l} = \frac{7222.4}{2\pi \cdot 12.12 \cdot 48.8} = 19.4 \text{ mm}$$

Tabulka 3.4 udává geometrii stínění z transformátorových plechů. Souřadnice bodů pro cívku jsou shodné jako u simulace induktoru bez stínění.

~ 1	pro nam dam		jer manerer y	ien pieena	
	key point	24	25	26	27
	r [m]	0,1212	0,1406	0,1212	0,1406
	z, [m]	-0,288	-0,288	0,200	0,200

Tabulka 3.4: Souřadnice pro náhradní válec z transformátorových plechů

Výsledná geometrie je zobrazena na Obr 3.12. V pravé části je zvětšený tvar cívky a náhradního stínícího válce.

Obr 3.12: Geometrie induktoru se stíněním z transformátorových plechů

3.4.3.1 Průběhy intenzity *H* induktoru stíněného transformátorovými plechy

Obr 3.13: Intenzita H v okolí induktoru s transformátorovými plechy

Intenzita v ose induktoru

Obr 3.14: Intenzita H v ose induktoru s transformátorovými plechy

Obr 3.15: Intenzita H 4 cm od osy induktoru s transformátorovými plechy

Intenzita v polovině výšky induktoru

Vzdálenost od osy induktoru [m]

Obr 3.16: Intenzita H v polovině výšky induktoru s transformátorovými plechy

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.14 a Obr 3.15), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,65 m od středu.

Intenzita H v poloviční výšce induktoru (Obr 3.16) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se utlumí zcela. Výrazné zvýšení intenzity s vrcholem ve vzdálenosti 0,13 m zobrazuje intenzitu H ve stínění.

3.4.4 Induktor stíněný transformátorovými plechy s měděným prstencem

Měděný prstenec je umístěn stejně jako v měřeném fyzikálním modelu 1 cm nad transformátorovými plechy.

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Plechy	$\mu_r = 25500$
	$\gamma = 0 \text{ S.m}^{-1}$
Prstenec	$\mu_r = 1$
	$\gamma = 58400000 \text{ S m}^{-1}$

Geometrie cívky a stínění je shodná jako u simulace stínění transformátorovými plechy. Tabulka 3.5 udává souřadnice bodů pro prstenec.

Tabulka 3.5: Souřadnice pro prstenec						
	key point	28	29	30	31	
	r [m]	0,1105	0,1555	0,1105	0,1555	
	z [m]	0,21	0,21	0,2119	0,2119	

Výsledná geometrie je zobrazena na Obr 3.17. V pravé části je zvětšený tvar cívky a náhradního stínícího válce, nad kterými je umístěn měděný uzavřený prstenec.

Obr 3.17: Geometrie induktoru se stíněním z transformátorových plechů s prstencem

Obr 3.18: Intenzita H v okolí induktoru s transformátorovými plechy a prstencem

Obr 3.19: Intenzita H v ose induktoru s transformátorovými plechy a prstencem

Obr 3.20: Intenzita H 4 cm od osy induktoru s transformátorovými plechy a prstencem

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.19 a Obr 3.20), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,5 m od středu.

Intenzita H v poloviční výšce induktoru (Obr 3.21) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se utlumí zcela. Výrazné zvýšení intenzity s vrcholem ve vzdálenosti 0,13 m zobrazuje intenzitu H ve stínění.

Vzdálenost od osy induktoru [m]

Obr 3.21: Intenzita H v polovině výšky induktoru s transformátorovými plechy a prstencem

3.4.5 Induktor stíněný transformátorovými plechy se dvěma uzavřenými závity

Dva uzavřené měděné závity jsou umístěny stejně jako v měřeném fyzikálním modelu 6,85cm nad transformátorovými plechy.

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Plechy	$\mu_r=25500$
	$\gamma = 0 \text{ S.m}^{-1}$
Závity	$\mu_r = 1$
	$\gamma = 58400000 \text{ S.m}^{-1}$

Geometrie cívky a stínění je shodná jako u simulace stínění transformátorovými plechy. Tabulka 3.6 udává souřadnice bodů pro závity.

Tabulka 3.6: Souřadnice pro závity

key point	28	29	30	31
r [m]	0,1105	0,1132	0,1105	0,1132
z [m]	0,2211	0,2211	0,2265	0,2265

Výsledná geometrie je zobrazena na Obr 3.22. V pravé části je zvětšený tvar cívky a náhradního stínícího válce, nad kterými jsou umístěny 2 měděné uzavřené závity.

Obr 3.22: Geometrie induktoru se stíněním z transformátorových plechů se závity

3.4.5.1 Průběhy intenzity *H* stíněného induktoru s uzavřenými závity

Obr 3.23: Intenzita H v okolí induktoru s transformátorovými plechy a přídavnými závity

Obr 3.24: Intenzita H v okolí induktoru s transformátorovými plechy a přídavnými závity, přiblížení

Výška od středu induktoru [m]

Obr 3.25: Intenzita H v ose induktoru s transformátorovými plechy a přídavnými závity

Obr 3.26: Intenzita H 4 cm od osy induktoru s transformátorovými plechy a přídavnými závity

Vzdálenost od osy induktoru [m]

Obr 3.27: Intenzita H v polovině výšky induktoru s transformátorovými plechy a přídavnými závity

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.25 a Obr 3.26), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,5 m od středu.

Intenzita H v poloviční výšce induktoru (Obr 3.27) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se utlumí zcela. Výrazné zvýšení intenzity s vrcholem ve vzdálenosti 0,13 m zobrazuje intenzitu H ve stínění.

3.4.6 Induktor stíněný transformátorovými plechy s dutým kruhovým vodičem

Měděný dutý vodič je umístěn stejně jako v měřeném fyzikálním modelu 1 cm nad transformátorovými plechy.

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

 $I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Plechy	$\mu_r = 25500$
	$\gamma = 0 \text{ S.m}^{-1}$
dutý závit	$\mu_r = 1$
	$\gamma = 58400000 \text{ S.m}^{-1}$

Geometrie cívky a stínění je shodná jako u simulace stínění transformátorovými plechy. Souřadnice bodů pro dutý závit udává Tabulka 3.7.

٢,	pro uny voue						
	key point	28	29	30	31		
	r [m]	0,1225	0,1245	0,1414	0,1434		
	z [m]	0,2204	0,2204	0,2204	0,2204		

Tabulka 3.7: Souřadnice pro dutý vodič

Výsledná geometrie je zobrazena na Obr 3.28. V pravé části je zvětšený tvar cívky a náhradního stínícího válce, nad kterými je umístěn uzavřený měděný dutý vodič.

Obr 3.28: Geometrie induktoru se stíněním z transformátorových plechů s dutým vodičem

Obr 3.29: Intenzita H v okolí induktoru s transformátorovými plechy a s dutým vodičem

Obr 3.30: Intenzita H v okolí induktoru s transformátorovými plechy a s dutým vodičem, přiblížení

Obr 3.31: Intenzita H v ose induktoru s transformátorovými plechy a s dutým vodičem

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.31 a Obr 3.32), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,55 m od středu.

Intenzita H v poloviční výšce induktoru (Obr 3.33) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se utlumí zcela. Výrazné zvýšení intenzity s vrcholem ve vzdálenosti 0,13 m zobrazuje intenzitu H ve stínění.

Vzdálenost od osy induktoru [m]

Obr 3.33: Intenzita H v polovině výšky induktoru s transformátorovými plechy a s dutým vodičem

3.4.7 Induktor stíněný transformátorovými plechy s plným kruhovým vodičem

Hliníkový plný vodič je umístěn stejně jako v měřeném fyzikálním modelu 1 cm nad transformátorovými plechy.

Změřený proud vtékající do induktoru: 23 A

Celým průřezem cívky poteče proud:

$$I_c = \sqrt{2} \cdot N \cdot I = \sqrt{2} \cdot 42 \cdot 23 = 1366,13 A$$

Jako parametry pro materiály byly nastaveny hodnoty:

Induktor	$\mu_r = 1$
Vzduch	$\mu_r = 1$
Plechy	$\mu_r = 25500$
	$\gamma = 0 \text{ S.m}^{-1}$
Plný závit	$\mu_r = 1$
	$\gamma = 58400000 \text{ S.m}^{-1}$

Geometrie cívky a stínění je shodná jako u simulace stínění transformátorovými plechy. Souřadnice bodů pro dutý závit udává Tabulka 3.8.

Tabulka 3.8:Souřadnice pro plný závit

key point	28	29
r [m]	0,12	0,1348
z.[m]	0,2174	0,2174

Výsledná geometrie je zobrazena na Obr 3.34. V pravé části je zvětšený tvar cívky a náhradního stínícího válce, nad kterými je umístěn uzavřený hliníkový plný vodič.

Obr 3.34: Geometrie induktoru se stíněním z transformátorových plechů s plným vodičem

3.4.7.1 Průběhy intenzity H stíněného induktoru s plným vodičem

Obr 3.35: Intenzita H v okolí induktoru s transformátorovými plechy a s plným vodičem

Obr 3.36: Intenzita H v okolí induktoru s transformátorovými plechy a s plným vodičem, přiblížení

Obr 3.37: Intenzita H v ose induktoru s transformátorovými plechy a s plným vodičem

Intenzita 4 cm od osy induktoru

Obr 3.38: Intenzita H 4 cm od osy induktoru s transformátorovými plechy a s plným vodičem

Na průběhu intenzity H v ose induktoru, respektive 4 cm od osy (Obr 3.37 a Obr 3.38), je patrné, že se zvyšující se vzdáleností od středu induktoru H klesá a utlumí se přibližně ve vzdálenosti 0,55 m od středu.

Intenzita *H* v poloviční výšce induktoru (Obr 3.39) se od středu induktoru až k jeho vnitřní stěně mírně zvyšuje. Za induktorem je oproti vnitřku intenzita výrazně nižší a za stíněním se

utlumí zcela. Výrazné zvýšení intenzity s vrcholem ve vzdálenosti 0,13 m zobrazuje intenzitu *H* ve stínění.

3.5 Zhodnocení a porovnání výsledků získaných simulací

Obr 3.40 a Obr 3.41 ukazují grafické porovnání nasimulovaných intenzit v ose induktoru, respektive 4 cm od osy v případě, že je induktor bez stínění a s oběma druhy stínění.

Obr 3.40: Porovnání intenzit H v ose induktoru bez a se stíněním

Vzdálenost od osy induktoru [m] Obr 3.39: Intenzita H v polovině výšky induktoru s transformátorovými plechy a s plným vodičem

Obr 3.41: Porovnání intenzit H 4 cm od osy induktoru bez a se stíněním

Průběhy potvrzují závěry uvedené v kapitole 2. Použitím transformátorových plechů jako stínění se uvnitř induktoru intenzita zvýší oproti případu, kdy není použito žádné stínění. Naopak při použití stínícího pláště se *H* sníží. Při použití stínění se intenzita nad induktorem utlumí rychleji.

Obr 3.42 a Obr 3.43 ukazují grafické porovnání nasimulovaných intenzit v ose induktoru, respektive 4 cm od osy, u induktoru se stíněním a s uzavřenými přídavnými prvky.

Obr 3.42: Porovnání intenzit H v ose induktoru se stíněním a přídavnými prvky

Obr 3.43: Porovnání intenzit H 4 cm od osy induktoru se stíněním a přídavnými prvky

Simulace ukazuje, že jednotlivé prvky nemají na magnetickou intenzitu H uvnitř induktoru žádný pozorovatelný vliv. Vrchní část induktoru se v grafu nachází na hodnotě 0,158. V prostoru nad induktorem, ve kterém je prvek umístěn, dochází k potlačení intenzity H. To je způsobeno polem, které se vytváří okolo prvku a působí proti poli vytvářeného induktorem. Toto pole je patrné na obrázcích, které přibližují simulovanou oblast v okolí prvku.

Obr 3.44: Porovnání intenzit H v polovině výšky induktoru bez a se stíněním a s přídavným prvkem

U porovnání intenzit v poloviční výšce induktoru se intenzita při vložení přídavného prvku zcela shoduje s průběhem induktoru stíněného transformátorovými plechy, viz Obr 3.44.

Opět je patrný vliv stínění na *H* uvnitř induktoru a také, že prostor za transformátorovými plechy nebo za vodivým pláštěm je odstíněn.

4 Měření vlivu stínění na vlastní indukčnosti induktoru

V laboratoři EL 211 bylo provedeno měření laboratorní úlohy, která měla za úkol určit vliv stínění a přídavných konstrukčních prvků na vlastní indukčnost induktoru. Toto měření bylo provedeno společně s Bc. Janem Košťálem a Ing. Oldřichem Kroupou.

Z rovnice 6.2 je patrné, že změní-li se indukčnost napájecí cívky, změní se také výsledný magnetický tok. Je tedy ovlivněna velikost intenzity magnetického pole H_1 a tím i množství tepla, které se naindukuje do vsázky (viz kapitola 1.6.3).

Obr 4.1: Fotografie fyzikálního modelu při měření cívky se stíněním bez přídavného prvku

4.1 Postup měření

Nejprve zjistíme rozměry měřených cívek a analytickým výpočtem určíme jejich vlastní indukčnost. Na induktor připojíme měřící zařízení. Změříme hodnotu vlastní indukčnosti bez stínění a poté přidáme stínící plášť. Do pláště dále vkládáme dvojice svazků transformátorových plechů. Ty umisťujeme rovnoměrně po vnitřním povrchu pláště. Spolu s vlastní indukčností měřicí přístroj měří i jakost obvodu. To nám umožňuje vypočítat podle vzorce 10.2 činný odpor.

Přídavné prvky jsou při měření umístěny na kartónové desce o tloušťce 5mm, aby nedošlo k vodivému spojení se stíněním.

Měření se provádí RLC měřicím přístrojem ESCORT ELC 3131D, sériové číslo: 05661140002. Frekvence pro měření byla zvolena 1 kHz. K provedení měření byly použity cívky z laboratoře EL 211, které jsou k tomuto měření uzpůsobeny. Jedná se o induktory s označením 7 a 5. Rozměry cívek, použitých vodivých plášťů a svazků transformátorových plechů jsou uvedeny níže.

Manuál k měřicímu přístroji uvádí pro měření indukčnosti v rozsahu do 1 mH přesnost měření

$$\pm (1,0\% + \left(\frac{L_x}{10000}\right)\% + 5 \ digits$$

4.2 Rozměry měřených cívek a použitého stínění

Cívka č.		7	5
vnitřní průměr cívky	d_1 [m]	0,1082	0,075
průměr vodiče	d_{vod} [m]	0,0014	0,0014
délka	l_1 [m]	0,158	0,151
počet závitů	Ν	59	55
Plášť 1 bez svazků:			
vnitřní průměr	<i>d</i> ₃ [m]	0,168	
výška	<i>l</i> ₃ [m]	0,203	
tloušťka	<i>š</i> ₃ [m]	0,0027	

Přidávané svazky:

šířka	<i>a</i> [m]	0,0124
tloušťka	<i>š</i> ₃ [m]	0,0119
výška	<i>l</i> ₃ [m]	0,182

Plášť 2 se zabudovanými 16 svazky:

vnitřní průměr	<i>d</i> ₃ [m]	0,198
výška	<i>l</i> ₃ [m]	0,204
tloušťka	<i>š</i> ₃ [m]	0,0023

Zabudované svazky:

šířka	<i>a</i> [m]	0,0011
tloušťka	<i>š</i> ₃ [m]	0,0012
výška	<i>l</i> ₃ [m]	0,201

4.3 Výpočet vlastní indukčnosti

Vlastní indukčnost cívky se vypočítá podle vztahu:

$$L = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_1}{2}\right)^2 \cdot \frac{N^2}{l_1} \cdot \alpha_1 \tag{1.4}$$

Koeficient α_1 získáme z tabulek (Příloha I). Jeho velikost je závislá na poměru průměru cívky, ku její délce.

$$\alpha_1 = f\left(\frac{d_1}{l_1}\right)$$

Výpočet vlastní indukčnosti pro cívku č. 7:

$$\alpha_1 = f\left(\frac{0,1082}{0,158}\right) \Longrightarrow \alpha_1 = 0,76498$$

$$L = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_1}{2}\right)^2 \cdot \frac{N^2}{l_1} \cdot \alpha_1$$
$$L = 4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,1082}{2}\right)^2 \cdot \frac{59^2}{0,158} \cdot 0,76498$$
$$L = 194,74 \ \mu H$$

Výpočet vlastní indukčnosti pro cívku č. 5:

$$\alpha_{1} = f\left(\frac{0,0075}{0,151}\right) \Longrightarrow \alpha_{1} = 0,8181$$
$$L = \mu_{0} \cdot \mu_{r} \cdot \pi \cdot \left(\frac{d_{1}}{2}\right)^{2} \cdot \frac{N^{2}}{l_{1}} \cdot \alpha_{1}$$
$$L = 4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,0075}{2}\right)^{2} \cdot \frac{55^{2}}{0,151} \cdot 0,8181$$
$$L = 0,91 \,\mu H$$

4.4 Naměřené hodnoty vlivu stínění

Vliv vodivého stínícího pláště na indukčnost:

Tabulka 4.1

	Vl. indukčnost bez pláště		Vl. indukčnost s pláštěm	
	L [μH]	Q	$L[\mu H]$	Q
cívka 7	203,3	2,95	172,8	2,04
cívka 5	94,0	2,09	88,2	1,83

Tabulka 4.2		
0	rívka 7	
počet dvojic	L s	0
plechů	pláštěm	Ŷ
[-]	[µH]	[-]
0	172,8	2,04
1	192,4	2,51
2	202,2	2,74
3	205,5	2,84
4	207,4	2,88
5	208,3	2,91
6	209,4	2,93
7	210,7	2,97
8	211,4	2,98

cívka 5			
počet dvojic plechů	L s pláštěm	Q	
[-]	$[\mu H]$	[-]	
0	88,2	1,83	
1	88,8	1,86	
2	89,8	1,89	
3	90,7	1,93	
4	91,6	1,95	
5	92,2	1,98	
6	92,8	2,00	
7	93,1	2,01	
8	95,3	2,08	

Vliv transformátorových plechů na indukčnost:

Grafické znázornění vlivu transformátorových plechů:

Obr 4.3

4.5 Naměřené hodnoty vlivu přídavných prvků

Cívka 7 se stínícím pláštěm a transformátorovými plechy:

Tabulka 4.3

prvek	L [μH]	Q[-]
-	212,50	3,12
prstenec	212,30	3,12
trubkový vodič	212,30	3,13
2 závity uzavřené	212,30	3,12
plný vodič	212,30	3,12
2 závity otevřené	212,30	3,12
plný vodič otevřený	212,30	3,12

Cívka 7 bez stínění:

Tabulka 4.4

prvek	L [μH]	Q[-]
-	203,80	3,04
prstenec	199,70	2,97
trubkový vodič	200,60	3,00
2 závity uzavřené	201,30	3,00
plný vodič	201,30	2,99
2 závity otevřené	203,80	3,04
plný vodič otevřený	203,80	3,03

Cívka 5 se stínícím pláštěm a transformátorovými plechy:

Tabulka 4.5

prvek	L [μH]	Q[-]
-	95,60	2,20
prstenec	95,60	2,19
trubkový vodič	95,60	2,20
2 závity uzavřené	95,60	2,20
plný vodič	95,60	2,21
2 závity otevřené	95,60	2,21
plný vodič otevřený	95,60	2,20

Cívka 5 bez stínění:

Tabulka 4.6

prvek	L [μH]	Q[-]
-	94,00	2,18
prstenec	93,40	2,17
trubkový vodič	93,60	2,17
2 závity uzavřené	93,70	2,17
plný vodič	93,70	2,17
2 závity otevřené	94,00	2,18
plný vodič otevřený	94,00	2,18

4.6 Zhodnocení výsledků

Měření cívky se stíněním pomocí vodivého pláště č. 1 ukazuje, že došlo ke snížení vlastní indukčnosti cívky č. 7 o 15 %, respektive o 6,17 % u cívky č. 5.

Měření se svazky potvrdilo teoretický předpoklad uvedený v kapitole 2.2, že s přidáním svazků do obvodu se zvýší vlastní indukčnost cívky. Grafy na Obr 4.1 a Obr 4.2 ukazují, jak se indukčnost zvyšovala se zvyšujícím se počtem dvojic svazků vložených do pláště. Při plném počtu transformátorových plechů se indukčnost cívky č. 7 zvýšila o 22,3 %, respektive o 8,05 % u cívky č. 5 oproti případu, kdy indukčnost byla ovlivněna pouze vodivým pláštěm.

Pro měření vlivu přídavných prvků byl použit druhý stínící plášť se zabudovanými svazky transformátorových plechů. Kvůli zajištění polohy svazků u prvního pláště by nebylo možné umístit prvky nad stínění. Nemožnost vyjmutí svazků z druhého pláště naopak znemožňuje využití tohoto stínění při první části měření, kdy se jednotlivé svazky postupně vkládají a připevňují na plášť.

Tabulka 4.3 až Tabulka 4.6 ukazují naměřené hodnoty s jednotlivými prvky. Je patrné, že u obou cívek se stíněním je vliv prvků na indukčnost velmi malý a u cívky č. 5 dokonce žádný. Po odstranění stínění je již vliv patrnější. Největší změna nastala při měření s prstencem. Naopak oba otevřené prvky neměly na obvod žádný vliv.

5 Měření na modelu indukční pece

Vztahy uvedené v této kapitole vychází z literatury [6]

5.1 Měření intenzity magnetického pole

V okolí vodiče nebo elektrotechnického zařízení je často nutné změřit intenzitu magnetického pole *H*. Pokud by její hodnota byla nad stanovené limity, mohlo by dojít k poškození anebo dokonce zničení dalších zařízení, které byly tomuto poli vystaveny. Pro měření je možné použít například Hallovu sondu, nebo měřicí cívku.

