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Školitel: Prof. Ing. Miroslav Šimandl, CSc.
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Pŕıvara, Zdeněk Váňa and Lukáš Ferkl, for the fruitful collaboration in field of
predictive building control. Also I thank my colleagues from ETH Zürich: Frauke
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Annotation

The dissertation thesis deals with the constrained optimization based approach
to active fault detection and control (AFDC) of dynamical systems. The thesis
addresses three main goals. The first goal is to define a general AFDC frame-
work for stochastic discrete time dynamic system. The AFDC framework covers
previously published formulations of AFDC as well as newly introduced formula-
tions. The AFDC problems are defined as constrained optimization problems. The
second goal is to derive a solution of AFDC problems. The optimal solution can
be derived for a small subset of AFDC problems. Therefore, the focus is laid on
a numerically tractable suboptimal solution for a practically important subclass of
AFDC problems. The third goal of the thesis is to demonstrate the proposed AFDC
framework. Basic properties of the proposed AFDC framework are illustrated by
simple numerical examples. Main advantages of the proposed AFDC framework are
demonstrated by a complex example, where the goal is simultaneous AFDC of an
air handling unit.



Anotace

Disertačńı práce se zabývá aktivńı detekćı poruch a ř́ızeńım (ADPŘ) dyna-
mických systémů s využit́ım matematické optimalizace s omezeńım. Disertačńı práce
si klade tři hlavńı ćıle. Prvńım ćılem je formulace obecného rámce pro definováńı
problémů ADPŘ pro stochastické diskrétńı dynamické systémy. Obecný rámec
ADPŘ pokrývá jak některé již publikované formulace, tak i nově představené for-
mulace. Problémy ADPŘ jsou formulovány jako optimalizačńı úlohy s omezeńım.
Druhým úkolem je odvozeńı řešeńı pro problémy ADPŘ. Optimálńı řešeńı může
být odvozeno pouze pro malou podskupinu problémů ADPŘ. Pozornost je proto
zaměřena na odvozeńı numericky spočitatelného sub-optimálńıho řešeńı pro podsku-
pinu problémů ADPŘ, která má široké uplatněńı v praxi. Třet́ım úkolem je demon-
strace nově představeného rámce ADPŘ. Základńı vlastnosti nově představeného
rámce ADPŘ jsou ilustrovány pomoćı jednoduchých př́ıklad̊u. Hlavńı výhody jsou
poté demonstrovány na základě komplexněǰśıho př́ıkladu, který se zaměřuje na
ADPŘ klimatizačńı jednoty.
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Chapter 1

Introduction

Control engineering has an essential role in a wide range of control systems, from
simple household washing machines to high-performance F-16 fighter aircrafts. Cor-
rect functioning of control systems is of great importance. Therefore an integral part
of almost any control system is a fault detector. Various techniques can be used for
fault detection from a straightforward limit checking to advanced techniques such
as a constrained active fault detection (AFD) described in the thesis.

Research and development of fault detection methods is driven mainly by safety
requirements, but its economical impact is also important. Proper failure handling
is crucial for safety-critical automated processes such as in chemical plants, nu-
clear power plants or aircrafts where an unhandled failure can have catastrophic
consequences. To underline importance of fault detection, several avoidable catas-
trophes are mentioned. In the Netherlands in 1992, the cargo plane Boeing 747-200F
crashed into two high-rise apartment complexes causing lot of casualties, see Fig-
ure 1.1. The catastrophe was caused by a serious engine failure, however, according
to paper [Maciejowski and Jones, 2003] there was a possibility to land safely back to
Amsterdam Schiphol Airport. Another example is from Chicago in 1979. Investi-
gation of airplane crash showed that the crash could have been avoided despite the
fact that the pilot had just 15 seconds to react [Montoya et al., 1983]. Consequences
of lacking fault detection in chemical industry can be even more disastrous. One
of the the largest industrial disaster happened in 1884 in Bhopal, India. A leak
of methyl isocyanate gas and other chemicals from a plant resulted in at least 4
000 casualties [Eckerman, 2005]. Fault detection is no longer limited to aforemen-
tioned high-end systems. For example, automobiles are increasingly dependent on
automation and therefore on fault detection as well.

Failures of automatic systems cause also significant economical losses that can
be avoided when a fault is detected in time and proper actions are taken. Accord-
ing to [Venkatasubramanian et al., 2003], petrochemical industry in the US incurs
approximately 20 billion dollars in annual losses due to poor abnormal event man-
agement. The American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) estimates that poorly maintained, degraded, and improp-
erly controlled heating, ventilation, and air conditioning (HVAC) equipment wastes
an estimated 15% to 30% of energy used in commercial buildings [Katipamula and

1



Figure 1.1: Aftermath of the cargo plane Boeing 747-200F crash.

