
A Survey on Methods for Omnidirectional Shadow
Rendering

Jan Navrátil
inavrati@fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

Jozef Kobrtek
xkobrt00@stud.fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

Pavel Zemčík
zemcik@fit.vutbr.cz

Faculty of Information
Technology

Brno University of Technology,
Brno, Czech Republic

ABSTRACT

This paper focuses on methods of rendering shadows cast by point light sources. The goal is to summarize advantages and
disadvantages of methods based on shadow mapping. We compare the traditional approach that exploits cube maps with the
Dual–Paraboloid mapping. All of the methods are implemented on the latest hardware and they exploit capabilities of current
GPUs. We also implemented optimization techniques which decrease the computational time. We examine the time the methods
spent in particular rendering passes and we evaluate their overall performance. Finally, we conclude the comparison with some
recommendations for typical applications in which the methods of interest can be exploited. We also suggest some direction of
future investigation.

Keywords: shadow mapping, rendering, GPU, performance, cube maps, Dual–Paraboloid mapping

1 INTRODUCTION

Shadows play very important role in modern graphics
applications as they increase overall visual cue from
a rendered image. The shadow mapping algorithm
[Wil78] and the technique based on shadow volumes
[Cro77] are the most popular techniques for adding
shadows to 3D scenes.

A well known disadvantage of the shadow mapping
algorithm is the limited resolution of textures which
store the depth information. Furthermore, it is also dif-
ficult to render shadows cast from point light sources.
The basic shadow mapping algorithm cannot cover the
whole environment with a single texture and thus addi-
tional computations are required. Such additional com-
putations decrease the performance especially in scenes
with a complex geometry.

The technique based on shadow volumes can eas-
ily render shadows from point light sources with per
pixel accuracy. However, a high fill rate rapidly reduces
the computational performance even for moderate sized
scenes. Even though some optimization approaches ex-
ist [LWGM04], interactive applications mostly use the
shadow mapping algorithm.

In this paper, we investigate several approaches for
rendering shadows cast from point light sources based
on the shadow mapping algorithm. Our contribution is
the evaluation of the advantages and disadvantages of

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

the approaches. We compare the existing methods es-
pecially with respect to their performance. We present
some figures related to the time spent on generation
of shadow maps on GPUs [MGR+05, Gru07] and also
some frame times related to a camera view. We will
also discuss the efficiency of all of the presented meth-
ods and potential implementation problems related to
GPUs. Since the paper is restricted to the specific case
of the shadow mapping algoritm we do not consider the
shadow volumes approaches [LWGM04, VBGP09] as
well as techniques that increase visual quality of shad-
ows [WSP04]. Because they add some additional pro-
cessing steps that might influence the results.

In Section 2, we refer to some techniques related to
shadow rendering. We also mention some existing sur-
veys. Section 3 introduces some issues that may arise
when implementing the presented methods. We demon-
strate all of the methods and their optimization in Sec-
tion 4 and in Section 5, we present our experiments and
discuss their results. We conclude our work in Section
6 where we also suggest some areas of future investiga-
tion.

2 RELATED WORK
For high quality shadow rendering, techniques such as
ray tracing can be used. However, the shadow volumes
algorithm or the shadow mapping approach are the most
frequently used in interactive applications. The shadow
volume technique [Cro77] provides per-pixel accuracy,
its main disadvantage is a huge required fill rate. This
fact does not allow for its common use in interactive ap-
plications. We can, however, find some methods that re-
duce the fill rate [LWGM04]. Nevertheless, the shadow
mapping is the most popular algorithm for shadow ren-

Journal of WSCG, Vol.20 89 http://www.wscg.eu 



dering. Basically, two approaches exist to render shad-
ows cast from omnidirectional light sources using the
shadow mapping algorithm. Firstly, shadow maps can
be represented by faces of a cube map [Ger04]. In
this case, six render passes are needed to fill the data
into the cube map faces. Secondly, the Dual–Parabo-
loid mapping technique [BAS02, OBM06] can be used.
It is capable of capturing the whole environment in
two render passes. However, the mapping is not linear
and thus not fully supported by contemporary graphics
hardware. Recently, different techniques have been in-
troduced [CVM11, HWL+11] that discuss other types
of parametrizatons.