Hallova sonda funguje na principu Hallova jevu. Pokud polovodič, kterým protéká elektrický proud, vložíme do magnetického pole, vybudí se na něm napětí. To je úměrné velikosti intenzity okolního pole.

U měřicí cívky se využívá elektromagnetické indukce. Velikost naindukovaného napětí je zde opět úměrná intenzitě okolního magnetického pole. Ze změřeného napětí se vypočítá velikost magnetické indukce *B*:

$$B = k \cdot \frac{u}{4,44 \cdot f} \tag{1.5.}$$

kde

k konstanta měřící cívky

u napětí naměřené na cívce

konstanta kruhové měřicí cívky se určí:

$$k = \frac{1}{N \cdot \pi \cdot (r_2^2 - r_1^2)}$$
(2.5.)

kde

*r*₂ vnější poloměr měřicí cívky

*r*₁ vnitřní poloměr měřicí cívky

Z magnetické indukce již můžeme pomocí vztahu 2.1. vypočítat velikost intenzity *H*.

$$H = \frac{B}{\mu_0 \cdot \mu_r}$$

Pro získání celkové velikosti intenzity magnetického pole je potřeba cívkou změřit hodnotu napětí jednak v axiálním směru (u_{ax}) a také v radiálním směru (u_{rad}) k ose měřeného zařízení. Výsledná intenzita *H* se spočte:

$$H = \sqrt{H_{ax}^2 + H_{rad}^2}$$
(3.5.)

5.2 Popis modelu indukční pece, stínění a přídavných prvků

Model, na kterém bylo provedeno měření (Obr 5.1), je umístěn v laboratoři EL 113. Skládá se z napájecího pulzního zdroje, induktoru, deseti odnímatelných svazků transformátorových plechů, měřicí desky, měřicí cívky a případně přídavných prvků. Další fotografie modelu a jednotlivých prvků jsou uvedeny v příloze IV.

Obr 5.1: Fotografie modelu indukční pece

5.2.1 Induktor

Induktor z mědi je navinut na tvrzeném papíru. Ten je umístěn na dřevěném podstavci, na který je také případně možné položit vsázku. Vodič je obdélníkového průřezu. Průřez vodiče induktoru je obdélníkový. Připojení ke zdroji se provádí pomocí vyvedených svorek se šroubovým spojem.

Rozměry induktoru:

vnitřní průměr	<i>d</i> ₁ [mm]	221
výška	<i>l</i> ₁ [mm]	316
počet závitů	Ν	42

Rozměry vodiče induktoru:

tloušťka	<i>š</i> [mm]	2,7
výška	<i>b</i> [mm]	6,7

5.2.2 Stínění

Stínění je provedeno z 10 svazků transformátorových plechů. Ty jsou rovnoměrně rozmístěny po obvodu induktoru. Vzdálenost mezi cívkou a svazky je 8 mm. Fixace této vzdálenosti je provedena vložkami z polystyrénu. Transformátorové plechy přesahují výšku induktoru o 130 mm pod a 42 mm nad cívkou.

Rozměry jednoho svazku:

šířka	<i>b</i> [mm]	40
tloušťka	<i>š</i> [mm]	37
výška	l_3 [mm]	488

Na Obr 5.2 je okótované schéma induktoru se stíněním.

Obr 5.2: Schéma modelu

5.2.3 Přídavné prvky

Pro měření vlivu prvků na intenzitu *H* byly použity čtyři prvky s různým tvarem a materiálem. Při měření byly umístěny 1 cm nad stíněním. Fotografie jednotlivých prvků jsou umístěny v příloze IV.

Rozměry jednotlivých prvků:

Plochý měděný prstenec:

vnitřní průměr	<i>d</i> ₄ [mm]	220
vnější průměr	<i>d</i> [mm]	310
výška	<i>l</i> ₄ [mm]	1,9

Měděný trubkový vodič:		
vnitřní průměr	<i>d</i> ₄ [mm]	245
průměr trubky	<i>d</i> [mm]	20,9
tloušťka stěny	<i>š</i> [mm]	2
Hliníkový plný lanový vodič o	otevíratelný:	
vnitřní průměr	<i>d</i> ₄ [mm]	240
průměr závitu	<i>d</i> [mm]	14,8
Dva měděné závity:		
vnitřní průměr	<i>d</i> ₄ [mm]	221
výška 1 závitu	<i>d</i> [mm]	6,7
tloušťka závitu	<i>š</i> [mm]	2,7

Protože bylo možné každý výše uvedený prvek rozpojit, bylo u všech prvků provedeno měření jak v uzavřených, tak v otevřených variantách.

5.2.4 Měřicí deska

Měřicí deska o rozměrech 60x60 cm je zasunuta do dutiny cívky. Na desce jsou vyvrtány otvory, které jsou označeny písmeny ve sloupcích a v řadách čísly, viz Obr 5.3. Osová vzdálenost otvorů je 4 cm. Při vložení desky do modelu se sloupec L nachází v ose induktoru. Spodní hrana desky je ve středu výšky induktoru a řada 12 ve výšce horního konce induktoru. Při měření s přídavnými prvky je prvek umístěn mezi řadami 10 a 11 a podle jeho rozměrů mezi sloupci I až G.

Obr 5.3:Měřicí deska

5.3 Postup měření

Pro měření napětí na cívce byl používán multimetr FINEST 703 s evid. číslem: 185 820, s nastaveným automatickým rozsahem střídavého napětí.

Pro napájení modelu byl použit zdroj typu FRQET5. Proud měřený pomocí proudových kleští se odečetl na osciloskopu EZ DS-1080C.

Měřicí cívku přikládáme na body na desce v axiálním a radiálním směru a odečtené hodnoty napětí se zanáší do tabulky.

Přesnost měření je silně ovlivněna lidským faktorem. Při vychýlení měřicí cívky se hodnoty mění. Nejvýraznější rozdíl je v dutině cívky, kde rozdíl při špatném přiložení může být až v jednotkách voltů.

Konstanta měřicí cívky k = 4,73 byla určena měřením.

Při měření s přídavnými prvky byl měřen proud, který se v prvku indukuje. U plochého prstence toto měření nebylo možné provést, z důvodu nemožnosti uzavření proudových kleští.

Dále byla měřena teplota před začátkem měření a po ukončení měření pomocí pyrometru. Ta se odečítala na dvou protilehlých svazcích stínění a přídavném prvku v jednom bodě. U induktoru byla měřena v horní části, spodní části a v polovině výšky.

Bylo uvažováno, že pokud by se v průběhu měření zvýšila teplota prvku, pak jím procházel proud a vlivem ztrát se ohřál. Tento předpoklad nelze potvrdit, protože se induktor během měření ohřál na vyšší teplotu než prvek (viz jednotlivá měření) a dochází tedy k přestupu tepla. Není tedy možné říci, zda se prvek zahřál vlivem procházejícího proudu nebo pomocí přestupu tepla.

5.4 Naměřené a vypočtené hodnoty pro frekvenci 4 kHz

V průběhu měření byl naměřen proud vtékající do induktoru o hodnotě 23 A.

5.4.1 Induktor bez stínění

Η

Tabulka 5.1: Naměřené hodnoty napětí u induktoru bez stínění

[V]		Α	В	С	D	E	F	G	н	L.	J	к	L	м	N
1	ax.	0,084					0,255	0,309	0,332	0,377	0,429	0,441	0,48	0,459	0,448
	rad.	0,129					0,126	0,116	0,117	0,08	0,05	0,045	0,099	0,134	0,139
2	ax.		-				0,29	0,357	0,407	0,463	0,508	0,544	0,583	0,586	0,54
	rad.						0,199	0,19	0,166	0,115	0,073	0,043	0,102	0,191	0,198
3	ax.						0,331	0,411	0,497	0,563	0,634	0,688	0,724	0,732	0,675
	rad.						0,273	0,27	0,225	0,189	0,127	0,051	0,119	0,212	0,276
4	ax.						0,374	0,462	0,583	0,676	0,795	0,863	0,921	0,933	0,825
	rad.						0,368	0,357	0,329	0,267	0,157	0,091	0,137	0,223	0,31
5	ax.						0,416	0,584	0,716	0,888	1,052	1,136	1,199	1,018	1,05
	rad.						0,473	0,45	0,45	0,396	0,284	0,155	0,142	0,299	0,39
6	ax.						0,466	0,656	0,897	1,113	1,369	1,533	1,633	1,548	1,405
	rad.						0,608	0,632	0,65	0,623	0,444	0,172	0,198	0,409	0,606
7	ax.						0,481	0,729	1,035	1,433	1,837	2,131	2,235	2,099	1,907
	rad.						0,829	0,91	0,948	0,927	0,674	0,243	0,263	0,638	0,819
8	ax.	0,033	0,031	0,027	0,112	0,237	0,447	0,881	1,319	1,963	2,618	2,907	3,062	3,006	2,578
	rad.	0,324	0,422	0,511	0,643	0,828	1,002	1,26	1,411	1,33	1,65	0,531	0,173	0,839	1,234
9	ax.	0,079	0,079	0,07	0,052	0,079	0,402	0,695	1,631	2,479	3,275	3,374	3,628	3,432	3,391
	rad.	0,358	0,447	0,578	0,74	0,075	1,289	1,698	2,12	2,107	1,422	1,068	0,483	1,389	2,048
10	ax.						0,145	0,377	1,346		3,809	7,67	8,16	7,36	3,722
	rad.						1,572	2,67	2,85		3,224	1,545	0,193	2,086	3,325
11	ax.						0,029	0,381			3,29	11,86	12,9	11,94	3,736
	rad.						1,718	2,767			7,22	3,144	0,588	3,12	7,47
12	ax.						0,842	0,889				20,7	19,13	20,86	
	rad.						1,736	2,777				3,355	1,46	3,709	
13	ax.						1,262	1,79				26,99	25,49	25,78	
	rad.						1,439	2,339				1,545	2,25	7,16	
14	ax.	0,37	0,496	0,625	0,866	1,151	1,594	2,331				28,83	26,99	28,7	
	rad.	0,175	0,229	0,338	0,427	0,681	0,992	1,49				1,673	2,6	4,92	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{25,49}{4,44 \cdot 4000} = 6,789 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{2,25}{4,44 \cdot 4000} = 0,599 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{6,789 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5402,293 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,599 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 476,859 A \cdot m^{-1}$$

$$= \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5402,293^2 + 476,859^2} = 5423,29 A \cdot m^{-1}$$

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	32,625					60,282	69,951	74,605	81,680	91,537	93,950	103,871	101,340	99,413
2		•				74,541	85,710	93,157	101,109	108,770	115,654	125,437	130,626	121,897
3						90,933	104,221	115,624	125,865	137,038	146,213	155,502	161,514	154,555
4						111,202	123,742	141,876	154,040	171,745	183,916	197,342	203,308	186,785
5						133,501	156,254	179,229	206,066	230,940	242,992	255,889	224,866	237,389
6						162,353	193,057	234,774	270,326	305,021	326,939	348,629	339,338	324,290
7						203,129	247,118	297,463	361,714	414,708	454,566	476,949	464,953	439,862
8	69,023	89,679	108,451	138,328	182,532	232,535	325,844	409,357	502,532	655,858	626,297	649,988	661,434	605,743
9	77,699	96,204	123,395	157,221	23,087	286,165	388,848	566,891	689,527	756,701	750,047	775,694	784,683	839,583
10						334,580	571,487	667,998		1057,62	1658,21	1729,89	1621,30	1057,75
11						364,161	591,965		-	1681,56	2600,40	2736,83	2615,50	1770,13
12						408,917	617,974				4444,36	4066,16	4490,36	
13						405,647	624,228				5729,56	5423,29	5670,56	
14	86,746	115,784	150,591	204,636	283,439	397,907	586,331				6120,44	5746,68	6171,34	

Tabulka 5.2: Intenzita H vypočtená z naměřených hodnot induktoru bez stínění

Z naměřených hodnot, které udává Tabulka 5.1, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.2. Na Obr 5.4 jsou graficky znázorněny tyto hodnoty.

Obr 5.4: Průběh H uvnitř a vně induktoru bez stínění

5.4.2 Induktor stíněný transformátorovými plechy

Tabulka 5.3: Naměřené	é hodnotv nap	ětí u induktoru	stíněného	transformátor	ovými	plechy
1 40 41144 5.5. 1 441101 010			Suncheno	<i>i</i> ansjornator	UV VIIII	piccity
	2 1				~	

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	М	Ν
1	ax.	0,021					0,094	0,122	0,147	0,159	0,177	0,16	0,152	0,092	0,133
	rad.	0,024					0,063	0,074	0,075	0,094	0,111	0,157	0,093	0,023	0,093
2	ax.						0,112	0,135	0,166	0,177	0,226	0,239	0,196	0,127	0,163
	rad.						0,078	0,087	0,095	0,105	0,185	0,181	0,107	0,01	0,116
3	ax.						0,117	0,148	0,174	0,217	0,267	0,262	0,217	0,184	0,207
	rad.						0,089	0,104	0,099	0,123	0,321	0,137	0,143	0,035	0,156
4	ax.						0,129	0,162	0,19	0,274	0,312	0,328	0,364	0,256	0,263
	rad.						0,114	0,129	0,1	0,15	0,141	0,151	0,146	0,057	0,211
5	ax.						0,132	0,186	0,246	0,331	0,405	0,445	0,443	0,362	0,353
	rad.						0,14	0,166	0,178	0,196	0,181	0,169	0,162	0,076	0,247
6	ax.						0,142	0,185	0,281	0,387	0,51	0,585	0,602	0,537	0,464
	rad.						0,172	0,216	0,259	0,274	0,248	0,205	0,225	0,134	0,32
7	ax.						0,123	0,182	0,309	0,476	0,694	0,886	0,904	0,849	0,696
	rad.		-	-	-	-	0,211	0,288	0,289	0,424	0,407	0,28	0,226	0,243	0,477
8	ax.	0,027	0,04	0,052	0,065	0,078	0,106	0,183	0,313	0,567	0,97	1,413	1,528	1,234	0,961
	rad.	0,042	0,062	0,089	0,13	0,175	0,238	0,353	0,157	0,761	0,791	0,463	0,301	0,878	0,756
9	ax.	0,032	0,039	0,056	0,068	0,091	0,12	0,19	1,263	0,611	1,531	2,622	2,839	2,566	1,651
	rad.	0,041	0,062	0,096	0,139	0,185	0,256	0,399	0,181	1,329	1,33	0,977	0,241	0,992	1,579
10	ax.						0,148	0,237	0,499		2,191	3,82	3,991	3,666	2,574
	rad.						0,246	0,368	0,603		3,512	2,806	0,263	2,276	3,481
11	ax.						0,168	0,238			8,93	11,72	11,85	10,69	6,99
	rad.						0,241	0,323			8,07	3,305	0,356	3,522	7,26
12	ax.						0,183	0,251				21	20,13	19,32	
	rad.						0,217	0,291				3,589	1,041	3,689	
13	ax.						0,208	0,269				27,33	26,69	27,41	
	rad.		-	-	-	-	0,176	0,253				2,259	0,334	2,461	
14	ax.	0,053	0,075	0,103	0,136	0,173	0,222	0,303				30,62	30,7	29,92	
	rad.	0,02	0,024	0,033	0,051	0,075	0,114	0,166				1,393	0,419	1,082	

Tabulka 5.4: Intenzita H vypočtená z naměřených hodnot induktoru stíněného transformátorovými plechy

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	6,759					23,983	30,241	34,976	39,147	44,279	47,509	37,766	20,098	34,395
2						28,926	34,038	40,536	43,617	61,899	63,540	47,327	26,999	42,401
3						31,156	38,337	42,428	52,865	88,490	62,661	55,079	39,696	54,934
4						36,486	43,890	45,505	66,203	72,564	76,528	83,120	55,585	71,461
5						40,780	52,837	64,354	81,528	94,017	100,885	99,969	78,394	91,310
6						47,271	60,274	80,993	100,496	120,190	131,376	136,207	117,300	119,458
7						51,762	72,205	89,668	135,101	170,512	196,931	197,488	187,160	178,826
8	10,582	15,638	21,846	30,804	40,606	55,218	84,270	74,214	201,130	265,268	315,135	330,064	320,975	259,142
9	11,023	15,524	23,555	32,796	43,695	59,921	93,661	270,412	310,006	429,814	593,025	603,855	583,057	484,177
10						60,845	92,768	165,882		877,295	1004,550	847,678	914,524	917,542
11						62,262	85,032		-	2550,922	2580,784	2512,595	2385,412	2135,926
12						60,161	81,446				4515,224	4272,008	4168,612	
13						57,747	78,265				5812,012	5657,061	5832,582	
14	12,006	16,689	22,923	30,784	39,962	52,891	73,223				6496,246	6507,095	6345,322	

Z naměřených hodnot, které udává Tabulka 5.3, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.4. Na Obr 5.5 jsou graficky znázorněny tyto hodnoty.

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{26,69}{4,44 \cdot 4000} = 7,11 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,0334}{4,44 \cdot 4000} = 8,9 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{7,11 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5656,62 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{8,9 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 70,78 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5656,62^2 + 70,78^2} = 5657,061 A \cdot m^{-1}$$

Obr 5.5: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy

5.4.3 Induktor stíněný transformátorovými plechy s uzavřeným prstencem nad stíněním

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,027					0,109	0,132	0,107	0,114	0,108	0,096	0,072	0,059	0,104
	rad.	0,039					0,055	0,054	0,054	0,09	0,054	0,075	0,067	0,07	0,07
2	ax.						0,099	0,115	0,121	0,147	0,142	0,127	0,099	0,092	0,133
	rad.						0,045	0,86	0,068	0,101	0,062	0,095	0,081	0,101	0,102
3	ax.						0,093	0,115	0,144	0,166	0,146	0,153	0,116	0,121	0,171
	rad.						0,048	0,074	0,075	0,112	0,084	0,107	0,111	0,134	0,135
4	ax.						0,104	0,155	0,161	0,196	0,173	0,154	0,163	0,151	0,172
	rad.						0,066	0,177	0,075	0,12	0,121	0,099	0,121	0,12	0,129
5	ax.						0,11	0,146	0,178	0,226	0,205	0,201	0,181	0,183	0,198
	rad.						0,072	0,073	0,087	0,139	0,131	0,166	0,114	0,112	0,114
6	ax.						0,125	0,148	0,192	0,244	0,224	0,277	0,238	0,245	0,232
	rad.						0,077	0,089	0,105	0,167	0,132	0,193	0,114	0,11	0,128
7	ax.						0,137	0,167	0,194	0,255	0,241	0,315	0,359	0,325	0,256
	rad.			-	-		0,108	0,104	0,124	0,197	0,18	0,161	0,12	0,123	0,161
8	ax.	0,013	0,014	0,017	0,033	0,054	0,16	0,183	0,192	0,249	0,279	0,476	0,645	0,548	0,3
	rad.	0,018	0,018	0,027	0,036	0,053	0,117	0,122	0,136	0,148	0,339	0,296	0,139	0,247	0,286
9	ax.	0,009	0,016	0,022	0,03	0,048	0,166	0,202	0,24	0,285	0,293	1,012	1,592	1,249	0,317
	rad.	0,023	0,027	0,039	0,058	0,083	0,137	0,13	0,138	0,228	0,817	0,758	0,172	0,681	0,725
10	ax.						0,148	0,256	0,348		0,236	3,033	3,498	3,105	1,067
	rad.						0,196	0,22	0,231		2,712	2,294	0,177	1,837	2,592
11	ax.						0,123	0,229			6,93	8,6	9,95	9,58	3,465
	rad.						0,248	0,399			9,27	4,33	0,514	3,479	10,42
12	ax.						0,136	0,207				19,09	19,89	19,06	
	rad.						0,274	0,425				3,515	0,209	5,45	
13	ax.						0,138	0,265				26,91	27,64	26,03	
	rad.						0,241	0,365				3,347	0,67	5,94	
14	ax.	0,03	0,035	0,051	0,085	0,137	0,185	0,297				30,26	29,82	30,17	
	rad.	0,027	0,031	0,04	0,063	0,126	0,171	0,275				5,43	0,519	5,42	

Tabulka 5.5: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s uzavřeným prstencem

Prvek		Svazek	č. 1		Svazek č. 2		Svazek č. 2		Induktor		
Začátek	Konec	Začátek	Konec		Začátek	Konec			Začátek	Konec	
21,8	24,1	22,2	23,3		22,1 23,9			Vrchní část	21,8	29,4	
							Střed	21,8	27,6		
								Dolní část	21,8	29,6	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{27,64}{4,44 \cdot 4000} = 7,36 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,67}{4,44 \cdot 4000} = 0,17 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{7,36 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5857,96 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,17 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 141,99 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5857,96^2 + 141,99^2} = 5859,68 A \cdot m^{-1}$$

Tabulka 5.7: Intenzita H vypočtená z naměřených hodnot induktoru stíněného transformátorovými plechy s uzavřeným prstencem

[A/m]	А	В	с	D	E	F	G	н	I	J	к	L	м	N
1	10,053					25,876	30,226	25,402	30,783	25,591	25,819	20,844	19,402	26,569
2		-				23,048	183,889	29,417	37,800	32,839	33,613	27,110	28,955	35,523
3						22,181	28,983	34,410	42,441	35,699	39,569	34,027	38,265	46,174
4						26,105	49,864	37,643	48,707	44,743	38,801	43,024	40,878	45,567
5						27,863	34,595	41,990	56,232	51,561	55,249	45,335	45,472	48,422
6						31,115	36,601	46,380	62,665	55,104	71,552	55,929	56,918	56,157
7						36,973	41,696	48,797	68,293	63,751	74,975	80,224	73,648	64,094
8	4,706	4,833	6,762	10,350	16,036	42,009	46,613	49,866	61,391	93,051	118,797	139,838	127,394	87,845
9	5,234	6,652	9,490	13,839	20,321	45,616	50,911	58,674	77,353	183,951	267,974	339,368	301,500	167,701
10						52,052	71,538	88,524		576,947	805,963	742,307	764,611	594,067
11						58,670	97,501			2452,970	2040,652	2111,592	2160,100	2327,291
12						64,831	100,189				4113,904	4215,675	4201,428	
13						58,858	95,595				5747,189	5859,680	5658,557	
14	8,554	9,909	13,737	22,423	39,448	53,392	85,785				6515,673	6320,941	6496,524	

Z naměřených hodnot, které udává Tabulka 5.5, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.7. Na Obr 5.6 jsou graficky znázorněny tyto hodnoty. Tabulka 5.6 udává naměřené teploty na začátku měření a po jeho ukončení.