Brambley, 2005]. Fault detection can also provide valuable information about degra-
dation of appliances. Maintenance and service costs can be reduced when level of
degradation is considered while scheduling service actions. Some fault detection
methods can also help to locate a failure, explain the cause of the failure or predict
possible subsequent scenarios.

Fault detection is done by fault detectors. A fault detector provides an informa-
tion about a potential failure of a monitored system based on measured data. The
fault detector uses some form of knowledge about fault free and faulty behavior of
the monitored system. This information is utilized during evaluation of measured
data, e.g., mean value of the measured signal is compared with an expected value or
the measurements are compared with values predicted using a detailed mathemati-
cal model. Most of fault detectors evaluate the measured data without affecting the
monitored system. These fault detectors that only passively analyze the measured
data are denoted as passive detectors. Passive fault detectors are widely used and
they provide the required detection reliability in most applications. However, in
some situations, the passive detector can have insufficient amount of information
for a reliable decision about a potential failure. This drawback is addressed by
the AFD approach. An active fault detector excites the monitored system in order
to receive information about the monitored system’s static, dynamic or frequency
characteristics in order to provide a more reliable fault detection. Excitation has
to be done carefully with respect to all limitations of the monitored system. The
excitation of the monitored system is usually in contradiction to control objectives.
A subset of AFD problems where the simultaneous design of active fault detection
and control is explicitly addressed is denoted as active fault detection and control
(AFDC) and it will be investigated in the thesis.

A mathematical formulation and numerical solution of the AFDC problems is a
non-trivial task, however, almost every human deals intuitively with AFDC prob-
lems in everyday live as is demonstrated by the following example that focuses on a
potential car break failure. A responsible driver performs a small brake test when
there is any suspicion about the breaks operation, especially when a steep descent

2



is ahead. This procedure costs a bit of fuel and driving time but this is negligible
compared to the complications that can arise from underestimation of potential
break failure. The goal of the AFDC is to introduce this “suspicious factor” into
detection and control systems and to actively excite the monitored system in order
to minimize uncertainty in the decision making process. One can imagine, that lot
of questions may arise in the break testing example: What is the optimal trade off
between speed loss and a sufficiently convincing break test? Is it safe to perform
the break test? Is it necessary to perform the break test at all? etc. The approach
that will be described in the thesis does provide a rigorous apparatus that addresses
such questions.

The thesis is further organized as follows. An overview of the history of fault
detection and classification of fault detection methods is given in the second chap-
ter. Special attention is laid on AFD. Goals the thesis are formulated in the third
chapter. In the fourth chapter, a general framework of AFDC is formulated and sev-
eral special cases are derived. An optimal solution of AFDC problems is presented
in the fifth chapter. Since, the vast majority of AFDC problems is numerically
intractable, the design of a numerically tractable suboptimal solution is discussed
and illustrated using a particular AFDC problem in the sixth chapter. In the sev-
enth chapter, basic properties of AFDC problems are illustrated by means of simple
numerical examples. More complex example that focuses on control and detection
of an air handling unit is given in the eighth chapter. The ninth chapter concludes
the thesis and outlines further applications of AFDC.
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Chapter 2

Fault detection methods

The origin of fault detection methods can be dated to the end on the 19th century
when instrumented machines used limit checking. For the supervision of plants
the use of ink and later printing recorders was standard equipment since about
1935, [Isermann, 2006]. Transistor based amplifiers and sequential controllers that
became available about 1960 allowed for realization of more advanced techniques.
The early methods used the principle of hardware redundancy, i.e., one quantity
is measured by several sensors and the measured data are continuously compared,
[Hajiyev and Caliskan, 2003]. A fault is detected if there is a major disproportion in
the measured values. Hardware redundancy increases installation costs and space
requirements but it is a robust technique and therefore it is still used in critical
processes. For example, military aricrafts and new generation civil aircrafts such
as Boieing 777 or Airbus A320/330/340/380 have triplex or quadruplex-redundant
actuation systems as well as sensor systems [Zhang and Jiang, 2008].