All of the above mentioned methods are capable of
rendering shadows cast from omnidirectional (point)
light sources. However, they all have some limitations
and their usage may depend on the application and on
scene complexity. Some surveys of shadow rendering
have already been published, but they generally com-
pare visual quality of the shadows with respect to the
aliasing error [SWP10] or they address problem of soft
shadow rendering [HLHS03]. In these cases, mostly
directional light sources have been taken into account.
The omnidirectional light sources need an extra treat-
ment for creating shadow maps but also for reducing
the aliasing error. Vanek et al. [VNHZ11] did some
experiments with Dual–Paraboloid mapping technique
but they did not work with the cube maps approach at
all. They considered the cube map approach ineffective
for omnidirectional light sources.

3 ISSUES OF THE SHADOW MAP-
PING ALGORITHM

3.1 Overview of the Algorithm
The first step of the shadow mapping algorithm is cre-
ation of the shadow map. A virtual camera is placed
in the position of a light source. Then the scene is ren-
dered as viewed from the virtual camera and the depth
information is captured in the shadow map. In the sec-
ond step, the scene is rendered from a camera point of
view and the rendered pixels are compared with values
stored in the shadow map.

During the process of the creation of the shadow map,
the geometry has to be transformed to the light space
coordinate system. For this purpose, the transforma-
tion matrix has to provide an appropriate transformation
based on the type of the light source.

3.2 Linear Transformation and Interpo-
lation

In case of directional light sources, orthogonal projec-
tion is used since all of the light rays have the same
direction. For spotlights, perspective projection is used
since the spotlights cover only certain part of the scene.

a) b)

Figure 1: (left)A virtual camera for spotlights creates
the view frustum. The frustum covers only a part of
the scene based on a direction of the spotlight. (right)
Directional lights use orthographic projection, because
direction the light rays are parallel.

Then, the field-of-view in perspective projection is sim-
ilar to the concept of falloff angle in spotlights. (see
Figure 1). The perspective projection has a limited
field-of-view range and thus it can not cover the whole
environment. However, both projections are linear and
thus they do not allow for covering the 180 degree field-
of-view appropriately. To cover the whole environment,
multiple linear projections are required. This means
that if we want to use the basic shadow mapping algo-
rithm for omnidirectional light sources, multiple render
passes are necessary to create the shadow map (see Fig-
ure 2). Otherwise, a non-linear transformation has to be
used.

...

Figure 2: Multiple frusta have to be placed next to each
other to cover the whole environment.

When we apply a projection, represented by a ma-
trix, on vertices in the vertex shader, the fragments in
the fragment shader are linearly interpolated. Instead of
multiple linear projections, we can apply a non-linear
transformation. The non-linear transformation, how-
ever, does not work well with the interpolation scheme
used in graphics hardware. Straight lines are curved
after the transformation (see Figure 3). It causes un-
wanted artifact for large polygons. The solution for
these artifacts is to refine tessellation of the scene. For
small polygons, the artifacts are not noticeable.

3.3 Limited Resolution
Stamminger et al. [SD02] described two types of alias-
ing: perspective and projection. Perspective aliasing
is caused by limited resolution of shadow texture when

Journal of WSCG, Vol.20 90 http://www.wscg.eu 



linear nonlinear

Vertex

shader

Fragment

shader

Figure 3: Fragments, that have to be rasterized be-
tween two vertices, are linearly interpolated in frag-
ment shaders. Nonlinear parameterization can cause
that fragments do not lie on a line.

the shadow map is undersampled while projection alias-
ing appears when the direction of light rays is parallel
to the surface. Some methods exist that try to reduce
the perspective aliasing artifacts on shadow boundaries.
The shadow map can be filtered to make the shadow
smooth [Fer05].