Obr 5.6: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným prstencem

5.4.4 Induktor stíněný transformátorovými plechy s uzavřenými závity nad stíněním

Z naměřených hodnot, které udává Tabulka 5.9, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.10. Na Obr 5.7 jsou graficky znázorněny tyto hodnoty. Tabulka 5.8 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 18,92 A

 1 abaina	5.0. IC	<i>логу</i> пап	ierene na su	nem, mu	икиоти и	nu uzuvreny				
Prvek			Svazek č. 1			Svazek č. 2		Induktor		
Začátek	Konec		Začátek	Konec		Začátek	Konec		Začátek	Konec
22,9	27,7		23,5	25,2		23,6	25,6	Vrchní část	23,3	34,6
								Střed	23,1	31,6
								Dolní část	23	34,7

Tabulka 5.8: Teploty naměřené na stínění, induktoru a na uzavřených závitech [°C]

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,032					0,129	0,133	0,066	0,128	0,167	0,214	0,26	0,213	0,189
	rad.	0,024					0,087	0,085	0,053	0,094	0,081	0,165	0,238	0,178	0,153
2	ax.						0,138	0,123	0,076	0,148	0,144	0,217	0,277	0,206	0,199
	rad.						0,102	0,102	0,051	0,114	0,11	0,153	0,26	0,187	0,196
3	ax.						0,152	0,136	0,087	0,169	0,175	0,218	0,303	0,217	0,223
	rad.						0,11	0,109	0,076	0,121	0,124	0,193	0,282	0,215	0,231
4	ax.						0,155	0,153	0,116	0,184	0,2	0,259	0,327	0,214	0,246
	rad.						0,117	0,121	0,087	0,13	0,135	0,213	0,335	0,172	0,255
5	ax.						0,156	0,165	0,133	0,205	0,229	0,303	0,392	0,255	0,29
	rad.						0,133	0,137	0,112	0,145	0,158	0,253	0,389	0,188	0,335
6	ax.						0,172	0,213	0,158	0,232	0,28	0,375	0,437	0,467	0,34
	rad.						0,152	0,181	0,144	0,185	0,176	0,335	0,338	0,137	0,347
7	ax.						0,182	0,239	0,163	0,27	0,362	0,493	0,535	0,52	0,405
	rad.						0,179	0,203	0,181	0,231	0,199	0,347	0,35	0,356	0,395
8	ax.	0,033	0,047	0,066	0,077	0,112	0,171	0,23	0,228	0,323	0,391	0,662	0,831	0,768	0,52
	rad.	0,032	0,059	0,08	0,112	0,149	0,187	0,231	0,229	0,305	0,368	0,371	0,377	0,404	0,386
9	ax.	0,039	0,048	0,057	0,06	0,066	0,177	0,29	0,232	0,323	0,526	1,246	1,47	1,409	0,587
	rad.	0,04	0,059	0,095	0,109	0,148	0,208	0,269	0,267	0,306	0,795	0,703	0,111	0,66	0,785
10	ax.						0,156	0,183	0,302		0,425	3,322	3,54	3,33	1,12
	rad.						0,233	0,313	0,368		2,869	2,001	0,4	1,826	3,225
11	ax.						0,143	0,202			9,4	9,97	10,78	9,37	8,52
	rad.						0,263	0,395			9,29	3,617	0,777	3,74	10,15
12	ax.						0,181	0,13				21,42	19,83	19,38	
	rad.						0,272	0,391				3,662	0,868	5,49	
13	ax.						0,222	0,303				26,89	26,99	27,39	
	rad.						0,238	0,33				3,283	0,981	3,66	
14	ax.	0,046	0,069	0,092	0,124	0,163	0,244	0,28				31,2	30,22	31,47	
	rad.	0,023	0,03	0,048	0,069	0,11	0,183	0,215				1,18	1,55	2,65	

Tabulka 5.9: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s uzavřenými závity

Tabulka 5.10: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s uzavřenými závity

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	8,478					32,977	33,453	17,940	33,657	39,337	57,271	74,704	58,831	51,536
2		-				36,369	33,866	19,398	39,593	38,405	56,273	80,517	58,965	59,197
3						39,765	36,939	24,483	44,051	45,456	61,707	87,726	64,741	68,048
4						41,159	41,341	30,731	47,748	51,140	71,070	99,216	58,188	75,093
5						43,447	45,453	36,851	53,217	58,965	83,660	117,044	67,144	93,907
6						48,648	59,240	45,307	62,888	70,092	106,571	117,087	103,146	102,961
7						54,102	66,459	51,623	75,308	87,550	127,772	135,495	133,560	119,899
8	9,742	15,987	21,980	28,806	39,505	53,704	69,087	68,487	94,152	113,798	160,833	193,397	183,915	137,253
9	11,840	16,120	23,480	26,370	34,344	57,884	83,832	74,965	94,298	202,031	303,206	312,435	329,758	207,742
10						59,428	76,843	100,894		614,685	821,916	755,034	804,894	723,544
11						63,446	94,027		-	2800,981	2247,775	2290,616	2138,204	2808,578
12						69,244	87,328				4605,572	4206,750	4268,978	
13						68,978	94,949				5741,324	5723,977	5856,572	
14	10,900	15,946	21,993	30,075	41,676	64,641	74,819				6617,185	6413,178	6693,286	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{26,99}{4,44 \cdot 4000} = 7,18 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,981}{4,44 \cdot 4000} = 0,261 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{7,18 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5720,2 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,261 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 207,91 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5720,2^2 + 207,91^2} = 5723,97 A \cdot m^{-1}$$

Obr 5.7: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřenými závity

5.4.5 Induktor stíněný transformátorovými plechy s uzavřeným dutým vodičem nad stíněním

[V]		А	В	С	D	E	F	G	Н	Ι	J	К	L	М	Ν
1	ax.	0,039					0,057	0,077	0,089	0,105	0,129	0,146	0,141	0,157	0,211
	rad.	0,017					0,04	0,051	0,059	0,071	0,096	0,11	0,096	0,134	0,2
2	ax.						0,07	0,084	0,127	0,114	0,175	0,189	0,163	0,19	0,22
	rad.						0,043	0,042	0,069	0,075	0,097	0,114	0,119	0,138	0,213
3	ax.						0,073	0,118	0,134	0,149	0,19	0,164	0,199	0,221	0,233
	rad.						0,044	0,057	0,067	0,078	0,103	0,111	0,132	0,152	0,196
4	ax.						0,087	0,117	0,123	0,156	0,217	0,217	0,246	0,247	0,241
	rad.						0,051	0,063	0,075	0,09	0,109	0,136	0,152	0,172	0,242
5	ax.						0,101	0,13	0,169	0,178	0,252	0,258	0,274	0,252	0,278
	rad.						0,057	0,064	0,088	0,105	0,131	0,148	0,17	0,279	0,259
6	ax.						0,109	0,158	0,19	0,207	0,284	0,308	0,332	0,308	0,301
	rad.						0,081	0,097	0,113	0,133	0,169	0,187	0,181	0,246	0,264
7	ax.						0,102	0,154	0,217	0,233	0,28	0,389	0,438	0,399	0,341
	rad.						0,075	0,102	0,139	0,165	0,211	0,23	0,163	0,232	0,285
8	ax.	0,031	0,035	0,042	0,06	0,093	0,113	0,154	0,238	0,215	0,328	0,631	0,815	0,68	0,398
	rad.	0,027	0,032	0,05	0,065	0,104	0,1	0,118	0,146	0,224	0,408	0,354	0,152	0,336	0,444
9	ax.	0,03	0,031	0,037	0,053	0,068	0,123	0,179	0,283	0,362	0,393	1,36	1,877	1,359	0,441
	rad.	0,025	0,039	0,057	0,079	0,116	0,14	0,15	0,14	0,216	0,951	0,946	0,15	0,813	1,093
10	ax.						0,118	0,209	0,471		0,337	3,467	3,555	3,522	0,784
	rad.						0,202	0,259	0,301		3,282	2,187	0,181	2,03	3,47
11	ax.						0,091	0,152			7,37	10,87	10,06	10,1	5,88
	rad.						0,247	0,366			8,22	3,542	0,356	3,127	8,73
12	ax.						0,11	0,167				19,96	20,04	19,44	
	rad.						0,274	0,402				3,63	0,903	2,987	
13	ax.						0,148	0,231				27,47	27,02	26,92	
	rad.						0,23	0,335				3,059	0,991	3,136	
14	ax.	0,039	0,061	0,086	0,121	0,157	0,191	0,265				30,59	30,14	30,33	
	rad.	0,022	0,032	0,05	0,075	0,129	0,172	0,259				2,736	0,409	2,247	

Tabulka 5.11: Naměřené hodnoty	napětí u induktoru stíněného	transformátorovými	plechy s dutým vodičem
	1		

Tabulka 5.12: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s dutým vodičem

[A/m]	А	В	С	D	E	F	G	н	I	J	К	L	м	N
1	9,017					14,758	19,574	22,631	26,863	34,080	38,742	36,152	43,746	61,616
2		-				17,411	19,904	30,632	28,921	42,406	46,779	42,773	49,769	64,899
3						18,065	27,774	31,752	35,644	45,805	41,971	50,611	56,847	64,530
4						21,373	28,163	30,532	38,170	51,466	54,276	61,286	63,790	72,384
5						24,579	30,710	40,382	43,799	60,194	63,038	68,340	79,680	80,527
6						28,781	39,293	46,852	52,146	70,041	76,366	80,141	83,542	84,854
7						26,833	39,148	54,617	60,510	74,306	95,776	99,048	97,819	94,189
8	8,713	10,051	13,839	18,748	29,569	31,980	41,118	59,176	65,804	110,949	153,341	175,708	160,751	126,372
9	8,276	10,559	14,402	20,162	28,498	39,496	49,496	66,916	89,341	218,085	351,108	399,075	335,629	249,793
10						49,581	70,535	118,466		699,237	868,765	754,415	861,557	753,961
11						55,788	83,993			2339,828	2422,984	2133,428	2240,816	2230,762
12						62,576	92,258				4299,665	4251,542	4168,422	
13						57,966	86,242				5857,916	5730,408	5743,947	
14	9,490	14,599	21,083	30,171	43,066	54,475	78,533				6509,056	6388,392	6445,688	

Tabulka 5.13: Te	ploty naměřené na	stínění, induktoru a	ı dutém vodiči[°C]

Prvek		Svazel	٢č. 1	Svaze	k č. 2	Induktor		
Začátek	Konec	Začátek Konec		Začátek	Konec		Začátek	Konec
23	26,7	22,4	24,5	22,4 24,5		Vrchní část	23,2	32,7
						Střed	22,9	30,1
						Dolní část	23,1	33,2

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{27,02}{4,44 \cdot 4000} = 7,2 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,99}{4,44 \cdot 4000} = 0,26 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{7,2 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5726,56 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,26 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 210,03 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5726,56^2 + 210,03^{-2}} = 5730,41 A \cdot m^{-1}$$

Obr 5.8: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným dutým vodičem

Z naměřených hodnot, které udává Tabulka 5.11, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity H, viz Tabulka 5.12. Obr 5.8 jsou graficky znázorněny tyto hodnoty. Tabulka 5.13 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 31,5 A

Tabul	ka 5.14	: Name	rene ho	odnoty i	iapeti u	i indukt	oru stir	ieneho	transfo.	rmatore	э <i>ут</i> і р	lechy s	plnym	vodicer	<u>n</u>
[V]		А	В	С	D	E	F	G	Н	Ι	J	К	L	М	Ν
1	ax.	0,026					0,076	0,144	0,112	0,141	0,142	0,123	0,21	0,136	0,132
	rad.	0,021					0,057	0,081	0,075	0,106	0,103	0,11	0,095	0,119	0,086
2	ax.						0,089	0,107	0,116	0,203	0,181	0,17	0,163	0,213	0,154
	rad.						0,062	0,067	0,082	0,12	0,128	0,091	0,102	0,12	0,149
3	ax.						0,063	0,113	0,146	0,22	0,212	0,162	0,201	0,251	0,216
	rad.						0,064	0,075	0,092	0,105	0,144	0,114	0,182	0,176	0,184
4	ax.						0,099	0,16	0,159	0,204	0,253	0,237	0,241	0,235	0,257
	rad.						0,078	0,106	0,104	0,125	0,141	0,144	0,181	0,179	0,223
5	ax.						0,113	0,173	0,2	0,261	0,307	0,272	0,279	0,294	0,275
	rad.						0,088	0,112	0,113	0,123	0,172	0,153	0,202	0,221	0,234
6	ax.						0,093	0,157	0,193	0,255	0,336	0,372	0,341	0,326	0,294
	rad.						0,086	0,113	0,148	0,188	0,209	0,198	0,206	0,217	0,227
7	ax.						0,119	0,202	0,222	0,305	0,38	0,472	0,494	0,481	0,334
	rad.						0,11	0,149	0,175	0,227	0,284	0,219	0,211	0,254	0,302
8	ax.	0,041	0,047	0,061	0,071	0,11	0,119	0,264	0,26	0,303	0,445	0,709	0,869	0,732	0,364
	rad.	0,024	0,045	0,06	0,087	0,124	0,136	0,192	0,197	0,309	0,427	0,393	0,243	0,365	0,447
9	ax.	0,03	0,05	0,048	0,072	0,086	0,126	0,237	0,29	0,342	0,473	1,372	1,541	1,427	0,438
	rad.	0,029	0,051	0,071	0,099	0,139	0,174	0,226	0,184	0,28	1,062	0,922	0,226	0,89	1,123
10	ax.						0,1	0,223	0,501		0,79	2,796	3,421	2,988	1,12
	rad.						0,234	0,329	0,383		2,609	1,77	0,259	1,823	0,289
11	ax.						0,093	0,163		-	8,88	11,17	11,01	10,79	3,799
	rad.						0,265	0,43			9,71	2,887	0,371	4,5	3,673
12	ax.						0,125	0,196				16,06	15,77	14,89	
	rad.						0,277	0,435				2,785	0,303	4,38	
13	ax.]					0,171	0,261				21,46	21,46	21,22	
	rad.]					0,239	0,353				0,915	0,641	1,609	
14	ax.	0,047	0,067	0,093	0,127	0,168	0,212	0,293				23,79	22,79	22,63	
	rad.	0,032	0,04	0,052	0,076	0,12	0,18	0,26				2,2	2,316	1,449	

5.4.6 Induktor stíněný transformátorovými plechy s uzavřeným plným vodičem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.14, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity H, viz Tabulka 5.15. Na Obr 5.9 jsou graficky znázorněny tyto hodnoty. Tabulka 5.16 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 36 A

. . . 1. .

[A/m]	А	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	7,083					20,134	35,016	28,568	37,386	37,179	34,972	48,849	38,300	33,389
2		-				22,988	26,756	30,107	49,978	46,984	40,867	40,752	51,814	45,415
3						19,033	28,744	36,574	51,665	54,316	41,983	57,468	64,971	60,137
4						26,712	40,677	40,266	50,706	61,385	58,774	63,878	62,608	72,114
5						30,354	43,678	48,685	61,151	74,581	66,141	73,002	77,951	76,527
6						26,846	40,997	51,546	67,144	83,863	89,313	84,435	82,999	78,721
7						34,345	53,198	59,911	80,579	100,543	110,278	113,848	115,283	95,433
8	10,069	13,791	18,134	23,799	35,131	38,300	69,184	69,135	91,720	130,708	171,804	191,239	173,355	122,173
9	8,843	15,137	18,164	25,944	34,642	45,531	69,406	72,789	93,676	246,393	350,337	330,090	356,436	255,468
10						53,932	84,236	133,654		577,739	701,335	727,114	741,827	245,145
11						59,522	97,461		-	2788,721	2445,138	2334,759	2477,715	1119,933
12						64,407	101,119				3454,519	3342,875	3289,452	
13						62,283	93,043				4552,316	4550,213	4510,229	
14	12,051	16,538	22,582	31,368	43,756	58,942	83,021				5063,512	4854,938	4805,973	

Tabulka 5.15: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s plným vodičem

Tabulka 5.16: Teploty naměřené na stínění, induktoru a plném vodiči [°C]

Prvek		Svazel	c č. 1	Svazel	k č. 2		Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec			Začátek	Konec
26,9	28	28	28,1	29,2 29,6		Vrchní část	34,9	38,8	
							Střed	32,6	36,1
							Dolní část	34	39,9

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{21,46}{4,44 \cdot 4000} = 5,71 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,641}{4,44 \cdot 4000} = 0,171 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{5,71 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 4548,18 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,171 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 135,85 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{4548,18^2 + 135,85^2} = 4550,21 A \cdot m^{-1}$$

Obr 5.9: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným plným vodičem

5.4.7 Induktor stíněný transformátorovými plechy s otevřeným prstencem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.18, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.19. Na Obr 5.10 jsou graficky znázorněny tyto hodnoty. Tabulka 5.17 udává naměřené teploty na začátku měření a po jeho ukončení.

Tuonina	<i>5.17. 10</i>	nory num	crene nu s	incni, in		n prsiene			
Prvek			Svazel	٢č. 1	Svazel	« č. 2	Induktor		
Začátek	Konec		Začátek Konec		Začátek	Konec		Začátek	Konec
24,3	26,1		23,7 25		23,7	25,1	Vrchní část	24	36,4
							Střed	23,8	33,9
							Dolní část	23,7	39,8

Tabulka 5.17: Teploty naměřené na stínění, induktoru a otevřeném prstenci [°C]

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,031					0,114	0,136	0,145	0,172	0,157	0,142	0,177	0,258	0,126
	rad.	0,029					0,068	0,081	0,084	0,098	0,072	0,051	0,068	0,181	0,046
2	ax.		-				0,129	0,159	0,189	0,207	0,204	0,229	0,226	0,275	0,196
	rad.						0,089	0,092	0,123	0,132	0,081	0,065	0,084	0,244	0,143
3	ax.						0,136	0,187	0,225	0,263	0,289	0,246	0,293	0,311	0,233
	rad.						0,116	0,124	0,136	0,153	0,161	0,189	0,166	0,201	0,122
4	ax.						0,174	0,199	0,24	0,313	0,343	0,368	0,394	0,377	0,312
	rad.						0,137	0,154	0,172	0,176	0,217	0,193	0,236	0,222	0,236
5	ax.						0,159	0,206	0,288	0,343	0,413	0,458	0,513	0,495	0,443
	rad.						0,168	0,199	0,234	0,242	0,252	0,207	0,254	0,281	0,295
6	ax.						0,155	0,214	0,329	0,423	0,543	0,63	0,692	0,677	0,612
	rad.						0,208	0,259	0,305	0,348	0,297	0,248	0,305	0,308	0,381
7	ax.						0,156	0,192	0,346	0,507	0,71	0,948	1,046	0,975	0,861
	rad.			-	-	-	0,258	0,321	0,423	0,495	0,486	0,348	0,194	0,371	0,558
8	ax.	0,039	0,055	0,056	0,074	0,101	0,142	0,189	0,335	0,579	1,07	1,553	1,754	1,549	1,121
	rad.	0,049	0,074	0,102	0,146	0,203	0,284	0,414	0,619	0,827	0,87	0,572	0,233	0,601	0,812
9	ax.	0,042	0,058	0,074	0,09	0,12	0,157	0,193	0,302	0,55	1,638	2,918	3,173	2,776	1,783
	rad.	0,046	0,071	0,106	0,151	0,207	0,3	0,462	0,805	1,382	1,699	1,199	0,251	1,191	1,774
10	ax.						0,22	0,296	0,769		2,732	6,24	6,66	3,975	3,663
	rad.						0,275	0,399	0,674		3,635	2,63	0,265	2,326	3,688
11	ax.						0,205	0,278			10,94	12,69	12,69	12,21	11,02
	rad.						0,254	0,326			9,52	3,656	0,347	3,641	9,22
12	ax.						0,204	0,26				23,72	22,46	22,26	
	rad.						0,226	0,306				3,697	0,301	4,83	
13	ax.						0,231	0,297				31,05	30,41	31,22	
	rad.		1		r		0,187	0,251				2,394	0,335	3,636	
14	ax.	0,066	0,087	0,122	0,157	0,202	0,25	0,309				34,58	33,51	33,19	
	rad.	0,021	0,02	0,049	0,053	0,09	0,141	0,161				1,499	1,215	3,73	

Tabulka 5.18: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřeným prstencem

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{30,04}{4,44 \cdot 4000} = 8,09 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,335}{4,44 \cdot 4000} = 8,92 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{8,09 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 6445,02 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{8,92 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 70,99 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{6445,02^{-2} + 70,99^{-2}} = 6445,41 A \cdot m^{-1}$$

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	8,997					28,133	33,548	35,515	41,955	36,606	31,977	40,186	66,794	28,428
2						33,215	38,933	47,792	52,032	46,519	50,451	51,099	77,917	51,421
3						37,884	47,554	55,720	64,486	70,113	65,748	71,371	78,481	55,741
4						46,936	53,330	62,579	76,105	86,021	88,068	97,337	92,724	82,911
5						49,024	60,703	78,646	88,967	102,538	106,521	121,321	120,634	112,801
6						54,977	71,205	95,081	116,089	131,172	143,494	160,274	157,633	152,787
7						63,898	79,273	115,821	150,173	182,352	214,026	225,468	221,093	217,449
8	13,273	19,541	24,661	34,691	48,054	67,295	96,453	149,170	213,960	292,274	350,755	375,004	352,136	293,362
9	13,202	19,430	27,398	37,256	50,710	71,762	106,116	182,221	315,241	500,175	668,606	674,579	640,201	533,063
10						74,639	105,292	216,720		963,724	1435,157	1412,622	976,086	1101,646
11						69,178	90,802		-	3073,565	2798,882	2690,495	2700,365	3045,191
12						64,525	85,102				5087,858	4760,549	4827,514	
13						62,989	82,414				6600,198	6445,418	6661,419	
14	14,679	18,920	27,864	35,119	46,868	60,831	73,845				7335,690	7106,701	7078,496	

Tabulka 5.19: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným prstencem

Obr 5.10: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným prstencem

5.4.8 Induktor stíněný transformátorovými plechy s otevřenými závity nad stíněním

Z naměřených hodnot, které udává Tabulka 5.20, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.21. Na Obr 5.11 jsou graficky znázorněny tyto hodnoty. Tabulka 5.22 udává naměřené teploty na začátku měření a po jeho ukončení.