Introduction of programmable logical controllers and microcomputers in the
early seventies of the 20th century gave a rise to computationally more involved fault
detection algorithms based on analytical redundancy. These methods use some prior
information that is incorporated into an algorithm that evaluates measured data.
The first methods were based on analyzing signal properties [Wald, 1945,Basseville
and Nikiforov, 1993]. More advanced techniques are using a model of the monitored
system in order to detect a failure. For a detailed overview of the history of fault de-
tection methods see survey papers [Willsky, 1976,Isermann, 1984,Zhang and Jiang,
2008]. One of the recent contributions to fault detection was the introduction of
AFD and AFDC.

Fault detection methods are used in a wide range of applications and therefore
there are different requirements on fault detectors. For example, different fault
detection demands can be expected in case of a supersonic plane and a building
heating system. Nevertheless, several important requirements can be outlined even
if some of them are in contradiction. The following summary of fault detection
requirements is adapted from [Venkatasubramanian et al., 2003]

• Quick detection and diagnosis
Quick response to failures is crucial in critical applications such as aeronautics.

4



This requirement is usually in contradiction to noise insensitivity.

• Isolability
Isolability is the ability to distinguish between different faults.

• Robustness
A detector shall be robust to various noise and uncertainties and minimize the
amount of false alarms.

• Novelty identifibility
Not all potential failures are known during a detector design. A detector can
be designed such that it recognizes a faulty state even if the fault was not
defined by a designer.

• Classification error estimate
An estimate of a classification error can be facilitated in a diagnostic system
or by an operator.

• Adaptability
A detector shall be able to adapt to new operation conditions such as a change
in production quantities.

• Explanation facility
Usage of artificial intelligence can provide an explanation facility. Such a
detection system can explain causes of a failure, provide recommendations or
predict possible consequences.

• Modelling requirements
A drawback of advanced fault detection model based techniques is the need
for model construction. This procedure can be the most demanding part of
fault detection system deployment.

• Storage and computational requirements
Another drawback of some of advanced fault detection techniques are over-
whelming computational requirements. The active detection and control sys-
tem presented in the thesis is one of such systems. The optimal solution pre-
sented in Section 5 is computationally intractable and the suboptimal solution
presented in Section 6 results in a non-convex optimization problem.

• Multiple fault identifiability
When detecting more than one possible fault, it is important to take into
account simultaneous faults. In general, the number of potential fault combi-
nations is given as 2N , where N is a number of single faults.

Besides these requirements presented in [Venkatasubramanian et al., 2003] it is
also important to take into account implementation aspects. Simple methods, that
can be easily implemented and verified are preferred. From this perspective, the
technique that will be presented in the thesis is not preferable because it results in
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a non-convex optimization problem that requires non trivial numerical tools. On
the other hand, the AFDC method described in the thesis provides a high faults
isolability, it can significantly increase detection time and estimate classification
error.

Various classifications of fault detection methods can be found in literature. The
interested reader is referred to monographs devoted to fault detection [Blanke et al.,
2003, Basseville and Nikiforov, 1993, Patton et al., 1989, Gustafsson, 2000, Gertler,
1998, Isermann, 2006, Kerestecioğlu, 1993, Campbell and Nikoukhah, 2004, Hajiyev
and Caliskan, 2003]. In this chapter, two main categories that are distinguished
are passive and active fault detection methods. The passive fault detection (PFD)
methods do only passively evaluate measured data, see Figure 2.1(b). The AFD
methods can actively influence a monitored system in order to improve detection,
see Figure 2.1(b).

S PFD
y du

(a) Passive fault detection

S AFD
y d

u

(b) Active fault detection

Figure 2.1: Comparison of passive fault detection and active fault detection.

2.1 Passive fault detection

In this section, a fault detection method classification from [Isermann, 2006] is
adapted and presented. Two main PFD method categories are signal and model
based methods. Both categories are shortly introduced and the important methods
are mentioned. One representative method from both categories are described in
detail and presented by a numerical example.

2.1.1 Signal based methods

The most simple and frequently used method for fault detection is the limit check-
ing. The measured variables of a process are monitored and checked if their absolute
values or trends exceed certain thresholds. Absolute value checking is applied in al-
most all process automation systems. Examples are the oil pressure (lower limit)
or the coolant water (higher limit) of combustion engines, the pressure of the circu-
lation fluid in refrigerators (lower limit) or temperature of heating water in central
heating system (both limits). Trend checking is based on the analysis of the first
derivative. Threshold values can be fixed or adaptive. Fixed thresholds are mostly
selected based on experience.
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Many processes are characterized by their oscillating behavior (rotating ma-
chines, alternating currents, ...). The resulting signals are then periodic signals or
contain periodic parts. Fault detection methods of periodic signals are focused on
frequency spectrum analysis. The classical method is to pass the signal thought
bandpass filters with different central frequencies [Randall, 1987]. The bandpass
filters can be either analog or digital. Fourier analysis plays a key role in fre-
quency spectrum analysis and it is used for fault detection as well. For analysis of
non-stationary periodic signals the short-term Fourier transform and the wavelet
transform can be used [Qian and Chen, 1996].