4 OVERVIEW OF METHODS
In this section, we present an overview of various meth-
ods for rendering shadows cast from omnidirectional
light sources. We describe principles of each of the
methods and we discuss their advantages and disadvan-
tages. Furthermore, we present some optimization tech-
niques that eliminate some of the disadvantages in order
to achieve the best results for each of the methods. For
our purpose, we only deal with omnidirectional light
sources. It means that the light is emitted from a single
point in space: therefore, we neglect an extent of the
light source.

4.1 Cube Shadow Maps Technique
In Section 3, we mentioned how problematic it is to
cover the whole environment with traditional projection
transformations. In order to create shadow maps for
an omnidirectional light source, it is necessary to point
the virtual camera into six directions. The view direc-
tion of the virtual camera should point toward directions
defined by the axes of the local coordinate system of
the cube: positive X, negative X, positive Y, negative Y,
positive Z and negative Z. This is almost identical to the
way how a cube map for environment mapping is gen-
erated except that in this case depth values are stored
instead of color.

Basics of the Cube Shadow Maps

The faces of the cube represent shadow maps and di-
rections of the faces shows the particular direction for
the virtual camera (see Figure 4). In order to cover the
whole environment, the traditional shadow mapping al-
gorithm exploits cube maps to visualize shadows cast
from point lights. To fill the data in the cube shadow

map, six render passes have to be performed. The GPUs
generally support the cube shadow maps which are thus
easy to implement.

The biggest disadvantage of the cube shadow maps
is that six render passes are often too expensive. This
fact can cause rapid decrease of performance for com-
plex scenes with high number of polygons. Even if per-
object frustum culling is applied, rendering of shadows
is still very expensive compared to rendering of the rest
of the scene.

Figure 4: Illustration of the cube shadow maps tech-
nique. Each face of the cube stores depth values for
a certain part of the scene.

Efficient Cube Face Frustum Culling

The methods of reduction of the number of passes have
been investigated [KN05]. If the light source is outside
the view frustum, then we can skip rendering of at least
one face of the shadow map. This leads to the most
noticeable effect on the performance

For our experiments, we use the following technique
for efficient culling of cube map faces. A camera view
frustum and each cube map frustum are tested for their
mutual intersection. Those frusta that do not inter-
sect can be discarded for further rendering because they
do not affect the final image. The efficient culling
of arbitrary frustum F against the camera view frus-
tum V works as follows. The frusta are defined by
8 boundary points and 12 boundary edges. To deter-
mine whether the two frusta intersect, two symmetric
tests have to be performed. Firstly, it should be tested
whether a boundary point of one frustum lies inside
other frustum (see Figure 5a). Secondly, it should be
tested whether a boundary edge of one frustum inter-
sects one or more clip planes of other frustum (see Fig-
ure 5b) [KN05].

For each face of the cube shadow map, we investigate
whether the camera view frustum intersects the shadow
face frustum and vice versa. If it is not the case, the
shadow face frustum does not affect the scene and we
can skip the additional processing (see Figure 6).

It is also necessary to take into account shadow cast-
ers outside the view frustum. If we cull the shadow
caster against the view frustum, the projected shadow
may still be visible in the view frustum. On the other

Journal of WSCG, Vol.20 91 http://www.wscg.eu 



a) b)

V V

FF

Figure 5: A frustum consists of boundary points and
boundary edges. Two frusta intersect when (a) at least
one boundary point of the frustum F lies inside other
the frustum V or (b) at least one boundary edge of the
frustum F intersects a face of the frustum V .

hand, culling the shadow caster against the cube map
frustum draws invisible shadows as well. King et al.
[KN05] suggest to use frustum-frustum intersection test
described above for the shadow casters as well. Since
we use point light sources, rays are emitted from a sin-
gle point towards all shadow casters. This is analogous
to the perspective projections. If the shadow casters are
enclosed by bounding objects, frusta representing the
projected shadows can be created [KN05] and then the
frustum-frustum test can be applied in this case as well.
These tests are performed once per frame.