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,03					0,094	0,131	0,172	0,202	0,201	0,16	0,288	0,222	0,244
	rad.	0,029					0,072	0,099	0,123	0,148	0,093	0,075	0,19	0,156	0,136
2	ax.		-				0,117	0,156	0,198	0,226	0,201	0,184	0,3	0,232	0,253
	rad.						0,087	0,112	0,133	0,16	0,123	0,08	0,221	0,151	0,167
3	ax.						0,129	0,168	0,221	0,26	0,234	0,223	0,322	0,263	0,288
	rad.						0,103	0,13	0,156	0,172	0,147	0,103	0,255	0,181	0,169
4	ax.						0,135	0,184	0,25	0,294	0,283	0,284	0,407	0,326	0,328
	rad.						0,126	0,156	0,172	0,203	0,15	0,133	0,289	0,189	0,193
5	ax.						0,143	0,202	0,263	0,356	0,357	0,371	0,492	0,427	0,4
	rad.						0,153	0,191	0,218	0,245	0,208	0,153	0,279	0,214	0,232
6	ax.						0,148	0,207	0,347	0,448	0,48	0,531	0,656	0,586	0,505
	rad.						0,193	0,242	0,278	0,327	0,273	0,22	0,273	0,181	0,289
7	ax.						0,153	0,244	0,374	0,542	0,686	0,852	0,967	0,902	0,701
	rad.						0,228	0,306	0,392	0,474	0,414	0,319	0,29	0,32	0,415
8	ax.	0,03	0,054	0,066	0,074	0,102	0,136	0,251	0,362	0,612	1,046	1,393	1,633	1,439	1,06
	rad.	0,048	0,075	0,102	0,174	0,19	0,256	0,377	0,556	0,765	0,717	0,591	0,298	0,545	0,727
9	ax.	0,046	0,055	0,069	0,082	0,113	0,152	0,193	0,34	0,603	1,581	2,647	3,04	2,65	1,633
	rad.	0,045	0,072	0,109	0,144	0,197	0,276	0,408	0,755	1,323	1,533	1,016	0,249	1,068	1,562
10	ax.						0,175	0,318	0,531		2,605	3,912	6,62	5,61	2,366
	rad.						0,267	0,385	0,639		3,652	2,026	0,322	2,249	3,344
11	ax.						0,193	0,201			10,58	11,48	12,14	11,57	10,02
	rad.						0,25	0,353			7,66	3,452	0,752	3,682	9,22
12	ax.						0,216	0,204				20,84	19,89	20,46	
	rad.						0,238	0,343				3,68	1,14	3,691	
13	ax.						0,238	0,261				27,75	26,3	27,57	
	rad.				-		0,205	0,254				2,712	1,39	3,21	
14	ax.	0,069	0,092	0,12	0,165	0,199	0,26	0,298				31,22	31,24	31,2	
	rad.	0,024	0,031	0,048	0,075	0,107	0,17	0,211				3,49	1,061	2,049	

Tabulka 5.20: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřenými závity

[A/m]	А	В	с	D	E	F	G	н	Т	J	к	L	м	N
1	8,843					25,095	34,800	44,815	53,073	46,938	37,451	73,124	57,505	59,203
2		-				30,901	40,701	50,552	58 <i>,</i> 686	49,943	42,523	78,971	58,667	64,248
3						34,986	45,021	57,332	66,070	58,567	52,060	87,052	67,664	70,771
4						39,137	51,126	64,313	75,720	67,883	66,464	105,793	79,863	80,657
5						44,385	58,919	72,399	91,591	87,567	85,053	119,872	101,227	98,002
6						51,546	67,492	94,233	117,551	117,033	121,816	150,590	129,985	123,315
7						58,193	82,946	114,826	152,601	169,814	192,813	213,962	202,842	172,651
8	11,997	19,587	25,748	40,074	45,704	61,437	95,989	140,612	207,631	268,769	320,701	351,810	326,119	272,415
9	13,638	19,202	27,341	35,120	48,133	66,779	95,657	175,490	308,145	466,728	600,905	646,448	605,531	478,929
10						67,659	105,831	176,085		950,728	933,692	1404,687	1280,955	868,177
11						66,936	86,092		-	2768,300	2540,662	2577,856	2573,295	2885,848
12						68,117	84,580				4485,116	4222,360	4406,242	
13						66,573	77,186				5909,292	5581,742	5882,596	
14	15,483	20,575	27,392	38,413	47,886	65,837	77,386				6657,911	6624,753	6626,702	

Tabulka 5.21: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřenými závity

Tabulka 5.22: Teploty naměřené na stínění, induktoru a otevřených závitech [°C]

Prvek		Svazel	k č. 1		Svaze	k č. 2	Induktor		
Začátek	Konec	Začátek	Konec		Začátek	Konec		Začátek	Konec
25,6	27,3	27,4	27,2		28,4 28,3		Vrchní část	32,6	37,2
							Střed	30,2	33,4
							Dolní část	30,5	36

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{26,3}{4,44 \cdot 4000} = 7 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,39}{4,44 \cdot 4000} = 0,37 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{7 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 5573,96 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,37 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 294,59 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{5573,96^2 + 294,59^{-2}} = 5581,74 A \cdot m^{-1}$$

Obr 5.11: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřenými závity

5.4.9 Induktor stíněný transformátorovými plechy s otevřeným dutým vodičem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.24, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.25. Na Obr 5.12 jsou graficky znázorněny tyto hodnoty. Tabulka 5.23 udává naměřené teploty na začátku měření a po jeho ukončení.

1 40 11144 5.25	. repioty m	anter ente nu s	ineni a man				
Svazek	: č. 1		Svazek	č. 2	Induktor		
Začátek	Konec		Začátek	Konec		Začátek	Konec
27,8 28,7			28,7	29,8	Vrchní část	32,1	41,5
					Střed	30,5	38,4
					Dolní část	30,3	43,2

Tabulka 5.23: Teploty naměřené na stínění a induktoru [°C]

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,028					0,084	0,114	0,14	0,222	0,24	0,216	0,214	0,227	0,311
	rad.	0,025					0,06	0,072	0,072	0,116	0,182	0,196	0,154	0,173	0,236
2	ax.		-				0,101	0,124	0,157	0,263	0,293	0,275	0,282	0,271	0,301
	rad.						0,071	0,091	0,119	0,125	0,213	0,214	0,196	0,192	0,282
3	ax.						0,125	0,161	0,193	0,292	0,331	0,402	0,35	0,306	0,356
	rad.						0,094	0,113	0,123	0,136	0,242	0,266	0,221	0,288	0,358
4	ax.						0,144	0,166	0,216	0,356	0,402	0,427	0,423	0,412	0,446
	rad.						0,125	0,145	0,162	0,15	0,235	0,263	0,236	0,344	0,323
5	ax.						0,147	0,189	0,236	0,397	0,44	0,48	0,517	0,492	0,434
	rad.						0,157	0,193	0,21	0,23	0,23	0,304	0,23	0,318	0,297
6	ax.						0,137	0,208	0,267	0,432	0,543	0,653	0,721	0,671	0,591
	rad.						0,198	0,241	0,294	0,319	0,303	0,305	0,281	0,342	0,375
7	ax.						0,142	0,19	0,314	0,509	0,761	1,001	1,059	1,001	0,776
	rad.						0,244	0,315	0,412	0,481	0,451	0,387	0,293	0,459	0,51
8	ax.	0,035	0,045	0,06	0,057	0,084	0,115	0,175	0,284	0,62	1,085	1,641	1,802	1,623	1,159
	rad.	0,046	0,067	0,097	0,139	0,2	0,281	0,409	0,582	0,776	0,902	0,583	0,278	0,507	0,919
9	ax.	0,033	0,051	0,063	0,085	0,107	0,142	0,19	0,246	0,612	1,797	2,933	3,392	3,009	1,782
	rad.	0,045	0,069	0,099	0,141	0,202	0,292	0,448	0,827	1,476	1,834	1,21	0,262	0,998	1,702
10	ax.						0,175	0,268	0,786		3,099	6,36	7,07	0,601	2,96
	rad.						0,27	0,392	0,601		3,637	2,411	0,306	2,095	3,643
11	ax.						0,181	0,252			10,6	12,45	14,21	12,81	10,19
	rad.						0,25	0,329			8,83	3,608	0,498	3,469	9,79
12	ax.						0,2	0,24				23,72	23,55	24,08	
	rad.						0,225	0,308				4,42	0,473	5,41	
13	ax.						0,217	0,278				31,41	30,96	31,59	
	rad.		1		1	1	0,189	0,251				2,926	0,847	5,22	
14	ax.	0,056	0,083	0,112	0,148	0,187	0,237	0,308				34,62	34,1	34,23	
	rad.	0,021	0,03	0,03	0,054	0,087	0,128	0,162				1,049	1,887	3,303	

Tabulka 5.24: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřeným dutým vodičem

Tabulka 5.25: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným dutým vodičem

[A/m]	Α	В	с	D	E	F	G	н	Т	J	к	L	м	N
1	7,955					21,878	28,576	33,365	53,086	63,837	61,816	55,878	60,489	82,742
2		-				26,166	32,598	41,752	61,715	76,772	73,851	72,784	70,389	87,416
3						33,147	41,688	48,505	68,269	86,901	102,162	87,728	89,059	107,002
4						40,413	46,713	57,223	81,874	98,689	106,286	102,659	113,754	116,709
5						45,583	57,251	66,952	97,240	105,224	120,416	119,925	124,158	111,457
6						51,029	67,470	84,170	113,814	131,787	152,747	164,002	159,617	148,342
7						59,833	77,965	109,787	148,423	187,481	227,453	232,874	233,390	196,803
8	12,250	17,105	24,173	31,840	45,974	64,349	94,284	137,250	210,510	299,037	369,086	386,430	360,368	313,485
9	11,827	18,185	24,870	34,893	48,447	68,816	103,134	182,862	338,644	544,179	672,434	721,034	671,882	522,259
10						68,192	100,640	209,700		1012,689	1441,528	1499,803	461,919	994,823
11						65,413	87,832		_	2923,888	2747,192	3013,484	2812,711	2994,855
12						63,802	82,755				5113,697	4992,141	5230,676	
13						60,989	79,381				6685,786	6564,048	6785,903	
14	12,676	18,705	24,574	33,389	43,712	57,087	73,756				7340,652	7238,134	7288,325	

0-1000

Řady13 Řady11 Řady9

Příklad výpočtu intenzity magnetického pole H pro bod L13:

2000

1000

Řady7 0 Řady5 Řady3 А В С D Ε F Řady1 G н T J Κ Sloupec L М Ν

Obr 5.12: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným dutým vodičem

5.4.10 Induktor stíněný transformátorovými plechy s otevřeným plným vodičem nad stíněním

Tabulka 5.26: Naměřené hodnoty napětí u induktoru stíněného transj	formátorovými plechy s otevřeným plným
vodičem	

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,026					0,089	0,109	0,147	0,146	0,184	0,211	0,22	0,2	0,273
	rad.	0,022					0,062	0,076	0,093	0,08	0,112	0,124	0,162	0,162	0,227
2	ax.		-				0,093	0,142	0,164	0,163	0,234	0,215	0,202	0,28	0,304
	rad.						0,078	0,096	0,109	0,105	0,151	0,134	0,269	0,281	0,252
3	ax.						0,114	0,175	0,196	0,209	0,239	0,332	0,311	0,301	0,348
	rad.						0,093	0,125	0,136	0,14	0,166	0,201	0,202	0,292	0,275
4	ax.						0,121	0,178	0,219	0,283	0,352	0,391	0,39	0,368	0,384
	rad.						0,117	0,142	0,17	0,14	0,174	0,267	0,226	0,224	0,22
5	ax.						0,125	0,201	0,309	0,339	0,419	0,439	0,486	0,499	0,419
	rad.						0,152	0,184	0,242	0,211	0,215	0,203	0,189	0,256	0,264
6	ax.						0,137	0,217	0,284	0,392	0,541	0,612	0,695	0,653	0,552
	rad.						0,191	0,241	0,284	0,299	0,313	0,226	0,211	0,32	0,352
7	ax.						0,13	0,259	0,317	0,498	0,753	0,937	1,039	0,966	0,722
	rad.						0,233	0,315	0,388	0,371	0,457	0,281	0,227	0,339	0,527
8	ax.	0,036	0,045	0,064	0,047	0,081	0,12	0,251	0,329	0,57	1,061	1,437	1,491	1,506	1,127
	rad.	0,042	0,062	0,096	0,139	0,194	0,267	0,397	0,561	0,739	0,807	0,51	0,22	0,562	0,849
9	ax.	0,043	0,054	0,07	0,096	0,12	0,123	0,24	0,293	0,554	1,478	2,057	2,342	2,175	1,506
	rad.	0,046	0,063	0,105	0,141	0,201	0,284	0,443	0,764	1,305	1,487	1,049	0,27	1,092	1,511
10	ax.						0,165	0,296	0,602		2,325	3,629	3,795	3,676	2,279
	rad.						0,275	0,412	0,603		2,671	1,925	0,743	1,664	2,946
11	ax.						0,171	0,256			3,801	3,642	3,428	3,576	3,712
	rad.						0,258	0,368			7,21	2,971	0,547	3,222	3,896
12	ax.						0,194	0,375				17,02	16,69	16,54	
	rad.						0,239	0,341				2,596	0,235	4,92	
13	ax.						0,222	0,301				21,9	21,16	21,38	
	rad.		-		-		0,194	0,29				2,352	0,249	4,77	
14	ax.	0,057	0,069	0,108	0,15	0,184	0,262	0,324				24	23,55	23,73	
	rad.	0,033	0,035	0,049	0,063	0,105	0,135	0,22				1,682	0,726	5	

Z naměřených hodnot, které udává Tabulka 5.26, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.27. Na Obr 5.13 jsou graficky znázorněny tyto hodnoty. Tabulka 5.28 udává naměřené teploty na začátku měření a po jeho ukončení.

[A/m]	Α	В	с	D	E	F	G	н	Т	I	к	L	м	N
1	7,218					22,988	28,162	36,866	35,284	45,653	51,869	57,904	54,548	75,248
2						25,725	36,327	41,735	41,093	59,023	53,692	71,296	84,073	83,687
3						31,181	45,579	50,560	53,314	61,672	82,254	78,596	88,879	94,003
4						35,672	48,259	58,757	66,916	83,219	100,345	95,531	91,306	93,794
5						41,709	57,753	83,183	84,627	99,810	102,506	110,516	118,862	104,959
6						49,817	68,731	85,122	104,489	132,465	138,267	153,935	154,120	138,752
7						56,548	86,430	106,188	131,614	186,681	207,323	225,398	216,973	189,446
8	11,724	16,236	24,453	31,098	44,556	62,040	99,545	137,835	197,798	282,519	323,166	319,421	340,678	299,045
9	13,345	17,586	26,745	36,152	49,614	65,593	106,782	173,420	300,469	444,345	489,372	499,646	515,801	452,136
10						67,969	107,517	180,585		750,507	870,630	819,574	855,186	789,387
11						65,600	95,009		-	1727,412	996,130	735,714	1020,146	1140,488
12						65,240	107,423				3648,899	3537,592	3657,250	
13						62,484	88,584				4668,128	4484,913	4642,633	
14	13,959	16,397	25,135	34,481	44,899	62,466	83,002				5098,982	4993,505	5139,711	

Tabulka 5.27: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným plným vodičem

Tabulka 5.28: Teploty naměřené na stínění, induktoru a otevřeném plném vodiči [°C]

Prvek		Svazek č. 1		Svazek č. 2		Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
24,1	26,3	25,2	26,7	26,5	28,3	Vrchní část	26,9	35,9
						Střed	26,4	34,8
						Dolní část	26,7	38,8

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{21,16}{4,44 \cdot 4000} = 5,63 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,249}{4,44 \cdot 4000} = 6,63 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{5,63 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 4484,6 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{6,63 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 52,77 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{4484,6^2 + 52,77^{-2}} = 4484,91 A \cdot m^{-1}$$

Obr 5.13: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným plným vodičem

5.5 Naměřené a vypočtené hodnoty pro frekvenci 10 kHz

V průběhu měření byl naměřen proud vtékající do induktoru o hodnotě 23 A.

5.5.1 Induktor bez stínění

Z naměřených hodnot, které udává Tabulka 5.29, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.30. Na Obr 5.14 jsou graficky znázorněny tyto hodnoty.

Tabulka 5.29: Naměřené ho	odnoty napětí u	induktoru l	bez stínění
---------------------------	-----------------	-------------	-------------

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,136					0,405	0,498	0,538	0,609	0,654	0,672	0,677	0,69	0,683
	rad.	0,208					0,259	0,231	0,188	0,159	0,101	0,032	0,042	0,129	0,25
2	ax.		-				0,466	0,577	0,668	0,744	0,801	0,847	0,852	0,867	0,833
	rad.						0,339	0,339	0,171	0,224	0,139	0,049	0,042	0,169	0,31
3	ax.						0,54	0,637	0,786	0,91	0,988	1,634	1,03	1,095	0,04
	rad.						0,435	0,443	0,383	0,342	0,203	0,102	0,066	0,246	0,382
4	ax.						0,596	0,784	0,948	1,124	1,264	1,36	1,413	1,403	1,333
	rad.						0,571	0,601	0,541	0,491	0,322	0,154	0,063	0,299	0,518
5	ax.						0,686	0,887	1,146	1,442	1,638	1,825	1,839	1,851	1,687
	rad.						0,719	0,809	0,791	0,683	0,481	0,654	1,115	0,334	0,726
6	ax.						0,725	1,074	1,416	1,817	2,205	2,372	2,582	2,487	2,152
	rad.						1,009	1,034	1,066	0,932	0,72	0,332	1,119	0,494	0,97
7	ax.						0,755	1,199	1,648	2,404	2,92	3,376	3,618	3,447	3,093
	rad.				-		1,359	1,467	1,563	1,433	0,945	0,609	0,208	0,8	1,338
8	ax.	0,031	0,031	0,075	0,219	0,465	0,836	1,16	2,146	3,21	4,25	4,95	5,33	5,38	4,14
	rad.	0,534	0,659	0,808	1,01	1,285	1,621	2,076	2,88	2,479	1,912	1,203	0,129	1,123	2,029
9	ax.	0,115	0,114	0,068	0,093	0,19	0,746	1,23	2,398	4,056	5,89	8,29	8,17	8,22	6,05
	rad.	0,549	0,698	0,919	1,119	1,032	2,082	2,778	3,767	3,942	3,622	1,852	0,12	1,872	3,562
10	ax.						0,4	0,683	2,591		8,63	13,17	13,43	12,47	9
	rad.						2,53	3,86	5,41		6,12	3,399	0,121	4,22	6,62
11	ax.						0,282	0,181			18,31	20,22	21,82	21,25	19,02
	rad.						2,749	4,86			11,13	5,29	1,216	3,405	10,97
12	ax.						1,194	1,56				33,201	34,89	31,23	
	rad.						2,189	4,65				1,277	4,63	7,67	
13	ax.						2,085	2,849				36,4	42,0	37,4	
	rad.						2,335	3,552				1,379	1,667	5,92	
14	ax.	0,627	0,773	1,001	1,342	1,883	2,532	3,91				38,7	46,2	37,7	
	rad.	0,241	0,356	0,489	0,755	0,95	1,527	2,216				0,152	0,705	1,809	

Tabulka 5.30: Intenzita H vypočtená z naměřených hodnot induktoru bez stínění

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	21,068					40,754	46,539	48,313	53,359	56,100	57,033	57,503	59,508	61,658
2						48,853	56,733	58,456	65,869	68,920	71,925	72,316	74,883	75,349
3						58,784	65,777	74,123	82,414	85,507	138,792	87,497	95,142	32,561
4						69,972	83,745	92,533	103,982	110,578	116,031	119,906	121,610	121,238
5						84,246	101,774	118,048	135,265	144,725	164,349	182,319	159,453	155,697
6						105,330	126,387	150,256	173,118	196,642	203,047	238,561	214,955	200,112
7						131,795	160,619	192,551	237,260	260,184	290,820	307,223	299,987	285,692
8	45,346	55,929	68,793	87,613	115,849	154,620	201,604	304,480	343,831	395,076	431,852	451,984	465,920	390,853
9	47,552	59,957	78,121	95,190	88,958	187,490	257,557	378,563	479,489	586,182	720,109	692,687	714,694	595,181
10						217,145	332,315	508,519		896,900	1153,073	1138,576	1116,039	947,148
11						234,270	412,293		•	1816,509	1771,845	1852,663	1824,451	1861,390
12						211,384	415,797				2816,699	2983,733	2726,204	
13						265,381	386,015				3088,027	3563,358	3210,063	
14	56,945	72,147	94,444	130,537	178,797	250,664	381,005				3280,822	3917,066	3199,698	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{42}{4,44 \cdot 4000} = 4,74 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,667}{4,44 \cdot 4000} = 0,17 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,74 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3560,55 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,17 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 141,32 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3560,55^2 + 141,32^2} = 3563,35 A \cdot m^{-1}$$