Cullable frusta
Cullable frusta

Cullable frusta

Figure 6: If the light source lies outside the camera view
frustum, at least one face is cullable.

4.2 Dual–Paraboloid Mapping Algorithm
In the following text, we will discuss the Dual–Parab-
oloid Mapping algorithm (DPSM) [BAS02]. The map-
ping is based on two paraboloids attached back-to-back,
each capturing one hemisphere:

f (x,y) =
1
2
− 1

2
(x2 + y2), x2 + y2 ≤ 1 (1)

In principle, a single hemisphere mapping can be
imagined as an exploitation of a totally reflective mir-
ror which reflects incident rays from the hemisphere
into the direction of the paraboloid (see Figure 7). The
rays may carry some information about the environ-
ment (mostly distance to the light) and the information
can be stored into a texture. The texture coordinates are

computed according to coordinates of the point where
the ray is reflected. The Dual–Paraboloid mapping ba-
sically maps 3D space to 2D which is represented by
the shadow map.

The algorithm needs only two render passes to cap-
ture the whole environment. Thus, it is more efficient
than the cube shadow maps technique. Other parame-
terization can be certainly found (spherical, cube map-
ping etc.) but the proposed parabolic parameterization
maintains its simplicity and performance, e.g. in GPU
implementation [OBM06]. It minimizes the amount of
used memory and the number of render passes that are
necessary to cover the whole environment.

Figure 7: Two paraboloids attached back-to-back can
capture the environment from all directions.

Nevertheless, the DPSM algorithm has also some dis-
advantages. While in the cube shadow map approach,
all the transformations needed to create the shadow
map are linear, they do not need any extra treatment
on GPUs. This mainly concerns interpolation process
between vertex and fragment shader (see Sec 3). When
using the DPSM algorithm, the rendered scene needs to
be finely tessellated because the mapping is not linear
and thus it does not work well for large polygons. It
may, however, introduce new bottlenecks.

4.3 Limitations of Geometry Shader
It is also possible to exploit both shadow mapping
methods utilizing a geometry shader in order to reduce
the number of render passes from six (two in Dual–Pa-
raboloid mapping algorithm) to a single one [Eng08].
In this case, we exploited capablities of the frequently
used graphics card, i.e., NVIDIA GeForce GTX560Ti,
which supports geometry shaders.

The core of this method is usage of multiple render
targets for and rendering all of the six cube map faces
at once. The geometry shader transforms each of the
incoming triangles with view-projection matrix of the
corresponding cube. A naive approach sends all the
incoming geometry data to all render targets, produc-
ing three to five times more geometry data than neces-
sary. Such data is, however, anyhow discarded in the
following rendering phases by the rasterizer. This leads
to a massive performance penalty, as seen in Table 1.
The results were measured on the same scene with the
shadow map resolution set to 10242.

Journal of WSCG, Vol.20 92 http://www.wscg.eu 



avg. FPS
Cube6 6.19
Cube6Optim 20.3
DP 18.81
DPOptim 30.90

Table 1: All the methods exploit geometry shader and
render the shadow maps in one pass.

This method was further optimized by testing each
object bounding sphere against view frusta of the cube
map faces, or, in case of Dual–Paraboloid mapping al-
gorithm, against plane dividing scene in place of both
paraboloids. Cube shadow mapping method was sped
up by 227%, but still resulting in a very poor perfor-
mance. Dual–Paraboloid mapping approach did not
benefit that much from optimization, resulting in only
64% increase of performance, but also scoring far less
than multi-pass methods.

Despite the optimizations, these methods did not
overcome above mentioned optimized 6-pass tech-
niques (described in Section 4.1). The core problem of
the geometry shader is its execution model. It outputs
data in a serial fashion with no parallelism used.
Utilizing vertex shader and multiple passes overcomes
the above mentioned geometry shader solutions despite
switching of the render targets and updating resources
between render calls.