Obr 5.14: Průběh H uvnitř a vně induktoru bez stínění

5.5.2 Induktor stíněný transformátorovými plechy

[V]		Α	В	С	D	E	F	G	н	Т	J	к	L	м	N
1	ax.	0,032					0,125	0,148	0,179	0,195	0,295	0,321	0,291	0,081	0,039
	rad.	0,039					0,074	0,076	0,105	0,103	0,105	0,234	0,117	0,145	0,196
2	ax.		-				0,123	0,155	0,224	0,251	0,284	0,391	0,309	0,276	0,317
	rad.						0,099	0,107	0,108	0,139	0,156	0,253	0,152	0,178	0,219
3	ax.						0,143	0,179	0,223	0,32	0,337	0,464	0,42	0,392	0,365
	rad.						0,131	0,138	0,139	0,17	0,169	0,294	0,247	0,202	0,236
4	ax.						0,18	0,209	0,265	0,384	0,415	0,553	0,566	0,498	0,452
	rad.						0,213	0,188	0,212	0,231	0,2312	0,311	0,341	0,217	0,249
5	ax.						0,194	0,239	0,338	0,483	0,656	0,704	0,698	0,664	0,589
	rad.						0,278	0,249	0,28	0,293	0,269	0,329	0,305	0,285	0,424
6	ax.						0,205	0,248	0,413	0,631	0,761	0,941	0,952	0,891	0,803
	rad.						0,277	0,347	0,402	0,425	0,401	0,357	0,359	0,377	0,512
7	ax.						0,162	0,267	0,455	0,73	1,091	1,356	1,464	1,482	1,157
	rad.						0,342	0,463	0,564	0,651	0,633	0,504	0,359	0,467	0,741
8	ax.	0,042	0,051	0,058	0,08	0,108	0,128	0,251	0,444	0,887	1,588	1,258	2,394	2,138	1,71
	rad.	0,071	0,103	0,15	0,208	0,276	0,387	0,58	0,823	1,103	1,198	0,775	0,446	0,855	1,184
9	ax.	0,052	0,056	0,087	0,1	0,122	0,155	0,208	0,358	0,942	2,683	4,62	4,9	4,35	2,6589
	rad.	0,071	0,105	0,153	0,22	0,302	0,415	0,619	1,278	2,055	2,402	1,386	0,367	1,571	2,739
10	ax.						0,225	0,348	0,491		4,39	8,47	9,44	4,43	6,71
	rad.						0,408	0,556	1,183		6,32	3,447	0,394	3,62	5,8
11	ax.						0,256	0,356			15,27	18,11	17,99	15,69	13,63
	rad.						0,383	0,504			13,2	5,76	0,483	6,06	14,72
12	ax.						0,269	0,351				31,59	31,13	31,37	
	rad.						0,332	0,475				5,81	3,69	5,56	
13	ax.						0,308	0,403				43,8	43,5	46,6	
	rad.						0,257	0,372				2,394	0,359	8,07	
14	ax.	0,084	0,118	0,159	0,203	0,264	0,347	0,447				50,6	49,2	50,6	
	rad.	0,025	0,03	0,056	0,081	0,137	0,162	0,22				2,872	1,793	3,87	

Tabulka 5.31: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy

Z naměřených hodnot, které udává Tabulka 5.31, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.32. Na Obr 5.15 jsou graficky znázorněny tyto hodnoty.

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	4,277					12,315	14,104	17,593	18,696	26,546	33,676	26,589	14,080	16,942
2		ļ				13,385	15,967	21,082	24,324	27,469	39,481	29,193	27,842	32,663
3						16,441	19,161	22,277	30,719	31,960	46,567	41,306	37,385	36,848
4						23,641	23,831	28,770	37,990	40,273	53,786	56,018	46,052	43,748
5						28,739	29,259	37,209	47,891	60,107	65,877	64,576	61,257	61,525
6						29,214	36,158	48,860	64,495	72,922	85,321	86,254	82,018	80,735
7						32,081	45,310	61,432	82,919	106,930	122,639	127,788	131,727	116,476
8	6,993	9,744	13,634	18,892	25,125	34,556	53,576	79,276	119,991	168,635	125,260	206,444	195,205	176,323
9	7,461	10,088	14,921	20,487	27,612	37,555	55,359	112,513	191,644	305,286	408,906	416,561	392,084	323,613
10						39,499	55,606	108,584		652,353	775,230	800,974	484,994	751,894
11						39,054	52,311			1711,141	1611,061	1525,654	1425,885	1700,698
12						36,224	50,069				2722,963	2657,524	2700,843	
13						34,007	46,495				3718,692	3687,842	4009,320	
14	7,430	10,322	14,291	18,529	25,215	32,465	42,235				4296,524	4173,704	4302,148	

Tabulka 5.32: Intenzita H vypočtená z naměřených hodnot induktoru stíněného transformátorovými plechy

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{43,5}{4,44 \cdot 4000} = 4,63 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,359}{4,44 \cdot 4000} = 3,8 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,63 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3687,72 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{3,8 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 30,43 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3687,72^2 + 30,43^{-2}} = 3687,84 A \cdot m^{-1}$$

Obr 5.15: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy

5.5.3 Induktor stíněný transformátorovými plechy s uzavřeným prstencem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.34, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.35. Na Obr 5.16 jsou graficky znázorněny tyto hodnoty. Tabulka 5.33 udává naměřené teploty na začátku měření a po jeho ukončení.

1 00 0000 010	et i spiory	 			entem prote			
Prvek		Svazel	κč. 1	Svazel	(č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
23,8	26,3	23,3	25,4	23,8	26,8	Vrchní část	28,1	25,9
						Střed	26,5	32,4
						Dolní část	27,5	37,9

Tabulka 5.33: Teploty naměřené na stínění, induktoru a uzavřeném prstenci[°C]

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,027					0,086	0,104	0,168	0,159	0,236	0,178	0,271	0,106	0,123
	rad.	0,018					0,05	0,067	0,093	0,108	0,142	0,169	0,178	0,141	0,112
2	ax.		4				0,097	0,127	0,197	0,193	0,29	0,257	0,673	0,202	0,143
	rad.						0,06	0,078	0,127	0,114	0,191	0,224	0,202	0,184	0,135
3	ax.						0,119	0,147	0,256	0,254	0,323	0,304	0,302	0,259	0,17
	rad.						0,071	0,09	0,136	0,142	0,201	0,203	0,148	0,223	0,149
4	ax.						0,155	0,174	0,272	0,336	0,353	0,315	0,261	0,284	0,225
	rad.						0,09	0,115	0,123	0,184	0,217	0,242	0,173	0,221	0,15
5	ax.						0,163	0,201	0,263	0,304	0,314	0,425	0,297	0,341	0,168
	rad.						0,081	0,11	0,149	0,192	0,189	0,249	0,164	0,247	0,151
6	ax.						0,154	0,219	0,272	0,393	0,373	0,411	0,388	0,496	0,374
	rad.						0,105	0,132	0,166	0,204	0,237	0,254	0,186	0,22	0,243
7	ax.						0,17	0,264	0,293	0,325	0,413	0,563	0,596	0,524	0,441
	rad.						0,125	0,166	0,191	0,454	0,329	0,398	0,191	0,292	0,329
8	ax.	0,02	0,021	0,03	0,035	0,083	0,183	0,288	0,289	0,29	0,441	0,937	1,024	0,907	0,535
	rad.	0,038	0,036	0,053	0,082	0,099	0,151	0,22	0,194	0,32	0,536	0,568	0,224	0,443	0,534
9	ax.	0,014	0,022	0,013	0,036	0,075	0,199	0,33	0,345	0,371	0,523	0,189	2,46	2,133	0,638
	rad.	0,051	0,048	0,076	0,114	0,142	0,202	0,241	0,189	0,374	1,209	1,154	0,281	1,174	1,271
10	ax.						0,216	0,399	0,569		0,282	5,19	7,22	5,29	1,542
	rad.						0,279	0,262	0,358		4,16	3,102	0,52	2,823	4,95
11	ax.						0,178	0,358			12,22	15,27	16,9	15,73	11,53
	rad.						0,385	0,639			17,89	6,19	0,441	6,62	14,62
12	ax.						0,188	0,33				32,82	36,22	30,82	
	rad.						0,439	0,675				6,22	1,795	7,67	
13	ax.						0,246	0,396				44,5	43,9	43,7	
	rad.			-	-		0,396	0,585				2,384	1,241	7,35	
14	ax.	0,046	0,073	0,96	0,145	0,2	0,309	0,443				50,4	48,5	49	
	rad.	0,036	0,045	0,069	0,12	0,198	0,315	0,428				4,53	1,227	6,51	

Tabulka 5.34: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s uzavřeným prstencem

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{43,9}{4,44 \cdot 4000} = 4,67 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,241}{4,44 \cdot 4000} = 0,13 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,67 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3721,67 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,13 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 105,2 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3721,67^2 + 105,2^2} = 3723,1 A \cdot m^{-1}$$

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	2,751					8,433	10,488	16,279	16,295	23,349	20,808	27,487	14,954	14,103
2		•				9,669	12,635	19,870	19,003	29,438	28,901	59,568	23,164	16,672
3						11,747	14,612	24,575	24,669	32,251	30,989	28,511	28,974	19,164
4						15,195	17,681	25,307	32,476	35,128	33,675	26,546	30,507	22,925
5						15,430	19,425	25,625	30,481	31,069	41,758	28,762	35,695	19,150
6						15,801	21,677	27,014	37,538	37,464	40,959	36,477	45,999	37,811
7						17,888	26,437	29,651	47,333	44,763	58,450	53,057	50,854	46,643
8	3,640	3,533	5,163	7,558	10,952	20,113	30,724	29,508	36,611	58,843	92,889	88,862	85,572	64,081
9	4,483	4,476	6,536	10,135	13,614	24,039	34,642	33,349	44,659	111,672	99,134	209,903	206,405	120,562
10						29,912	40,466	56,990		353,474	512,581	613,662	508,321	439,527
11						35,958	62,094		-	1836,669	1396,833	1433,187	1446,794	1578,469
12						40,485	63,696				2831,845	3074,322	2692,462	
13						39,521	59 <i>,</i> 888				3777,902	3723,114	3756,706	
14	4,952	7,270	81,594	15,956	23,858	37,407	52,220				4289,889	4112,908	4190,480	

Tabulka 5.35: Intenzita H vypočtená z naměřených hodnot induktoru stíněného transformátorovými plechy s uzavřeným prstencem

Obr 5.16: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným prstencem

5.5.4 Induktor stíněný transformátorovými plechy s uzavřenými závity nad stíněním

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,033					0,111	0,148	0,175	0,183	0,217	0,301	0,318	0,339	0,453
	rad.	0,056					0,069	0,16	0,172	0,082	0,11	0,214	0,314	0,306	0,475
2	ax.		-				0,122	0,178	0,16	0,206	0,242	0,306	0,405	0,386	0,544
	rad.						0,081	0,194	0,176	0,109	0,112	0,257	0,347	0,369	0,513
3	ax.						0,134	0,202	0,193	0,238	0,269	0,36	0,442	0,428	0,58
	rad.						0,085	0,231	0,21	0,117	0,127	0,225	0,368	0,294	0,563
4	ax.						0,137	0,216	0,22	0,272	0,312	0,407	0,487	0,439	0,638
	rad.						0,101	0,252	0,237	0,136	0,129	0,235	0,403	0,361	0,592
5	ax.						0,152	0,229	0,27	0,309	0,333	0,47	0,592	0,532	0,661
	rad.						0,127	0,28	0,283	0,171	0,168	0,272	0,432	0,338	0,609
6	ax.						0,168	0,251	0,296	0,342	0,447	0,588	0,692	0,636	0,719
	rad.						0,156	0,332	0,334	0,226	0,232	0,328	0,587	0,433	0,604
7	ax.						0,181	0,255	0,326	0,401	0,586	0,747	0,876	0,782	0,799
	rad.						0,209	0,36	0,387	0,298	0,334	0,345	0,468	0,323	0,657
8	ax.	0,042	0,054	0,07	0,087	0,135	0,178	0,241	0,366	0,38	0,665	1,121	1,312	1,135	0,933
	rad.	0,047	0,073	0,102	0,154	0,203	0,256	0,313	0,474	0,436	0,583	0,581	0,525	0,462	0,792
9	ax.	0,027	0,042	0,045	0,071	0,104	0,166	0,302	0,419	0,375	0,696	2,092	2,762	2,036	0,99
	rad.	0,047	0,074	0,112	0,173	0,232	0,308	0,394	0,43	0,544	1,303	1,071	0,362	1,283	1,383
10	ax.						0,13	0,198	0,504		1,151	5,8	7,03	5,7	1,592
	rad.						0,374	0,526	0,573		5,07	3,109	0,507	3,077	5,23
11	ax.						0,105	0,031			12,72	16,06	16,99	15,64	8,98
	rad.						0,415	0,645			18,48	7,07	0,516	7,53	16,87
12	ax.						0,193	0,225				32,28	29,72	31,14	
	rad.						0,426	0,632				6,04	1,173	7,58	
13	ax.						0,274	0,42				43,2	43,2	44,5	
	rad.						0,365	0,499				3,2	0,619	7,3	
14	ax.	0,064	0,096	0,137	0,205	0,27	0,346	0,481				52,3	50,2	51,4	
	rad.	0,02	0,036	0,057	0,095	0,171	0,239	0,369				1,92	2,847	6,75	

Tabulka 5.36: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s uzavřenými závity

Z naměřených hodnot, které udává Tabulka 5.36, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.37. Na Obr 5.17 jsou graficky znázorněny tyto hodnoty. Tabulka 5.38 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 18,07 A

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	5,510					11,080	18,477	20,802	17,000	20,625	31,309	37,886	38,715	55,645
2		-				12,415	22,320	20,164	19,758	22,606	33,877	45,213	45,270	63,389
3						13,453	26,014	24,179	22,483	25,218	35,990	48,758	44,019	68,525
4						14,429	28,137	27,414	25,781	28,621	39,842	53,588	48,183	73,784
5						16,792	30,665	33,159	29,939	31,619	46,036	62,129	53,433	76,194
6						19,436	35,284	37,834	34,752	42,694	57,079	76,928	65,226	79,606
7						23,439	37,400	42,897	42,354	57,181	69,755	84,197	71,727	87,694
8	5,344	7,698	10,487	14,995	20,667	26,433	33,489	50,768	49,030	74,973	107,038	119,799	103,886	103,750
9	4,595	7,213	10,233	15,853	21,554	29,662	42,085	50,898	56,013	125,233	199,240	236,151	204,014	144,187
10						33,567	47,646	64,693		440,747	557,881	597,517	549,130	463,460
11						36,290	54,743		_	1901,891	1487,576	1440,993	1471,551	1620,152
12						39,648	56,872				2784,033	2521,478	2716,980	
13						38,691	55,293				3672,318	3662,660	3822,915	
14	5,684	8,692	12,579	19,154	27,094	35,650	51,394				4436,724	4262,548	4394,853	

Tabulka 5.37: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s uzavřenými závity

Tabulka 5.38: Teploty naměřené na stínění, induktoru a na uzavřených závitech [°C]

Prvek		Svazel	k č. 1	Svazel	k č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
27,2	31	25,8	28	26	28,8	Vrchní část	32,9	42,7
						Střed	30,1	36,3
						Dolní část	31,3	41,2

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{43,2}{4,44 \cdot 4000} = 4,60 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,619}{4,44 \cdot 4000} = 6,59 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,60 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3662,28 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{6,59 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 52,47 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3662,28^2 + 52,47^2} = 3662,6 A \cdot m^{-1}$$

H se stíněním a uzavřenými závity

Obr 5.17: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřenými závity

5.5.5 Induktor stíněný transformátorovými plechy s uzavřeným dutým vodičem nad stíněním

Z naměřených hodnot Tabulka 5.40, které udává, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.41. Na Obr 5.18 jsou graficky znázorněny tyto hodnoty. Tabulka 5.39 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 29, 1 A

Prvek		-	Svazel	(č. 1	Svazel	(č. 2	Induktor		
Začátek	Konec		Začátek	Konec	Začátek	Konec		Začátek	Konec
24,7	25,5		24,6	26,7	24,5	27,6	Vrchní část	28,7	36,4
							Střed	27,6	33
							Dolní část	28,3	37

Tabulka 5.39: Teploty naměřené na stínění, induktoru a na dutém vodiči [°C]

[V]		Α	В	С	D	E	F	G	н	I	J	К	L	м	N
1	ax.	0,018					0,07	0,087	0,156	0,112	0,144	0,16	0,159	0,202	0,144
	rad.	0,015					0,044	0,063	0,103	0,072	0,09	0,103	0,126	0,166	0,149
2	ax.						0,085	0,104	0,182	0,131	0,18	0,182	0,205	0,25	0,211
	rad.						0,052	0,06	0,12	0,091	0,094	0,102	0,142	0,196	0,19
3	ax.						0,092	0,115	0,183	0,166	0,206	0,237	0,241	0,323	0,273
	rad.						0,062	0,072	0,115	0,09	0,1	0,148	0,161	0,25	0,219
4	ax.						0,111	0,134	0,185	0,201	0,236	0,299	0,286	0,371	0,34
	rad.						0,072	0,081	0,108	0,114	0,129	0,142	0,182	0,255	0,261
5	ax.						0,117	0,142	0,205	0,264	0,274	0,317	0,344	0,393	0,34
	rad.						0,083	0,089	0,126	0,142	0,137	0,175	0,21	0,266	0,3
6	ax.						0,126	0,159	0,235	0,243	0,352	0,392	0,432	0,48	0,401
	rad.						0,098	0,113	0,144	0,16	0,196	0,2	0,191	0,338	0,329
7	ax.						0,14	0,173	0,22	0,278	0,442	0,574	0,692	0,631	0,461
	rad.						0,126	0,143	0,179	0,245	0,325	0,279	0,207	0,36	0,362
8	ax.	0,031	0,033	0,034	0,06	0,067	0,157	0,217	0,241	0,308	0,536	1,058	1,297	1,099	0,519
	rad.	0,035	0,054	0,072	0,099	0,129	0,166	0,17	0,191	0,376	0,621	0,574	0,223	0,517	0,642
9	ax.	0,026	0,036	0,045	0,054	0,081	0,176	0,26	0,312	0,536	0,647	2,243	3,036	2,384	0,579
	rad.	0,039	0,061	0,095	0,131	0,188	0,235	0,231	0,135	0,413	1,535	1,299	0,226	1,456	1,776
10	ax.						0,165	0,32	0,772		2,186	6,56	7,74	6,65	2,228
	rad.						0,331	0,419	0,432		5,39	3,764	0,254	3,079	5,33
11	ax.						0,114	0,269			15,11	17,47	18,79	15,62	6,81
	rad.						0,404	0,654			14,95	7,84	0,852	4,17	13,06
12	ax.						0,145	0,229				32,29	31,92	33,39	
	rad.						0,448	0,65				8,78	2,879	8,91	
13	ax.						0,229	0,36				44,7	44,7	45	
	rad.						0,368	0,54				1,753	1,296	5,42	
14	ax.	0,054	0,076	0,114	0,169	0,217	0,306	0,425				51,7	50,5	51,3	
	rad.	0.02	0.04	0.066	0.102	0.193	0.27	0.374				2,266	2,096	2.321	

Tabulka 5.40: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s dutým vodičem

Tabulka 5.41: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s dutým vodičem

[A/m]	А	В	с	D	E	F	G	н	I	J	к	L	м	N
1	1,986					7,009	9,106	15,848	11,288	14,396	16,132	17,198	22,165	17,566
2		-				8,447	10,179	18,481	13,522	17,215	17,687	21,141	26,931	24,071
3						9,405	11,502	18,323	16,008	19,413	23,687	24,570	34,626	29,670
4						11,216	13,274	18,160	19,590	22,801	28,061	28,739	38,164	36,337
5						12,161	14,207	20,399	25,413	25,970	30,697	34,167	40,231	38,440
6						13,532	16,537	23,365	24,665	34,155	37,307	40,043	49,768	43,972
7						15,967	19,028	24,044	31,414	46,510	54,105	61,233	61,587	49,690
8	3,964	5,365	6,750	9,814	12,323	19,370	23,369	26,069	41,205	69,543	102,042	111,567	102,962	69,986
9	3,974	6,005	8,911	12,012	17,354	24,890	29,484	28,820	57,364	141,217	219,737	258,089	236,815	158,360
10						31,354	44,695	74,996		493,087	641,167	656,512	621,250	489,740
11						35,587	59,950			1801,974	1623,319	1594,561	1370,563	1248,642
12						39,919	58,424				2836,779	2717,006	2929,688	
13						36,744	55,019				3792,360	3791,039	3842,451	
14	4,882	7,281	11,167	16,734	24,620	34,596	47,994				4387,080	4284,828	4353,411	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{44,7}{4,44 \cdot 4000} = 4,76 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,296}{4,44 \cdot 4000} = 0,14 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,76 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3789,45 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,14 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 101,86 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3789,45^2 + 101,86^2} = 3791,03 A \cdot m^{-1}$$