5 EXPERIMENTAL RESULTS
We implemented the experimental framework in
DirectX11 on an Intel Core i5 CPU 661 running at
3.33GHz using NVIDIA GeForce GTX560Ti GPU.
The rendered images have resolution of 1024× 768.
We used the 32bit render target for the shadow
maps. The resulting graphs were generated from
an experimental walkthrough of a demo scene. The
benchmarking scene had approximately 3 millions of
vertices.

Our implementation does not introduce any hardware
specific features. We can assume that the difference be-
tween the approaches would not be principally differ-
ent.

5.1 Frame Time in Walkthrough
The first measurement shows dependence of the frame
time for the walkthrough of the scene for all of the im-
plemented methods. The unoptimized variants of the
cube shadow maps and the Dual–Paraboloid shadow
mapping (DPSM) show the worst results. In this ap-
proach, for every pass, all the geometry is rendered.
Naturally, six render passes of the cube shadow maps
lead into the highest frame time.

The basic optimization technique provided the
bounding object frustum culling against the view frus-
tum, the cube shadow maps frustum and the clipping

plane for paraboloids. In this case, the same amount
of geometry is rendered in both approaches. The
overhead for increased number of the render passes for
the cube shadow maps had no effect on an overall time
for a single frame and thus the resulting frame times
are similar.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Animation Time [s]

F
ra
m
e
T
im
e
[m
s
]

Cube6

Cube6 Optim

Cube6 Optim + EFC

Dual Paraboloid

Dual Paraboloid Optim

Dual Paraboloid Optim + PC

Figure 8: Frame times for the walkthrough of the scene
for all implemented methods.

The cube shadow maps approach exhibits the best re-
sult with the effective cube face frustum culling - EFC
(see Section 4.1). The plot shown in Figure 8 shows that
the DPSM increased the performance only by skipping
one paraboloid wherever appropriate (using plane clip-
ping - PC). Otherwise, all of the geometry had to be ren-
dered in two passes. The cube shadow maps approach
can skip up to five render passes and thus it achieved the
best results (e.g. in 25th second of the walkthrough).
The frame time in the DPSM depends mainly on the
amount of rendered geometry and also the amount of
geometry in the given hemisphere. As can be seen in
the plot, the DPSM saved only 50% of the computation
time when rendering the scene only for one side. How-
ever, the cube shadow maps saved up to 83% of the per-
formance. Furthermore, Figure 9 shows that the DPSM
uses only one paraboloid most of the time and also that
the cube shadow map rarely performed all six passes.
This is mainly because the light source lied outside the
camera view frustum.

5.2 Timings of Render Passes
Since the shadow mapping algorithm renders shadows
in two passes, we investigated frame times for the
passes for all implemented methods. The time for
final shadow rendering showed to be equivalent for
all methods, because it mainly depends on number of
rendered geometry. Here, the view frustum culling was
employed. The most noticeable differences were in
times for generation of the shadow map.

As shown in Figure 10, the methods without any opti-
mization had to render all the geometry six times in case
of the cube shadow maps (blue) or two times in case of

Journal of WSCG, Vol.20 93 http://www.wscg.eu 



0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Animation Time [s]

F
ru

st
ra

/P
la

ne
s 

U
se

d

 

 

Cube6 Optim + EFC
DP Optim + PC

Figure 9: The plot shows the number of processed
cube faces (blue) and the number of rendered parabo-
loid sides (red).

0 5 10 15 20 25 30 35
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n 
T

im
e 

[m
s]

 

 

Cube6 Optim
Cube6 Optim + EFC
Dual Paraboloid Optim
Dual Paraboloid Optim + PC

Figure 10: Evaluation of the times which all methods
spent on the shadow map generation. For better illus-
tration, unoptimized methods are not visible, because
they had very poor results as compared to optimized
techniques.

the DPSM algorithm (yellow). There are also some dif-
ferences between methods where a frustum and plane
culling is applied. The DPSM algorithm was faster
compared to the cube shadow maps. An overall amount
of rendered geometry was equivalent in both cases so
there seems to be some additional overhead in the cube
shadow maps technique.

Generally, the DPSM algorithm was faster when only
one paraboloid was processed. The cube shadow map
technique reached the similar times when only 2 faces
were processed. The plot in Figure 10 also shows that in
time 25 s, the cube shadow maps technique achieved the
best results. In this case, only one face was processed
which is mainly based on the position of a light sources
relative to a camera (see Figure 11).

5.3 Effect of Shadow Map Resolution
We also investigated how the shadow map resolution af-
fects the frame rate. In Table 2 and Table 3 you can see
the results for various shadow map sizes. As you can

Processed face

Discarded

faces

Figure 11: An illustration of the situation when only
one face is processed during shadow map generation
pass. Figure shows that only one cube face frustum in-
tersects with the camera view frustum.

see, the optimization techniques brought an increase in
frame rate.

Considering shadow map as a texture storing single
32-bit value per texel, memory consumption of the cube
shadow maps was from 24MB (1024×1024) to 384MB
(4096×4096). Whereas the Dual–Paraboloid mapping
approach uses one third of memory compared to the
cube shadow maps (8MB to 128MB), it is more compu-
tationally intensive. Utilizing efficient frustum culling
methods, we can save computation time by reducing
number of the render passes and size of the geometry
data, which also reduces memory utilization (less num-
ber of values stored due to frustum culling).

When taking 10242 resolution of shadow map as
100% performance for each method, switching to
20482 causes performance drop off only by 6.54% in
average, but greatly increases shadow quality. Choos-
ing 40962 resolution for shadow map takes 25.76%
performance penalty in average.

Image quality of the result of Dual–Paraboloid map-
ping technique depends on the geometry of the occlud-
ing object. As described in [BAS02, OBM06], the
Dual–Paraboloid mapping causes low-polygonal cast-
ers to produce incorrect shadows. Increasing shadow
map resolution does improve shadow quality, but still
can not match the quality of details achieved by the
cube shadow maps approach (see Figure 12).

10242 20482 40962

Cube6 75.71 70.04 47.9
Cube6Optim 150.43 116.76 64.04
Cube6Opt+EFC 188.71 151.67 89.68
DP 167.95 146.62 97.52
DPOptim 207.24 178.67 109.4
DPOptim+PC 208.15 180.24 110.95

Table 2: FPS of low-poly scene (600K vertices)

5.4 Position of a Light Source Relative to
Geometry

We also performed an experiment where we focused
on position of a light source relative to the geometry.
This experiment was inspired by techniques for com-
putation of interactive global illumination [RGK+08].

Journal of WSCG, Vol.20 94 http://www.wscg.eu 



5122 10242 20482 40962

C
u

b
e

 S
h

a
d

o
w

 M
a

p
s

D
P

S
M

Figure 12: Figure shows how the shadow map resolution influences the shadow quality. Since a single paraboloid
covers one hemisphere, one shadow map texel is projected on the large area in the scene (as compared to the cube
shadow maps). This leads to worse quality of shadows.

10242 20482 40962

Cube6 19.11 18.38 16.21
Cube6Optim 57.15 51.23 36.50
Cube6Opt+EFC 127.47 114.21 83.38
DP 41.50 39.74 33.17
DPOptim 57.47 54.32 42.85
DPOptim+PC 90.56 86.08 69.58
Table 3: FPS of high-poly scene (3M vertices)

In this case, Virtual Point Lights (VPLs) are generated
on the surface to approximate indirect lighting. The re-
flected light is scattered into all directions. Therefore,
some method is required to handle shadows from the
reflected light. For this purpose, all the geometry data
is positioned into one hemisphere relative to the light
source. When the geometry is distributed around the
light sources, it is useful to use the cube shadow maps
technique, because it has better optimization strategy
and it can easily manage the number of processed cube
map faces. However, when we need to render only one
hemisphere, the DPSM algorithm is more sufficient.