Obr 5.18: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným dutým vodičem

5.5.6 Induktor stíněný transformátorovými plechy s uzavřeným plným vodičem nad stíněním

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,029					0,093	0,124	0,152	0,184	0,196	0,207	0,208	0,235	0,187
	rad.	0,023					0,066	0,08	0,099	0,103	0,148	0,167	0,215	0,222	0,204
2	ax.						0,115	0,192	0,187	0,208	0,207	0,345	0,287	0,269	0,251
	rad.						0,075	0,117	0,116	0,124	0,169	0,262	0,261	0,26	0,202
3	ax.						0,126	0,204	0,224	0,267	0,276	0,374	0,359	0,315	0,27
	rad.						0,077	0,126	0,143	0,135	0,16	0,305	0,261	0,267	0,217
4	ax.						0,145	0,254	0,26	0,364	0,324	0,331	0,392	0,341	0,292
	rad.						0,081	0,106	0,144	0,176	0,19	0,201	0,276	0,296	0,226
5	ax.						0,166	0,23	0,303	0,325	0,356	0,394	0,468	0,394	0,345
	rad.						0,092	0,135	0,193	0,177	0,221	0,369	0,327	0,303	0,337
6	ax.						0,163	0,249	0,279	0,446	0,447	0,515	0,569	0,475	0,408
	rad.						0,116	0,174	0,202	0,232	0,271	0,432	0,324	0,329	0,371
7	ax.						0,191	0,26	0,323	0,408	0,568	0,707	0,807	0,674	0,49
	rad.						0,17	0,212	0,236	0,295	0,374	0,396	0,361	0,304	0,472
8	ax.	0,036	0,06	0,062	0,076	0,116	0,163	0,284	0,34	0,493	0,7	1,132	1,417	1,152	0,622
	rad.	0,043	0,067	0,091	0,131	0,176	0,211	0,259	0,278	0,441	0,627	0,535	0,399	0,602	0,728
9	ax.	0,033	0,045	0,071	0,09	0,105	0,191	0,334	0,392	0,514	0,877	1,859	2,419	1,949	0,796
	rad.	0,047	0,072	0,117	0,152	0,217	0,284	0,341	0,279	0,439	1,553	1,388	0,43	1,21	1,721
10	ax.						0,129	0,329	0,712		0,945	6,41	8,01	3,957	1,242
	rad.						0,356	0,48	0,62		3,603	2,533	0,32	2,375	3,609
11	ax.						0,118	0,251			12,45	13,8	14,44	14,09	12,51
	rad.						0,427	0,639			12,53	7,64	0,75	5,99	13,34
12	ax.						0,184	0,258				23,25	23,12	23,79	
	rad.						0,442	0,639				7,91	0,601	6,92	
13	ax.						0,293	0,364				29,88	29,14	30,57	
	rad.						0,384	0,547				4,41	2,849	1,639	
14	ax.	0,081	0,105	0,149	0,198	0,25	0,34	0,459				33,11	32,56	32,63	
	rad.	0,024	0,05	0,074	0,128	0,199	0,277	0,396				5,02	1,327	2,599	

Tabulka 5.42: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s plným vodičem

Z naměřených hodnot, které udává, Tabulka 5.42 byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.43. Na Obr 5.19 jsou graficky znázorněny tyto hodnoty. Tabulka 5.44 udává naměřené teploty na začátku měření a po jeho ukončení. Naměřený proud protékající prvkem: I = 31,6 A

Tabulka 5.43: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s plným vodičem

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	3,138					9,668	12,510	15,378	17,876	20,821	22,547	25,360	27,406	23,461
2		-				11,639	19,061	18,655	20,529	22,654	36,725	32,887	31,716	27,314
3						12,518	20,327	22,529	25,364	27,045	40,912	37,627	35,006	29,366
4						14,080	23,333	25,196	34,276	31,842	32,829	40,643	38,280	31,303
5						16,089	22,609	30,455	31,373	35,522	45,763	48,400	42,136	40,885
6						16,960	25,752	29,201	42,619	44,315	56,986	55,509	48,984	46,750
7						21,677	28,440	33,913	42,682	57,653	68,697	74,947	62,682	57,677
8	4,754	7,625	9,335	12,839	17,870	22,603	32,585	37,232	56,075	79,667	106,143	124,798	110,192	81,175
9	4,868	7,198	11,602	14,975	20,437	29,015	40,465	40,790	57,304	151,198	196,679	208,286	194,479	160,748
10						32,100	49,333	80,037		315,776	584,298	679,590	391,239	323,564
11						37,556	58,201		-	1497,435	1337,217	1225,802	1297,940	1550,378
12						40,588	58,420				2081,968	1960,662	2100,388	
13						40,948	55,701				2560,520	2482,125	2595,297	
14	7,162	9,859	14,104	19,988	27,088	37,178	51,392				2838,982	2762,569	2774,972	

Tabulka 5.44: Teploty naměřené na stínění, induktoru a plném vodiči [°C]

Prvek		Svazel	k č. 1	Svazel	k č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
24,7	27,6	25,7	28,1	26,4	29,3	Vrchní část	29,9	40,3
						Střed	28,8	36,9
						Dolní část	28,8	43,1

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{29,14}{4,44 \cdot 4000} = 3,1 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{2,849}{4,44 \cdot 4000} = 0,3 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{3,1 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 2470,35 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,3 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 241,52 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{2470,35^2 + 241,52^2} = 2482,12 A \cdot m^{-1}$$

Obr 5.19: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s uzavřeným plným vodičem

5.5.7 Induktor stíněný transformátorovými plechy s otevřeným prstencem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.46, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.47. Na Obr 5.20 jsou graficky znázorněny tyto hodnoty. Tabulka 5.45 udává naměřené teploty na začátku měření a po jeho ukončení.

Prvek	Ĺ	Svazel	k č. 1	Svazel	(č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
26	29	25,2	27,8	25,6	29	Vrchní část	32,2	42,3
						Střed	30,5	38,6
						Dolní část	32,5	45,9

Tabulka 5.45: Teploty naměřené na stínění, induktoru a otevřeném prstenci[°C]

-															
[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	Ν
1	ax.	0,031					0,163	0,181	0,225	0,25	0,263	0,287	0,298	0,316	0,361
	rad.	0,039					0,1	0,103	0,127	0,113	0,155	0,249	0,163	0,214	0,259
2	ax.		-				0,172	0,215	0,284	0,299	0,337	0,429	0,399	0,405	0,486
	rad.						0,124	0,124	0,158	0,151	0,179	0,29	0,227	0,323	0,4
3	ax.						0,19	0,223	0,34	0,367	0,435	0,503	0,465	0,452	0,483
	rad.						0,157	0,16	0,183	0,2	0,204	0,361	0,221	0,314	0,289
4	ax.						0,229	0,24	0,341	0,447	0,522	0,635	0,584	0,517	0,569
	rad.						0,205	0,217	0,239	0,252	0,262	0,398	0,301	0,308	0,328
5	ax.						0,231	0,259	0,398	0,514	0,628	0,777	0,781	0,725	0,668
	rad.						0,254	0,297	0,34	0,335	0,342	0,463	0,28	0,363	0,383
6	ax.						0,229	0,283	0,475	0,613	0,843	1,071	1,073	1,039	0,874
	rad.						0,328	0,393	0,453	0,52	0,463	0,463	0,258	0,358	0,489
7	ax.						0,218	0,251	0,49	0,743	1,108	1,55	1,717	1,55	1,234
	rad.						0,407	0,528	0,647	0,733	0,723	0,593	0,263	0,474	0,712
8	ax.	0,055	0,059	0,072	0,087	0,121	0,181	0,253	0,423	0,915	1,591	2,547	2,756	2,63	1,825
	rad.	0,081	0,117	0,163	0,223	0,316	0,454	0,653	0,949	1,321	1,333	0,839	0,271	0,854	1,304
9	ax.	0,053	0,082	0,1	0,127	0,173	0,229	0,265	0,338	0,799	2,671	4,41	5,67	4,96	0,877
	rad.	0,081	0,121	0,166	0,231	0,324	0,478	0,728	1,276	2,378	2,539	2,107	0,317	1,573	2,712
10	ax.						0,285	0,457	1,3		5,34	8,66	10,55	9,7	5
	rad.						0,437	0,599	0,935		6,82	4,23	0,298	3,83	6,76
11	ax.						0,293	0,414			16,53	19,64	21,17	19,72	16,83
	rad.						0,403	0,523			14,68	7,13	0,33	6,34	15,06
12	ax.						0,316	0,374				37,21	37,97	34,62	
	rad.						0,354	0,487				9,25	1,335	6,43	
13	ax.						0,365	0,453				49,3	48,3	48,4	
	rad.						0,271	0,497				8,46	2,491	4,48	
14	ax.	0,099	0,138	0,191	0,238	0,311	0,396	0,508				55,9	54,4	56	
	rad.	0,034	0,04	0,054	0,073	0,132	0,18	0,266				4,07	1,369	5,09	

Tabulka 5.46: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřeným prstencem

Tabulka 5.47: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným prstencem

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	4,223					16,212	17,655	21,903	23,258	25,880	32,211	28,795	32,354	37,666
2		-				17,976	21,041	27,551	28,397	32,349	43,899	38,916	43,916	53,361
3						20,895	23,267	32,733	35,432	40,731	52,487	43,646	46,657	47,716
4						26,056	27,430	35,302	43,502	49,514	63,532	55,698	51,017	55,678
5						29,106	33,407	44,376	52,012	60,621	76,678	70,336	68,736	65,278
6						33,913	41,056	55,645	68,146	81,535	98,915	93,556	93,163	84,902
7						39,141	49,562	68,804	88,481	112,160	140,690	147,257	137,408	120,777
8	8,300	11,108	15,106	20,293	28,686	41,434	59,368	88,082	136,229	175,960	227,335	234,767	234,418	190,150
9	8,206	12,391	16,429	22,348	31,137	44,933	65,678	111,904	212,670	312,414	414,337	481,425	441,123	241,632
10						44,229	63,872	135,752		734,311	817,051	894,734	884,099	712,805
11						42,240	56,547		-	1874,169	1771,306	1794,907	1756,040	1914,590
12						40,228	52,055				3250,488	3220,899	2985,106	
13						38,539	57,009				4240,502	4100,079	4120,654	
14	8,874	12,181	16,827	21,104	28,642	36,876	48,612				4751,472	4613,225	4766,976	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{48,3}{4,44 \cdot 4000} = 5,14 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{2,49}{4,44 \cdot 4000} = 0,26 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{5,14 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 4094,6 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,26 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 211,17 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{4094,6^2 + 211,17^2} = 4100 A \cdot m^{-1}$$

Obr 5.20: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným prstencem

5.5.8 Induktor stíněný transformátorovými plechy s otevřenými závity nad stíněním

[V]		Α	В	С	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,03					0,179	0,1	0,194	0,181	0,221	0,235	0,257	0,234	0,251
	rad.	0,034					0,079	0,062	0,102	0,076	0,108	0,128	0,133	0,131	0,147
2	ax.						0,115	0,11	0,241	0,229	0,292	0,342	0,357	0,307	0,358
	rad.						0,108	0,081	0,137	0,129	0,208	0,169	0,265	0,217	0,263
3	ax.						0,169	0,129	0,291	0,351	0,343	0,389	0,507	0,442	0,418
	rad.						0,139	0,116	0,187	0,175	0,161	0,224	0,359	0,293	0,284
4	ax.						0,199	0,172	0,304	0,38	0,467	0,55	0,606	0,56	0,47
	rad.						0,189	0,186	0,289	0,242	0,239	0,293	0,361	0,329	0,293
5	ax.						0,235	0,26	0,282	0,571	0,616	0,695	0,735	0,699	0,613
	rad.						0,247	0,271	0,28	0,314	0,312	0,255	0,339	0,32	0,365
6	ax.						0,24	0,253	0,349	0,647	0,825	0,98	1,026	0,98	0,828
	rad.						0,316	0,386	0,387	0,473	0,446	0,348	0,3	0,381	0,469
7	ax.						0,248	0,275	0,376	0,789	1,15	1,372	1,442	1,401	1,172
	rad.		-		-		0,38	0,483	0,577	0,719	0,722	0,486	0,3	0,474	0,798
8	ax.	0,046	0,06	0,079	0,085	0,107	0,13	0,237	0,396	1,012	1,552	1,949	2,094	1,886	1,615
	rad.	0,075	0,111	0,154	0,214	0,304	0,417	0,608	0,827	1,192	1,24	0,746	0,294	0,797	1,293
9	ax.	0,057	0,081	0,102	0,107	0,144	0,179	0,363	0,301	1,008	2,099	3,092	3,322	2,999	2,174
	rad.	0,047	0,114	0,165	0,217	0,316	0,456	0,684	1,018	1,667	1,914	1,548	0,37	1,469	2,028
10	ax.						0,263	0,454	0,877		3,117	9,28	10,27	9,31	3,44
	rad.						0,434	0,615	0,901		3,549	2,647	0,57	2,489	5,85
11	ax.						0,29	0,445			13,15	14,15	15,29	15,25	12,06
	rad.						0,399	0,533			11,76	5,94	0,565	6,7	12,31
12	ax.						0,305	0,462				26,13	23,06	23,12	
	rad.						0,372	0,507				6,65	1,317	7,26	
13	ax.						0,364	0,474				29,39	29,05	29,69	
	rad.						0,305	0,417				2,033	1,309	5,32	
14	ax.	0,103	0,136	0,179	0,238	0,297	0,394	0,529				32,89	32,14	32,89	
	rad.	0,027	0,03	0,05	0,087	0,136	0,22	0,331				1,493	1,12	5,56	

Tabulka 5.48: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřenými závity

Z naměřených hodnot, které udává Tabulka 5.48, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.49. Na Obr 5.21 jsou graficky znázorněny tyto hodnoty. Tabulka 5.50 udává naměřené teploty na začátku měření a po jeho ukončení.

[A/m]	Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	3,844					16,587	9,975	18,581	16,642	20,853	22,686	24,532	22,734	24,659
2		-				13,374	11,581	23,501	22,282	30,393	32,340	37,691	31,871	37,659
3						18,550	14,707	29,324	33,249	32,122	38,054	52,665	44,956	42,841
4						23,266	21,477	35,559	38,192	44,473	52,830	59,798	55,061	46,953
5						28,902	31,838	33,689	55,243	58,538	62,759	68,618	65,172	60,482
6						33,639	39,126	44,178	67,944	79,505	88,162	90,621	89,137	80,672
7						38,468	47,118	58,384	90,494	115,113	123,393	124,863	125,383	120,201
8	7,459	10,697	14,673	19,521	27,321	37,029	55,321	77,732	132,559	168,408	176,916	179,260	173,576	175,386
9	6,263	11,855	16,445	20,511	29,439	41,529	65,646	89,994	165,147	240,815	293,140	283,364	283,103	252,041
10						43,021	64,804	106,592		400,432	818,091	871,980	816,975	575,323
11						41,816	58,863		-	1495,554	1300,976	1297,096	1412,091	1460,938
12						40,781	58,149				2285,785	1958,099	2054,361	
13						40,259	53,520				2497,494	2465,216	2557,060	
14	9,027	11,807	15,756	21,482	27,692	38,256	52,901				2791,124	2726,326	2827,813	

Tabulka 5.49: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřenými závity

Tabulka 5.50: Teploty naměřené na stínění, induktoru a otevřených závitech [°C]

Prvek		Svazel	k č. 1	Svaze	k č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
22,8	27,1	22,9	26,3	22,8	27	Vrchní část	22,7	38,4
						Střed	22,7	34,8
						Dolní část	22,8	41,6

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{29,05}{4,44 \cdot 4000} = 3,09 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,309}{4,44 \cdot 4000} = 0,13 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{3,09 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 2462,71 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,13 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 110,97 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{2462,71^2 + 110,97^2} = 2465,2 A \cdot m^{-1}$$

Obr 5.21: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřenými závity

5.5.9 Induktor stíněný transformátorovými plechy s otevřeným dutým vodičem nad stíněním

Z naměřených hodnot, které udává Tabulka 5.52, byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.53. Na Obr 5.22 jsou graficky znázorněny tyto hodnoty. Tabulka 5.51 udává naměřené teploty na začátku měření a po jeho ukončení.

14041144 5.51.	reptory nume	Chi	e na sunem a m				
Svazel	κč. 1		Svazek	c č. 2	Induktor		
Začátek	Konec		Začátek	Konec		Začátek	Konec
28,6	29,8		29,7	31,7	Vrchní část	38,3	42,2
					Střed	36	40,3
					Dolní část	39	43,3

Tabulka 5.51: Teploty naměřené na stínění a induktoru [°C]

[V]		Α	В	С	D	Е	F	G	н	I	J	к	L	м	N
1	ax.	0,039					0,131	0,148	0,202	0,234	0,342	0,313	0,301	0,303	0,26
	rad.	0,034					0,084	0,095	0,108	0,122	0,148	0,117	0,189	0,192	0,241
2	ax.						0,14	0,194	0,225	0,314	0,34	0,348	0,39	0,375	0,358
	rad.						0,102	0,115	0,126	0,151	0,171	0,185	0,207	0,306	0,247
3	ax.						0,169	0,201	0,271	0,372	0,486	0,48	0,517	0,386	0,428
	rad.						0,138	0,144	0,161	0,194	0,184	0,279	0,276	0,231	0,251
4	ax.						0,171	0,24	0,312	0,39	0,511	0,535	0,602	0,571	0,487
	rad.						0,178	0,193	0,226	0,238	0,233	0,332	0,319	0,307	0,38
5	ax.						0,207	0,266	0,365	0,517	0,633	0,698	0,734	0,728	0,627
	rad.						0,22	0,275	0,3	0,32	0,321	0,39	0,39	0,376	0,418
6	ax.						0,163	0,273	0,391	0,646	0,78	0,961	1,014	0,983	0,841
	rad.						0,28	0,354	0,428	0,44	0,422	0,391	0,338	0,417	0,507
7	ax.						0,14	0,267	0,423	0,693	1,102	1,376	1,582	1,441	1,144
	rad.		-	-			0,355	0,492	0,586	0,676	0,722	0,519	0,296	0,471	0,66
8	ax.	0,047	0,054	0,074	0,076	0,1	0,149	0,275	0,413	0,864	1,562	2,288	2,674	2,486	1,736
	rad.	0,071	0,105	0,143	0,205	0,295	0,414	0,618	0,859	1,188	1,161	0,965	0,338	0,743	1,213
9	ax.	0,054	0,073	0,084	0,114	0,143	0,162	0,285	0,332	0,147	2,743	4,61	4,89	4,83	2,608
	rad.	0,066	0,106	0,155	0,215	0,298	0,42	0,675	1,191	2,172	2,46	1,705	0,304	1,671	2,6
10	ax.						0,243	0,405	1,056		4,54	8,86	9,87	9,34	4,99
	rad.						0,413	0,586	0,815		6,33	3,687	0,885	2,509	5,98
11	ax.						0,227	0,362			15,11	19,41	19,86	19,26	18,02
	rad.						0,385	0,522			12,73	6,43	1,274	5,53	13,95
12	ax.						0,293	0,332				33,18	33,27	35,47	
	rad.						0,342	0,498				6,72	1,001	5,62	
13	ax.						0,333	0,426				46	44,5	47,6	
	rad.						0,279	0,386				5,52	0,736	5,02	
14	ax.	0,095	0,126	0,17	0,224	0,293	0,377	0,471				52,3	50,01	51,7	
	rad.	0,025	0,044	0,045	0,075	0,116	0,175	0,247				5,92	0,826	4,06	

Tabulka 5.52:Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřeným dutým vodičem

Tabulka 5.53: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným dutým vodičem

[A/m]	Α	В	С	D	Е	F	G	н	I.	J	к	L	м	N
1	4,386					13,193	14,909	19,418	22,372	31,591	28,328	30,131	30,410	30,054
2						14,684	19,119	21,862	29,537	32,264	33,411	37,431	41,032	36,872
3						18,497	20,961	26,723	35,567	44,055	47,067	49,683	38,135	42,063
4						20,925	26,109	32,660	38,732	47,611	53,378	57,757	54,960	52,367
5						25,608	32,435	40,053	51,545	60,168	67,783	70,463	69,462	63,883
6						27,466	37,898	49,145	66,261	75,182	87,954	90,612	90,522	83,249
7						32,351	47,455	61,269	82,071	111,687	124,672	136,442	128,521	111,965
8	7,218	10,010	13,650	18,535	26,406	37,301	57,344	80,801	124,531	164,991	210,512	228,492	219,962	179,536
9	7,229	10,911	14,946	20,630	28,021	38,162	62,115	104,817	184,553	312,355	416,686	415,351	433,276	312,194
10						40,623	60,388	113,084		660,378	813,548	840,087	819,871	660,270
11						37,889	53,852		-	1674,957	1733,424	1687,094	1698,738	1931,911
12						38,178	50,740				2869,948	2821,744	3044,483	
13						36,829	48,734				3927,632	3773,008	4057,673	
14	8,328	11,314	14,908	20,026	26,715	35,236	45,086				4462,051	4240,181	4396,366	

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{44,5}{4,44 \cdot 4000} = 4,74 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{0,736}{4,44 \cdot 4000} = 7,84 \cdot 10^{-5} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{4,74 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 3772,49 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{7,84 \cdot 10^{-5}}{4\pi \cdot 10^{-7} \cdot 1} = 62,39 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{3772,49^2 + 62,39^2} = 3773 A \cdot m^{-1}$$

Obr 5.22: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným dutým vodičem

5.5.10 Induktor stíněný transformátorovými plechy s otevřeným plným vodičem nad stíněním

[V]		Α	В	с	D	E	F	G	н	I	J	к	L	м	N
1	ax.	0,04					0,186	0,213	0,184	0,253	0,353	0,421	0,251	0,292	0,334
	rad.	0,04					0,129	0,129	0,104	0,114	0,218	0,325	0,197	0,328	0,253
2	ax.		-				0,19	0,264	0,211	0,381	0,474	0,563	0,421	0,513	0,372
	rad.						0,142	0,156	0,139	0,16	0,231	0,347	0,232	0,194	0,269
3	ax.						0,261	0,259	0,275	0,32	0,465	0,671	0,447	0,482	0,495
	rad.						0,176	0,198	0,189	0,175	0,273	0,34	0,211	0,408	0,37
4	ax.						0,251	0,341	0,301	0,369	0,621	0,701	0,575	0,569	0,49
	rad.						0,224	0,272	0,225	0,217	0,218	0,241	0,24	0,331	0,308
5	ax.						0,21	0,353	0,441	0,504	0,662	0,715	0,724	0,738	0,637
	rad.						0,237	0,331	0,353	0,306	0,372	0,29	0,286	0,349	0,401
6	ax.						0,239	0,352	0,477	0,652	0,897	0,996	1,041	1	0,856
	rad.						0,31	0,394	0,462	0,471	0,475	0,321	0,265	0,351	0,526
7	ax.						0,239	0,323	0,506	0,808	1,138	1,446	1,673	1,481	1,161
	rad.						0,395	0,501	0,637	0,758	0,731	0,547	0,353	0,549	0,705
8	ax.	0,055	0,071	0,084	0,1	0,112	0,25	0,294	0,504	0,964	1,475	2,532	2,571	2,154	1,71
	rad.	0,078	0,111	0,161	0,225	0,311	0,442	0,629	0,921	1,159	1,334	0,967	0,403	0,81	1,375
9	ax.	0,067	0,081	0,105	0,124	0,162	0,24	0,263	0,4	0,854	2,509	3,304	3,602	3,12	2,174
	rad.	0,075	0,11	0,16	0,232	0,33	0,471	0,7	1,226	2,196	2,606	3,193	0,401	1,658	2,22
10	ax.						0,291	0,409	0,94		3,632	9,73	11,15	9,28	3,223
	rad.						0,451	0,646	1,089		6,36	2,872	0,595	3,63	0,639
11	ax.						0,302	0,405			16,14	19,49	21,56	17,27	16,13
	rad.						0,419	0,583			14,26	6,51	0,813	6,1	14,47
12	ax.						0,329	0,406				26,76	26,93	26,74	
	rad.						0,378	0,54				5,91	0,304	4,86	
13	ax.						0,383	0,492				33,24	32,41	33,34	
	rad.						0,305	0,42				2,809	1,732	7,99	
14	ax.	0,099	0,136	0,186	0,257	0,317	0,407	0,519				36,95	35,66	36,41	
	rad.	0,032	0,036	0,062	0,09	0,156	0,25	0,315				2,741	2,529	4,03	

Tabulka 5.54: Naměřené hodnoty napětí u induktoru stíněného transformátorovými plechy s otevřeným plným vodičem

Z naměřených hodnot, které udává, Tabulka 5.54 byly použitím rovnic 1.5 až 3.5 vypočteny hodnoty intenzity *H*, viz Tabulka 5.55. Na Obr 5.23 jsou graficky znázorněny tyto hodnoty. Tabulka 5.56 udává naměřené teploty na začátku měření a po jeho ukončení.