We measured times for generation of the shadow
map in both of the presented techniques. Ritschel et
al. [RGK+08] employed the Dual–Paraboloid mapping
algorithm in their approach. They generated shadow
maps for multiple VPLs (256 and more) from simpli-
fied geometry. We compared timings for the DPSM and
the cube map technique.

In Figure 13, it can be seen that the DPSM algorithm
is approximately two times faster than the cube shadow
maps approach. The results are similar for various lev-
els of the scene complexity. The Dual–Paraboloid map-
ping algorithm can be used despite its worse accuracy,
because indirect lighting produces low-frequency shad-
ows. In this case, the artifacts are blurred.

0 5 10 15 20 25 30 35

1.4

1.6

1.8

2

2.2

2.4

2.6

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n 
T

im
e 

[m
s]

 

 

Cube6 Optim
DP Optim

0 5 10 15 20 25 30 35
0.8

1

1.2

1.4

1.6

1.8

2

Animation Time [s]

S
ha

do
w

 M
ap

 C
re

at
io

n 
T

im
e 

[m
s]

 

 

Cube6 Optim
DP Optim

Figure 13: Figure illustrates times that the methods of
interest spent on generation of the shadow map. In this
case, the geometry is placed into one direction from the
light source. The scene was represented by points only:
3 millions points (Top) and 100k points (Bottom).

6 CONCLUSION AND DISCUSSION

The goal of the work presented in this paper was to in-
vestigate the shadow mapping algorithm and techniques
based on this algorithm as well as their capabilities to
render shadows cast from point light sources. We ex-

Journal of WSCG, Vol.20 95 http://www.wscg.eu 



amined two techniques that are based on the shadow
mapping algorithm. The cube shadow maps approach
exploits the traditional shadow mapping algorithm and
renders the shadow map on cube faces. The Dual–Pa-
raboloid shadow mapping uses nonlinear parameteriza-
tion to render one hemisphere in one render pass.

The initial assumption was that multiple render
passes performed by the cube shadow maps technique
should be very time consuming process. The result of
the measurement is that an unoptimized version of the
cube shadow maps exhibits the worst performance of
the examined algorithms. When a simple optimization
technique was used significantly increased perfor-
mance was reached, in fact, the best of the examined
algorithms. The performance and the visual quality of
the cube shadow maps is better compared to the Dual–
Paraboloid algorithm. However, the Dual–Paraboloid
algorithm produces better results if we consider the
specific position of a light source related to a geometry,
e.g., when computing illumination using VPLs.

Future work includes the complexity study that will
improve the quality of measurements but since the tim-
ings depend mainly on the rendered geometry, however,
as the complexity class is similar for all approaches, no
significant differences are expected. It might be inter-
esting to compare the implementation using the current
hardware capabilities, e.g. CUDA. Evaluation of visual
quality of the presented methods and their ability to deal
with the aliasing problem in the shadow mapping algo-
rithm is also subject of future work.

ACKNOWLEDGMENT
This work was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excel-
lence project CZ.1.05/1.1.00/02.0070 and the Artemis
JU project R3-COP, grant no. 100233.

REFERENCES
[AM00] Ulf Assarsson and Tomas Möller. Optimized view frus-

tum culling algorithms for bounding boxes. J. Graph.
Tools, 5(1):9–22, January 2000.

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Sei-
del. Shadow mapping for hemispherical and omnidi-
rectional light sources. In Proceedings of Computer
Graphics International, pages 397–408, 2002.

[Cro77] Franklin C. Crow. Shadow algorithms for computer
graphics. SIGGRAPH Comput. Graph., 11(2):242–248,
1977.