[A/m]	Α	В	с	D	E	F	G	н	I	I	к	L	м	N
1	4,796					19,189	21,111	17,918	23,525	35,172	45,088	27,050	37,229	35,521
2		-				20,109	25,996	21,420	35,032	44,701	56,066	40,751	46,495	38,918
3						26,687	27,638	28,288	30,920	45,712	63,770	41,904	53,535	52,391
4						28,520	36,978	31,859	36,290	55,795	62,841	52,821	55,805	49,064
5						26,844	41,024	47,888	49,985	64,375	65,410	65,993	69,207	63,811
6						33,184	44,790	56,296	68,187	86,047	88,713	91,065	89,846	85,173
7						39,139	50,534	68,966	93,922	114,663	131,063	144,951	133,901	115,149
8	8,091	11,170	15,395	20,873	28,023	43,049	58,861	89,004	127,799	168,598	229,772	220,618	195,090	186,018
9	8,526	11,581	16,224	22,301	31,165	44,814	63,393	109,326	199,748	306,674	389,520	307,246	299,526	263,413
10						45,502	64,818	121,956		620,893	860,044	946,587	844,759	278,548
11						43,786	60,179		-	1825,811	1742,000	1829,050	1552,711	1837,016
12						42,483	57,274				2323,249	2283,139	2304,023	
13						41,506	54,840				2827,968	2751,481	2906,433	
14	8,820	11,927	16,621	23,085	29,952	40,493	51,468				3141,047	3030,673	3105,511	

Tabulka 5.55: Intenzita H vypočtená z naměřených hodnot induktoru se stíněním a s otevřeným plným vodičem

Tabulka 5.56: Teploty naměřené na stínění, induktoru a otevřeném plném vodiči [°C]

Prvek		Svazel	k č. 1	Svazel	k č. 2	Induktor		
Začátek	Konec	Začátek	Konec	Začátek	Konec		Začátek	Konec
25,9	27,3	26,6	28,6	27,8	30,5	Vrchní část	32,8	41,9
						Střed	31	38,7
						Dolní část	32,3	44,7

$$B_{ax} = k \cdot \frac{u_{ax}}{4,44 \cdot f} = 4,73 \cdot \frac{32,41}{4,44 \cdot 4000} = 3,45 \cdot 10^{-3} T$$

$$B_{rad} = k \cdot \frac{u_{rad}}{4,44 \cdot f} = 4,73 \cdot \frac{1,732}{4,44 \cdot 4000} = 0,18 \cdot 10^{-3} T$$

$$H_{ax} = \frac{B_{ax}}{\mu_0 \cdot \mu_r} = \frac{3,45 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 2747,5 A \cdot m^{-1}$$

$$H_{rad} = \frac{B_{rad}}{\mu_0 \cdot \mu_r} = \frac{0,18 \cdot 10^{-3}}{4\pi \cdot 10^{-7} \cdot 1} = 146,8 A \cdot m^{-1}$$

$$H = \sqrt{H_{ax}^2 + H_{rad}^2} = \sqrt{2747,5^2 + 146,8^2} = 2751,4 A \cdot m^{-1}$$

Obr 5.23: Průběh H uvnitř a vně induktoru se stíněním transformátorovými plechy a s otevřeným plným vodičem

134

6 Zhodnocení výsledků

V této kapitole je provedeno porovnání a zhodnocení hodnot naměřených na modelu indukční pece, které jsou uvedeny v kapitole 5. Tyto hodnoty není bohužel možné srovnat s hodnotami získanými simulací. Je to z toho důvodu, že u simulace je uvažován sinusový průběh napájecího proudu a model je napájen pulzním zdrojem. Je možné pouze porovnat průběh intenzity magnetického pole. Pro ověření naměřených hodnot by bylo vhodné zopakovat provedená měření jinou metodou. Toto také nebylo možné uskutečnit, protože v době, kdy tato práce vznikala, nebyla indukční sonda provozuschopná.

6.1 Vliv stínění na model pece

Obr 6.1: Vliv stínění na H ve sloupci L při frekvenci 4 kHz

Obr 6.2: Vliv stínění na H ve sloupci L při frekvenci 10 kHz

Na grafech Obr 6.1 a Obr 6.2 je vyneseno porovnání průběhu intenzity magnetického pole pro nestíněný induktor a induktor stíněný svazky transformátorových plechů, ve sloupci L, tedy v ose induktoru. Uvnitř induktoru dojde při použití stínění, pro obě měřené frekvence, ke zvýšení intenzity *H*.

Grafy na Obr 6.3 a Obr 6.4 ukazují vliv stínění ve sloupci G, tedy v prostoru za stíněním, při obou měřených frekvencích. Oproti stíněnému induktoru je hodnota intenzity H u nestíněného několikanásobně vyšší.

Obr 6.3: Vliv stínění na H ve sloupci L při frekvenci 4 kHz

Obr 6.4: Vliv stínění na H ve sloupci L při frekvenci 10 kHz

Obr 6.5: Vliv stínění na H v řadě 14 mimo induktor při frekvenci 4 kHz

Obr 6.6: Vliv stínění na H v řadě 14 mimo induktor při frekvenci 10 kHz

Na Obr 6.5 a Obr 6.6 je patrné, že v blízkosti poloviční výšky induktoru je za stíněním intenzita magnetického pole téměř nulová.

Výše uvedené grafy Obr 6.1 až Obr 6.6 ukazují vliv stínění svazky transformátorových plechů uvnitř i mimo induktor. Naměřené průběhy odpovídají průběhům získaných simulací (kapitola 3.5). Je patrné, že v praxi je potřeba indukční kelímkovou pec stínit. Pokud by nebyla pec odstíněna, hodnota intenzity magnetického pole H mimo induktor by při napájecím proudu v řádech kA byla obrovská.

Z hlediska účinnosti je vhodné použít jako stínění svazky transformátorových plechů. To proto, že jejich použitím se intenzita *H* uvnitř induktoru zvýší, čímž se zvýší účinnost tavení. Tato výhoda je vykoupena velkou cenou svazků. Druhou možností jak pec odstínit, je použít dobře vodivý plášť. Ten má naopak na účinnost negativní vliv, viz kapitola 2. Jeho pořizovací cena je ale naopak nízká. Záleží tedy na provozovateli, jaká z variant je pro něj výhodnější.

6.2 Porovnání vlivu uzavřených přídavných prvků

Po provedení a vyhodnocení simulací se předpokládalo, že měřené uzavřené přídavné prvky budou mít na intenzitu magnetického pole vliv pouze v blízkosti nad induktorem, kde bude vlivem pole, vzniklého indukováním vířivých proudů v prvku, intenzita *H* mírně snížena. Dále se předpokládalo, že na intenzitu pole uvnitř induktoru nebudou mít prvky pozorovatelný účinek.

Na následujících grafech, Obr 6.7 a Obr 6.9, je porovnání intenzity *H* ve sloupcích L a K (Obr 6.8 a Obr 6.10), získané měřením při frekvencích 4 a 10 kHz, pro induktor se stíněním a stíněný induktor s jednotlivými uzavřenými prvky.

Obr 6.7: Intenzita H stínění a jednotlivých uzavřených prvků ve sloupci L při frekvenci 4 kHz

Porovnání intenzity uzavřených prvků ve sloupci K při frekvenci 4 kHz

Obr 6.8: Intenzita H stínění a jednotlivých uzavřených prvků ve sloupci K při frekvenci 4 kHz

Obr 6.9: Intenzita H stínění a jednotlivých uzavřených prvků ve sloupci L při frekvenci 10 kHz

Z měření vyplývá, že stejně jako u simulací, se u všech prvků projeví jejich vliv nad induktorem, kde intenzitu mírně potlačí. Jinak mají podle grafického porovnání mimo plného kruhu prvky jen velmi malý vliv. Měření s plným kruhem ukazuje výrazné potlačení intenzity nejen nad induktorem ale zároveň i uvnitř.

Obr 6.10: Intenzita H stínění a jednotlivých uzavřených prvků ve sloupci K při frekvenci 10 kHz

Pro další zhodnocení je použit procentní rozdíl intenzity v okolí prvku, Tabulka 6.1 až Tabulka 6.4, kde by se jeho vliv měl projevit nejvíce. Daný prvek je vždy srovnáván se stíněným induktorem bez přídavného prvku. Výpočet se provede podle vzorce:

$$H_{\%} = \frac{\left(H_{prvek} - H_{plechy}\right)}{H_{plechy}} \cdot 100 \quad [\%]$$

Takto provedeným výpočtem značí výsledné kladné hodnoty nárůst intenzity v daném bodě a záporné hodnoty naopak pokles.

100000		100000	nperer		100 002,000	i entente l	Pro II	112 (770	,0,0,10	·	p. a. e. e. j		
%	G	н	I	J	к	L	%	G	н	I	J	к	L
8	-44,69	-32,81	-69,48	-64,92	-62,30	-57,63	8	-42,65	-62,78	-69,49	-65,11	-25,84	-56,96
9	-45,64	-78,30	-75,05	-57,20	-54,81	-43,80	9	-37,42	-70,36	-76,70	-63,42	-75,76	-49,61
10	-22,88	-46,63		-34,24	-19,77	-12,43	10	-27,23	-47,51		-45,82	-33,88	-23,39
11	14,66		-	-3,84	-20,93	-15,96	11	18,70		-	7,34	-13,30	-6,06
12	23,01				-8,89	-1,32	12	27,21				4,00	15,68
13	22,14				-1,12	3,58	13	28,81				1,59	0,96
14	17,16				0,30	-2,86	14	23,64				-0,15	-1,46

Tabulka 6.1: Procentní porovnání vlivu uzavřeného prstence pro 4 kHz (vlevo) a 10 kHz (vpravo)

-1 douixa 0.2. 1 rocchini porovnani viiva azavici yon zavita pro $+$ kmz (vievo) a 10 kmz (vpravo	Tabulka 6.2: Procentní	porovnání vlivu uzo	avřených závitů pro	4 kHz (vlevo) a 10) kHz (vpravo)
---	------------------------	---------------------	---------------------	--------------------	----------------

%	G	н	I	J	к	L
8	-18,02	-7,72	-53,19	-57,10	-48,96	-41,41
9	-10,49	-72,28	-69,58	-53,00	-48,87	-48,26
10	-17,17	-39,18		-29,93	-18,18	-10,93
11	10,58		-	9,80	-12,90	-8,83
12	7,22				2,00	-1,53
13	21,32				-1,22	1,18
14	2,18				1,86	-1,44

$J \neq KII$	(vievo)	<i>ј и 10 к</i>	12 (vpr	110)		
%	G	н	I	J	к	L
8	-37,49	-35,96	-59,14	-55,54	-14,55	-41,97
9	-23,98	-54,76	-70,77	-58,98	-51,27	-43,31
10	-14,31	-40,42		-32,44	-28,04	-25,40
11	4,65			11,15	-7,66	-5,55
12	13,59				2,24	-5,12
13	18,92				-1,25	-0,68
14	21,68				3,26	2,13

%	G	н	I	J	к	L	%	G	н	I	J	к	L
8	-51,21	-20,26	-67,28	-58,17	-51,34	-46,77	8	-56,38	-67,12	-65,66	-58,76	-18,54	-45,96
9	-47,15	-75,25	-71,18	-49,26	-40,79	-33,91	9	-46,74	-74,39	-70,07	-53,74	-46,26	-38,04
10	-23,97	-28,58		-20,30	-13,52	-11,00	10	-19,62	-30,93		-24,41	-17,29	-18,04
11	-1,22		-	-8,28	-6,11	-15,09	11	14,60		-	5,31	0,76	4,52
12	13,27				-4,77	-0,48	12	16,69				4,18	2,24
13	10,19				0,79	1,30	13	18,33				1,98	2,80
14	7,25				0,20	-1,82	14	13,63				2,11	2,66

Tabulka 6.3: Procentní porovnání vlivu uzavřeného dutého vodiče pro 4 kHz (vlevo) a 10 kHz (vpravo)

Tabulka 6.4: Procentní porovnání vlivu uzavřeného plného vodiče pro 4 kHz (vlevo) a 10 kHz (vpravo)

%	G	н	I	J	к	L	%	G
8	-17,90	-6,84	-54,40	-50,73	-45,48	-42,06	8	-39,
9	-25,90	-73,08	-69,78	-42,67	-40,92	-45,34	9	-26,
10	-9,20	-19,43		-34,15	-30,18	-14,22	10	-11,
11	14,62		-	9,32	-5,26	-7,08	11	11,
12	24,15				-23,49	-21,75	12	16,
13	18,88				-21,67	-19,57	13	19,
14	13,38				-22,05	-25,39	14	21,

%	G	н	I	J	к	L
8	-39,18	-53,03	-53,27	-52,76	-15,26	-39,55
9	-26,90	-63,75	-70,10	-50,47	-51,90	-50,00
10	-11,28	-26,29		-51,59	-24,63	-15,15
11	11,26			-12,49	-17,00	-19,65
12	16,68				-23,54	-26,22
13	19,80				-31,14	-32,69
14	21,68				-33,92	-33,81

Z uvedených srovnání se ukazuje, že u všech prvků je intenzita v řadách 8 a 9, tedy nad úrovní prvku, silně utlumena. Naopak ve všech případech intenzita vzrostla v bodech G11 – G14, tedy v prostoru za stíněním. U ostatních bodů se vliv liší.

Z výše uvedeného plyne, že uzavřené přídavné konstrukční prvky mohou mít na intenzitu pole výrazný vliv. Míra tohoto vlivu záleží na rozměrech a materiálu těchto prvků. Také má vliv, jestli je prvek složený z jednoho, nebo více vzájemně odizolovaných částí. Plný vodič, který měl při měření největší vliv, je vyroben jako lanový vodič. Při vyšších frekvencích je již nutné brát v úvahu vliv skin efektu. Dále záleží na vzdálenosti tohoto prvku od induktoru. V praxi se také musí počítat s tím, že pokud by byl podobný prvek zařazen, bude se vlivem vířivých proudů zahřívat a bude nutné jej chladit.

6.3 Porovnání vlivu otevřených přídavných prvků

U měření otevřených prvků nebyl očekáván žádný jejich vliv na intenzitu *H*. To z toho důvodu, že pokud je prvek otevřený, neměl by se do něj indukovat žádný proud, protože se nemá jak uzavřít. Nemělo by tedy v jeho okolí vzniknout žádné další pole. Měření ale ukazuje, že otevřené prvky určitý vliv mají.

Stejně jako v předcházející kapitole, ukazují Obr 6.11 a Obr 6.12 grafické porovnání naměřených hodnot H jednotlivých prvků a stínění ve sloupci K a L pro frekvenci 4 kHz. Stejné porovnání je provedeno i pro hodnoty při frekvenci 10 kHz, Obr 6.13 a Obr 6.14.

Obr 6.12: Intenzita H stínění a jednotlivých otevřených prvků ve sloupci K při frekvenci 4 kHz

Obr 6.13: Intenzita H stínění a jednotlivých otevřených prvků ve sloupci L při frekvenci 10 kHz

Obr 6.14: Intenzita H stínění a jednotlivých otevřených prvků ve sloupci K při frekvenci 10 kHz

Z výše uvedených grafů je patrné, že jednotlivé prvky mají rozdílný vliv. Při frekvenci 4 kHz není u otevřených závitů patrný téměř žádný vliv. Otevřený prstenec a dutý vodič při obou měřených frekvencích mírně zvýšili intenzitu *H* uvnitř induktoru. Naopak výrazný pokles intenzity při obou frekvencích je patrný, stejně jako u uzavřených prvků, u plného vodiče. Při frekvenci 10 kHz mají největší vliv otevřené závity, které tlumí *H* uvnitř induktoru nejvýrazněji.

Pro další zhodnocení je stejně, jako u uzavřených prvků, provedena procentní změna intenzity magnetického pole.

$$H_{\%} = \frac{\left(H_{prvek} - H_{plechy}\right)}{H_{plechy}} \cdot 100 \quad [\%]$$

Tabulk	xa 6.5: I	Procentr	ií porov	mání vli	vu otevi	^r eného j	prstence	pro 4 k	Hz (vleı	vo) a 10	kHz (vj	oravo)
	-								-			

%	G	н	Ι	J	к	L
8	14,46	101,00	6,38	10,18	11,30	13,62
9	13,30	-32,61	1,69	16,37	12,75	11,71
10	13,50	30,65		9,85	42,87	66,65
11	6,79			20,49	8,45	7,08
12	4,49				12,68	11,44
13	5,30				13,56	13,94
14	0,85				12,92	9,21

%	G	н	-	J	к	L
8	10,81	11,11	13,53	4,34	81,49	13,72
9	18,64	-0,54	10,97	2,33	1,33	15,57
10	14,86	25,02		12,56	5,39	11,71
11	8,10			9,53	9,95	17,65
12	3,97				19,37	21,20
13	22,61				14,03	11,18
14	15,10				10,59	10,53

Tabulka 6.6: Procentní porovnání vlivu otevřených závitů pro 4 kHz (vlevo) a 10 kHz (vpravo)

%	G	н	I	J	к	L
8	13,91	89,47	3,23	1,32	1,77	6,59
9	2,13	-35,10	-0,60	8,59	1,33	7,05
10	14,08	6,15		8,37	-7,05	65,71
11	1,25		-	8,52	-1,55	2,60
12	3,85				-0,67	-1,16
13	-1,38				1,67	-1,33
14	5,69				2,49	1,81

%	G	н	I	J	к	L
8	3,26	-1,95	10,47	-0,13	41,24	-13,17
9	18,58	-20,01	-13,83	-21,12	-28,31	-31,98
10	16,54	-1,83		-38,62	5,53	8,87
11	12,53			-12,60	-19,25	-14,98
12	16,14				-16,06	-26,32
13	15,11				-32,84	-33,15
14	25,25				-35,04	-34,68

Tabulka 6.7: Procentní porovnání vlivu otevřeného dutého vodiče pro 4 kHz (vlevo) a 10 kHz (vpravo)

%	G	н	I	J	к	L
8	11,88	84,94	4,66	12,73	17,12	17,08
9	10,11	-32,38	9,24	26,61	13,39	19,41
10	8,49	26,42		15,43	43,50	76,93
11	3,29		-	14,62	6,45	19,94
12	1,61				13,25	16,86
13	1,43				15,03	16,03
14	0,73				13,00	11,23

%	G	н	I	J	к	L
8	7,03	1,92	3,78	-2,16	68,06	10,68
9	12,20	-6,84	-3,70	2,32	1,90	-0,29
10	8,60	4,14		1,23	4,94	4,88
11	2,95			-2,11	7,60	10,58
12	1,34				5,40	6,18
13	4,82				5,62	2,31
14	6,75				3,85	1,59

Tabulka 6.8: Procentní porovnání vlivu otevřeného plného vodiče pro 4 kHz (vlevo) a 10 kHz (vpravo)

%	G	н	I	J	к	L
8	18,13	85,73	-1,66	6,50	2,55	-3,22
9	14,01	-35,87	-3,08	3,38	-17,48	-17,26
10	15,90	8,86		-14,45	-13,33	-3,32
11	11,73			-32,28	-61,40	-70,72
12	31,89				-19,19	-17,19
13	13,18				-19,68	-20,72
14	13,35				-21,51	-23,26

%	G	н	I	J	к	L			
8	9,86	12,27	6,51	-0,02	83,44	6,87			
9	14,51	-2,83	4,23	0,45	-4,74	-26,24			
10	16,57	12,31		-4,82	10,94	18,18			
11	15,04			6,70	8,13	19,89			
12	14,39				-14,68	-14,09			
13	17,95				-23,95	-25,39			
14	21,86				-26,89	-27,39			
Z procentních tabulek lze usoudit, že ve sloupci G, tedy v prostoru za stíněním, stejně jako u uzavřených prvků, dochází téměř ve všech bodech k nárůstu intenzity. K nárůstu u většiny případu také dochází v řadě 8, tedy nad induktorem.

Po vyhodnocení těchto naměřených hodnot bylo na modelu pece provedeno měření vlastní indukčnosti stejným měřicím přístrojem jako v kapitole 4. Výsledky tohoto měření jsou uvedeny v Příloze V.

Možným vysvětlením působení otevřených prvků je vliv hloubky vniku naindukovaných proudů. Při dostatečné hloubce vniku by se v prvku teoreticky mohl proud uzavřít, čímž by se v jeho okolí vytvořilo magnetické pole. Vzhledem k rozměrům by tento jev měl u měřených prvků nejdříve nastat u prstence.

Z naměřených hodnot nelze jednoznačně říci, jaký vliv na intenzitu *H* budou tyto prvky mít. Stejně jako u prvků uzavřených bude záležet na tvaru, vlastnostech materiálu a vzdálenosti od induktoru.

Oproti prvkům uzavřeným mají otevřené prvky tu výhodu, že je lze případně umístit v horní části pece blíže k induktoru. Uzavřeným prvkům zde v tom brání odlévací hubice pece.

Závěr

Tato diplomová práce se zabývá vlivem stínění, uzavřených a otevřených přídavných prvků na velikost intenzity magnetického pole *H* indukční kelímkové pece. Pro zjištění tohoto vlivu byla měřena vlastní indukčnost na fyzikálním modelu. Dále bylo provedeno měření na modelu indukční pece při dvou frekvencích, 4 a 10 kHz. Stejný model byl nasimulován v simulačním programu RillFEM 2D.

První kapitola je věnována teorii indukčního ohřevu. Jsou v ní odvozeny základní vztahy pro obecné a válcové elektromagnetické vlnění. Konec kapitoly naznačuje dva postupy pro výpočet indukčního zařízení.

Druhá kapitola přibližuje indukční kelímkovou pec. Dále jsou zde uvedeny jednotlivé druhy stínění (pomocí svazků transformátorových plechů a vodivého pláště) a jejich porovnání.

V následující kapitole je provedeno vyhodnocení simulací v programu RillFEM 2D. Tyto simulace byly provedeny pro stejné frekvence jako měření, ale zavedením zjednodušujících předpokladů se simulace stala frekvenčně nezávislá. Jsou zde tedy uvedeny pouze výsledky pro frekvenci 4 kHz. Použitím 2D simulačního pole bylo nemožné provést simulaci otevřených prvků. Pro ně by bylo potřeba použít 3D simulační program.

Měřením vlastní indukčnosti na fyzikálním modelu, popsaném v kapitole 4, bylo zjištěno působení obou druhů stínění na indukčnost cívky. Přidání prvků nemělo na vlastní indukčnost téměř žádný vliv. Stejným měřicím přístrojem bylo později změřeno působení přídavných prvků na vlastní indukčnost modelu pece (Příloha V), opět bez výraznějšího vlivu prvků.

Měření na modelu indukční pece, popsané v kapitole 5, probíhalo při výše zmíněných frekvencích pro nestíněný induktor, induktor stíněný svazky transformátorových plechů a pro stíněný induktor s jednotlivými uzavřenými a otevřenými přídavnými prvky. Všechna měření byla prováděna bez vsázky. Při měření na frekvenci 10 kHz jsou získané hodnoty intenzity H obecně menší, než při frekvenci 4 kHz. To je způsobeno frekvenční závislostí imaginární části impedance cívky Z_{21} (viz rov. 60.1). Dále se může velikost impedance zvýšit působením skin efektu v induktoru. Se zvyšující frekvencí se snižuje hloubka vniku a tedy i průřez vodiče, kterým proud protéká. Tím se opět zvyšuje impedance cívky, což má za následek snížení proudu, a tím i intenzity magnetického pole. Tento způsob měření je velmi náchylný na chybu, způsobenou lidským faktorem. Pro přesné změření hodnot je potřeba přikládat měřicí cívku pečlivě ve správném směru. I při malém vychýlení, obzvláště v blízkosti induktoru, může dojít k výchylce až v jednotkách volt. Další chybu vnáší do měření krátký nekroucený kabel, kterým je měřicí cívka opatřena.

Naměřené hodnoty bylo plánováno ověřit měřením pomocí indukční sondy, která ale v průběhu vypracování této práce nebyla provozuschopná.

Naměřené a nasimulované hodnoty nelze mezi sebou porovnávat, z důvodu napájení modelu pulzním zdrojem, zatímco simulace je provedena pro sinusový napájecí proud. Srovnatelný je alespoň průběh intenzity magnetického pole. Analytickým výpočtem, v příloze VI, byla určena efektivní hodnota intenzity *H* prázdného nestíněného induktoru.

Při rozšiřování této práce by bylo vhodné zopakovat a ověřit naměřené hodnoty pomocí jiné metody, např. indukční sondou. Měření by dále bylo možné rozšířit o určení vlivu stínění a prvků na induktor se vsázkou.

Použitá literatura

- [1] Langer, E.: Teorie indukčního a dielektrického tepla, Academia Praha, 1979
- [2] Rada, J. a kol.: Elektrotepelná technika, SNTL Praha, 1985
- [3] Langer, E., Kožený, J.: Elektrotepelná zařízení indukční, VŠSE v Plzni, 1982
- [4] Pavlíček, K.: Stínění indukční kelímkové pece, bakalářská práce, Plzeň 2011
- [5] Oficiální internetové stránky programu RillFEM dostupné na: www.rillfem.com (28. 4. 2013)
- [6] Kroupa, O.: Návrh a konstrukce zařízení pro měření parametrů elektromagnetického pole, diplomová práce, Plzeň 2007
- [7] Kalantarov, P. L., Cejtlin, L. A.: Rasčet induktivnostěj, ENERGIA, 1970

Seznam příloh

- **Příloha I -** Nagaokovy součinitele *α* [3]
- Příloha II Nagaokovy součinitele F [3]
- Příloha III Konstanta k pro výpočet vzájemné indukčnosti [7]
- Příloha IV Model indukční pece fotografie
- Příloha V Měření vlastní indukčnosti modelu pece
- Příloha VI Analytický výpočet pro prázdný induktor

Příloha I – Nagaokovy součinitele α [3]

đ	Å	d R	x	đ	Å
0,00	1,000000	0,54	0,806046	1,20	0,6475
0,02	0,991562	0,56	0,800125	1,25	0,6381
0,04	0,983223	0,58	0,794285	1,30	0,6290
0,06	0,974985	0,60	0,788525	1,35	0,6201
0,08	0,966846	0,62	0,782843	1,40	0,6115
0,10	0,958807	0,64	0,777240	1,45	0,6031
0,12	0,950867	0,66	0,771713	1,50	0,5950
0,14	0,943026	0,68	0,766262	1,55	0,5871
0,16	0,935284	0,70	0,760885	1,60	0,5795
0,18	0,927639	0,72	0,755582	1,65	0,5721
0,20	0,920093	0,74	0,750350	1,70	0,5649
0,22	0,912643	0,76	0,745190	1,75	0,5579
0,24	0,905290	0,78	0,740100	1,80	0,5511
0,26	0,898033	0,80	0,735079	1,85	0,5444
0,28	0,890871	0,82	0,730126	1,90	0,5379
0,30	0,883803	0,84	0,725239	1,95	0,5316
0,32	0,876829	0,86	0,720418	2,00	0,5255
0,34	0,869948	0,88	0,715662	2,10	0,5137
0,36	0,863159	0,90	0,710969	2,20	0,5025
0,38	0,856461	0,92	0,706339	2,30	0,4918
0,40	0,849853	0,94	0,701770	2,40	0,4816
0,42	0,843335	0,96	0,697262	2,50	0,4719
0,44	0,836905	0,98	0,692813	3,00	0,4292
0,46	0,830563	1,00	0,688423	3,50	0,3944
0,48	0,824307	1,05	0,6777	4,00	0,3654
0,50	0,818136	1,10	0,6673	5,00	0,3198
0,52	0,812049	1,15	0,6573	10,00	0,2033

Nagaokovy součinitele pro výpočet vlastní indukčnosti cívky

Příloha II – Nagaokovy součinitele F [3]

della	4.00					11/12				
dc/m	dw/12	0.8	0.9	1	1.1	1.2	1.4	1.6	1.8	2
0.1	0,08	1,22007	1,09103	0,98551	0,89803	0,82451	0,70810	0.62027	0,55172	0,49677
	0.1	1,22022	1.09112	0.98557	0.89807	0.82454	0.70812	0.62028	0.55172	0.49677
	0.12	1 22041	1 09123	0.98564	0.89811	0 82457	0 70813	0 62028	0.55173	0 49677
0.2	0.16	1 14452	1 03935	0.94757	0.86862	0 80074	0.69110	0 60707	0 54091	0 48759
0,2	0.18	1 14553	1 03994	0.94793	0.86886	0,80090	0.60110	0.60712	0 54094	0.48761
	0.10	1,14666	1,03054	0,04100	0,86013	0,80108	0,60128	0,60712	0,54034	0,40701
	0.22	1,14000	1,04000	0,04070	0,00913	0,00100	0,03120	0,60722	0,54030	0,40705
	0,22	1,14790	1,04132	0,94079	0,00942	0,00120	0,09130	0,00723	0,54101	0,40700
	0,24	1,14920	1,04211	0,94920	0,00794	0,00100	0,09150	0,00730	0,04100	0,46709
0,3	0,20	1,05/50	0,97080	0,89904	0,83013	0,70872	0,00720	0,58797	0,52490	0,47387
	0,28	1,00040	0,97846	0,90068	0,83081	0,70918	0,00744	0,58811	0,52505	0,47393
	0,3	1,06343	0,98023	0,90179	0,83154	0,76969	0,66770	0,58826	0,52515	0,47399
	0,32	1,06665	0,98212	0,90296	0,83232	0,77022	0,66798	0,58843	0,52525	0,47406
	0,34	1,07006	0,98411	0,90421	0,83314	0,77078	0,66828	0,58860	0,52536	0,47413
0,4	0,32	0,97837	0,91585	0,85042	0,78896	0,73335	0,63959	0,56527	0,50565	0,45702
	0,36	0,98763	0,92131	0,85386	0,79124	0,73493	0,64043	0,56577	0,50596	0,45723
	0,4	0,99786	0,92735	0,85766	0,79377	0,73668	0,64136	0,56632	0,50631	0,45747
	0,44	1,00901	0,93394	0,86182	0,79653	0,73860	0,64238	0,56692	0,50670	0,45773
	0,48	1,02105	0,94105	0,86631	0,79952	0,74067	0,64349	0,56758	0,50712	0,45801
0,5	0,4	0,92510	0,86862	0,80854	0,75158	0,69971	0,61167	0,54145	0,48489	0,43863
	0,45	0,94053	0,87783	0,81442	0,75552	0,70247	0,61317	0,54236	0,48548	0,43902
	0,5	0,95747	0,88797	0,82088	0,75987	0,70552	0,61482	0,54335	0,48612	0,43946
	0.55	0.97581	0,89896	0.82791	0,76460	0,70884	0.61663	0.54444	0.48683	0.43995
	0.6	0.99546	0.91075	0.83546	0,76969	0.71242	0.61859	0.54562	0.48759	0.44047
0.6	0.45	0.88143	0.82671	0.76961	0,71574	0.66674	0.58352	0.51702	0.46334	0.41936
0,0	0.5	0.89782	0.83667	0 77605	0 72013	0 70552	0.58524	0.51808	0 46404	0 41984
	0.55	0.91561	0.84748	0,78306	0 72492	0 70884	0.58714	0.51924	0.46480	0.42037
	0,00	0,03460	0,85011	0,70061	0,72402	0,71242	0,58010	0,51024	0,46562	0,42005
	0,65	0,05403	0.87140	0,79866	0,73559	0,71624	0,50313	0,52045	0,46651	0,42055
	0,05	0.07631	0,88455	0,90718	0,74142	0,72029	0,50130	0,52328	0,46031	0,42130
0.7	0,7	0.97031	0,00433	0,00710	0,74142	0,72023	0,55362	0,32320	0,40747	0,42223
0,7	0,55	0,88001	0,00123	0,74135	0,00743	0,63313	0,55025	0,49422	0,44213	0,40004
	0,0	0,00091	0,01103	0,74037	0,09220	0,04203	0,50025	0,49540	0,44337	0,40122
	0,05	0,09907	0,02313	0,75005	0,09747	0,04030	0,50259	0,49001	0,44440	0,40165
	0,7	0,91025	0,03309	0,70390	0,70299	0,00000	0,00409	0,49024	0,44045	0,40205
	0,75	0,93633	0,04700	0,77234	0,70002	0,00400	0,00712	0,49977	0,44045	0,40323
	0,8	0,95920	0,80078	0,78108	0,71494	0,05905	0,00908	0,50139	0,44704	0,40402
0,8	0,05	0,84910	0,77889	0,71041	0,00158	0,01300	0,53445	0,47245	0,42288	0,38247
	0,7	0,86542	0,78930	0,72345	0,00057	0,61726	0,53660	0,47383	0,42381	0,38313
	0,75	0,88261	0,80030	0,73090	0,67185	0,62115	0,53889	0,47529	0,42480	0,38384
	0,8	0,90059	0,81183	0,73874	0,67742	0,62525	0,54131	0,47684	0,42586	0,38459
	0,85	0,91927	0,82385	0,74693	0,68326	0,62956	0,54386	0,47847	0,42697	0,38538
	0,9	0,93857	0,83632	0,75545	0,68934	0,63406	0,54653	0,48019	0,42815	0,38622
0,9	0,7	0,81812	0,74756	0,68600	0,63257	0,58611	0,50990	0,45045	0,40302	0,36441
	0,75	0,83237	0,75690	0,69247	0,63724	0,58959	0,51199	0,45181	0,40395	0,36508
	0,8	0,84735	0,76675	0,69930	0,64217	0,59328	0,51422	0,45325	0,40495	0,36579
	0,85	0,86302	0,77709	0,70648	0,64738	0,59717	0,51657	0,45479	0,40600	0,36655
	0,9	0,87934	0,78787	0,71400	0,65283	0,60126	0,51904	0,45640	0,40712	0,36735
	0,95	0,89623	0,79908	0,72183	0,65952	0,60554	0,52163	0,45809	0,40829	0,36819
	1	0,91365	0,81068	0,72995	0,66444	0,60999	0,52434	0,45987	0,40951	0,36908
	1,05	0,93153	0,82264	0,73836	0,67058	0,61461	0,52718	0,46172	0,41079	0,37000
1	0,8	0,79991	0,72584	0,66305	0,60947	0,56342	0,48868	0,43090	0,38506	0,34787
	0,85	0,81289	0,73462	0,66927	0,61405	0,56689	0,49081	0,43231	0,38603	0,34857
	0,9	0,82649	0,74384	0,67581	0,61887	0,57054	0,49306	0,43380	0,38707	0,34932
	0.95	0.84070	0,75349	0,68267	0.62393	0,57439	0,49544	0,43536	0,38816	0,35011
	1	0.85548	0,76355	0.68984	0.62922	0.57841	0,49792	0,43701	0.38930	0.35094
	1.05	0.87080	0.77401	0.69731	0.63475	0.58261	0.50052	0.43873	0.39050	0.35181
	11	0.88663	0.78484	0.70506	0.64049	0.58699	0.50324	0.44053	0.39176	0.35272
	1 15	0.90293	0 79604	0 71309	0 64645	0 59153	0.50606	0 44241	0 39307	0.35367
						0,00100	0,00000			

Nagaokovy součinitele pro výpočet vzájemné indukčnosti

Таблица 7-6

Příloha III – Konstanta k pro výpočet vzájemné indukčnosti [7]

Tabulka pro určení k pro výpočet vzájemné indukčnosti cívky a přídavného prvku

73 ξ²=0 0,01 0,02 0,03 0,01 0,05 2=0.0A 0,000 1,0000 1,0036 1.0071 1.0110 1.0149 1.0190 1.0232 005 1.0070 1,0116 1,0165 1,0213 1,0263 1,0314 1.0365 010 1,0148 1,0204 1,0261 1,0318 1,0375 1,0433 1.0492 015 1,0237 1,0299 1,0362 1,0424 1,0487 1,0551 1,0616 1.0535 1.0672 020 1,0334 1,0400 1,0468 1,0604 1.0742 1,0653 1.0726 1.0800 025 1,0438 1.0508 1,0580 1.0875 030 1,0548 1,0625 1,0702 1,0780 1,0858 1,0938 1,1018 035 1.0666 1,0748 1.0830 1,0913 1,0996 1,1081 1,1168 0,040 1,0791 1,0878 1,0965 1,1055 1,1142 1,1232 1,1324 0,07 0,08 0,09 0,10 0,11 $z^2 = 0.12$ 72 £2=0,06 0,000 1,0274 1,0318 1,0362 1,0408 1.0454 1,0500 1,0232 1,0365 1,0420 1,0471 1,0525 1,0580 1.0636 1,0693 005 1,0866 010 1,0492 1,0552 1,0613 1,0674 1,0737 1,0800 1,0616 1,0682 1,0749 1,0817 1,0886 1,0955 1,1026 015 1,1185 1,0958 1,1033 1,0742 1,0813 1,0886 1,1108 020 1,1028 1,1185 025 1,0875 1,0951 1,1107 1,1268 1,1349 1,1018 1,1100 1,1184 1,1268 030 1,1354 1,1440 1,1529 1,1344 035 1,1168 1,1255 1,1434 1,1529 1,1619 1,1714 0,040 1,1324 1,1418 1,1512 1,1608 1,1706 1,1806 1,1908

Значения k в формуле (7-28) для соленоида и кругового контура

Příloha IV - Model indukční pece – fotografie

Obr. 1: Měřený model indukční pece

Obr. 2: Přídavné prvky použité při měření

Obr.3: Měřicí cívka připojená k multimetru

Obr. 4: Vysokofrekvenční pulzní zdroj

Příloha V – Měření vlastní indukčnosti modelu pece

Po vyhodnocení naměřených hodnot a zjištění vlivu otevřených prvků bylo na modelu pece v laboratoři provedeno měření vlastní indukčnosti stejným měřicím přístrojem jako u měření fyzikálního modelu (kapitola 4). Cílem měření bylo určit, zda-li se vliv měřených prvků projeví, čímž by bylo možné vysvětlit neočekávané působení těchto prvků.

Změřené hodnoty

		L [μΗ]	Q [-]			
Induktor	bez stínění	205,7	7,65			
	Se stíněním	231,3	7,89			
Stíněný induktor s uzavřenými prvky						
	závity	231,2	7,85			
	dutý kruh	230,5	7,86			
	plný kruh	230,5	7,87			
Stíněný induktor s otevřenými prvky						
	prstenec	231,2	8			
	závity	231,4	8,02			
	dutý kruh	231,1	7,97			
	plný kruh	231,3	8,04			

Z naměřených hodnot je patrné, že prvky opět nemají na vlastní indukčnost induktoru téměř žádný vliv. Je patrná změna u činitele jakosti *Q*, což znamená změnu odporu cívky (rov. 11.2). Na jeho velikost má ale velký vliv přechodný odpor kontaktů, kdy v průběhu měření nebylo možné zamezit případné samovolné změně polohy kontaktů.

Příloha VI – Analytický výpočet pro prázdný induktor [6]

Při výpočtu se vychází z rozměrů laboratorního modelu, viz kapitola 5.2.1.

Nejprve je nutné určit vlastní indukčnost cívky. To lze provést měřením, nebo výpočtem, viz rov. 1.4.

$$L = \mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_1}{2}\right)^2 \cdot \frac{N^2}{l_1} \cdot \alpha_1$$
$$L = 4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,221}{2}\right)^2 \cdot \frac{42^2}{0,316} \cdot 0,761 = 204,7 \ \mu H$$

Měřením (Příloha V) byla na induktoru naměřena hodnota indukčnosti $L = 205,7 \ \mu H$. Maximální hodnota magnetického toku se spočte podle rovnice 6.2.

$$\Phi_{MAX} = \frac{L}{N_1} \cdot \sqrt{2} \cdot I_1$$

$$\Phi_{MAX} = \frac{204,7 \cdot 10^{-7}}{42} \cdot \sqrt{2} \cdot 23 = 1,585 \cdot 10^{-4} Wb$$

Nyní je možné spočítat maximální hodnotu intenzity magnetického pole a z ní hodnotu efektivní.

$$H_{MAX} = \frac{\Phi_{MAX}}{\mu_0 \cdot \mu_r \cdot \pi \cdot \left(\frac{d_1}{2}\right)^2}$$
$$H_{MAX} = \frac{1,585 \cdot 10^{-4}}{4\pi \cdot 10^{-7} \cdot \pi \cdot \left(\frac{0,221}{2}\right)^2} = 3289,95 \, A \cdot m^{-1}$$

$$H_{ef} = \frac{H_{MAX}}{\sqrt{2}}$$
$$H_{ef} = \frac{3289,95}{\sqrt{2}} = 2326 \ A \cdot m^{-1}$$