[CVM11] Marcel Stockli Contreras, Alberto José Ramírez
Valadez, and Alejandro Jiménez Martínez. Dual sphere-
unfolding method for single pass omni-directional
shadow mapping. In ACM SIGGRAPH 2011 Posters,
SIGGRAPH ’11, pages 69:1–69:1, New York, NY,
USA, 2011. ACM.

[Eng08] Wolfgang Engel, editor. Programming Vertex, Geome-
try, and Pixel Shaders. Charles River Media; 2 edition,
2008.

[Fer05] Randima Fernando. Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05,
New York, NY, USA, 2005. ACM.

[Ger04] Philipp Gerasimov. Omnidirectional shadow mapping.
In Randima Fernando, editor, GPU Gems: Program-
ming Techniques, Tips and Tricks for Real-Time Graph-
ics, pages 193–203. Addison Wesley, 2004.

[Gru07] Holger Gruen. Performance profiling with amd gpu
tools: A case study. AMD Sponsored Session, GDC,
March 2007.

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and François Sillion. A survey of real-
time soft shadows algorithms. Computer Graphics
Forum, 22(4):753–774, dec 2003.

[HWL+11] Tze-Yiu Ho, Liang Wan, Chi-Sing Leung, Ping-Man
Lam, and Tien-Tsin Wong. Unicube for dynamic envi-
ronment mapping. IEEE Transactions on Visualization
and Computer Graphics, 17(1):51–63, January 2011.

[KN05] Gary King and William Newhall. Efficient omni-
directional shadow maps. In Wolfgang Engle, edi-
tor, ShaderX3: Advanced Rendering with DirectX and
OpenGL, pages 435–448. Charles River Media, Hing-
ham, MA, 2005.

[LWGM04] Brandon Lloyd, Jeremy Wendt, Naga Govindaraju, and
Dinesh Manocha. Cc shadow volumes. In ACM SIG-
GRAPH 2004 Sketches, SIGGRAPH ’04, pages 146–,
New York, NY, USA, 2004. ACM.

[MGR+05] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin
Fernandez, and Roger Espasa. Shader performance
analysis on a modern gpu architecture. In Proceed-
ings of the 38th annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 38, pages 355–
364, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[OBM06] Brian Osman, Mike Bukowski, and Chris McEvoy.
Practical implementation of dual paraboloid shadow
maps. In Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames, pages 103–106. ACM,
2006.

[RGK+08] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel,
C. Dachsbacher, and J. Kautz. Imperfect shadow maps
for efficient computation of indirect illumination. In
SIGGRAPH Asia ’08: ACM SIGGRAPH Asia 2008 pa-
pers, pages 1–8. ACM, 2008.

[SD02] Marc Stamminger and George Drettakis. Perspective
shadow maps. In Proceedings of the 29th annual confer-
ence on Computer graphics and interactive techniques,
pages 557–562. ACM, 2002.

[SWP10] Daniel Scherzer, Michael Wimmer, and Werner Pur-
gathofer. A survey of real-time hard shadow mapping
methods. In EUROGRAPHICS 2010 State of the Art
Reports, 2010.

[VBGP09] Forest Vincent, Loïc Barthe, Gael Guennebaud, and
Mathias Paulin. Soft Textured Shadow Volume. Com-
puter Graphics Forum, 28(4):1111–1120, 2009.

[VNHZ11] Juraj Vanek, Jan Navrátil, Adam Herout, and Pavel
Zemčík. High-quality shadows with improved parab-
oloid mapping. In Proceedings of the 7th international
conference on Advances in visual computing - Volume
Part I, ISVC’11, pages 421–430, Berlin, Heidelberg,
2011. Springer-Verlag.

[Wil78] Lance Williams. Casting curved shadows on curved
surfaces. SIGGRAPH Comput. Graph., 12(3):270–274,
1978.

[WSP04] M. Wimmer, D. Scherzer, and W. Purgathofer. Light
space perspective shadow maps. In the Eurographics
Symposium on Rendering, 2004.

Journal of WSCG, Vol.20 96 http://www.wscg.eu 


	C43-full.pdf