Random processes like acoustic noise, turbulence flow, on-off switch of many
consumers in electrical or water networks result in stochastic signals. The stochas-
tic signals are described with the aid of statistical methods and probability calculus.
For fault detection, hypothesis tests can be applied known from the theory of statis-
tics. In hypothesis testing one tests a hypothesis H0 (no fault) against one ore more
alternative hypothesis H1, H2, ... (fault) that are specified. For hypothesis testing
many different methods were developed. Among the test usually used for fault de-
tection are cumulative sum (CUSUM), t-test, F-test and sequential probability ratio
test (SPRT) [Basseville and Nikiforov, 1993,Wald, 1945].

The author of the thesis had proposed several practically oriented improvements
of hypothesis tests for fault detection. At first it was a combination of model and
signal based approaches, where the result from model based detection was vali-
dated by an independent statistical test [Široký and Šimandl, 2007]. The other
improvements were focused on the CUSUM test. A data-based procedure for tun-
ing threshold for the CUSUM test was described in [Široký and Šimandl, 2008].
This work was further extended for the CUSUM test where the probability density
functions are expressed as Gaussian sums [Šimandl et al., 2009].

The signal based methods are illustrated by the SPRT. This test is used in
practice and it clearly illustrates the key principles of a hypothesis testing based
approach to fault detection. It is worth mentioning that the first stochastic active
fault detector was based on SPRT in [Zhang, 1989].

Sequential probability ratio test

Design of the SPRT starts with a pair of hypotheses H0 and H1, where the H0

hypothesis is that statistical properties of a measured signal can be described by
a parameter Θ0, while the hypothesis H1 is that the statistical properties of the
measured signal can be described by a parameter Θ1.

At each time step, the statistic Λk is evaluated as

Λk = ln
p(yk0)|Θ1

p(yk0)|Θ0

, (2.1)

where yk0 presents the measurement from time 0 to time k and p(yk0)|Θj
, j = 0, 1 is

probability density function (pdf) expressing probability of measurement yk0 when
hypothesis Hj is correct. Conditional probability density function (pdf) p(yk0)|Θj
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can be expressed as a product of conditional pdfs p(yk0)|Θj
=
∏k

t=0 p(yt|y
t−1
0 )|Θj

.
Equation (2.1) can then be written as

Λk = ln

∏k
t=0 p(yt|y

t−1
0 )|Θ1∏k

t=0 p(yt|y
t−1
0 )|Θ0

=
k∑
t=0

ln
p(yt|yt−1

0 )|Θ1

p(yt|yt−1
0 )|Θ0

. (2.2)

The statistic Λk can be computed recursively as

Λk = Λk−1 + ln
p(yk|yk−1

0 )|Θ1

p(yk|yk−1
0 )|Θ0

, (2.3)

with the initial condition Λ−1 = 0. At each time step, the statistic Λk is compared
with two thresholds A and B in the following way

• if Λk ≥ A, hypothesis H1 is accepted,

• if Λk ≤ B, hypothesis H0 is accepted,

• if A < Λk < B, none of hypothesis is accepted and measurement continues.

The threshold values can be set according to requirements on Type I and Type II
errors. A type I error, also known as a false positive, occurs when a statistical test
rejects a true null hypothesis H0. A type II error, also known as a false negative,
occurs when the test fails to reject a false null hypothesis H0. The required prob-
ability of Type I error will be denoted as αE and the required probability of Type
II error will be denoted as βE. The thresholds A and B can be then computed as
follows

A = ln
1− βE
αE

, (2.4)

B = ln
βE

1− αE
. (2.5)

Numerical example 2.1 The SPRT will be illustrated by means of a simple example. The
pdfs are Gaussian and the goal is to decide between two hypothesis that describe statistical
properties of the measured signal. The hypothesis are the following

H0 : yk ∼ N(Θ0, 1),Θ0 = 0 (2.6)

H1 : yk ∼ N(Θ1, 1),Θ1 = 0.5 . (2.7)

The source signal is Gaussian with mean value 0.5 and variance 1, i.e., there is a fault and H0

shall be rejected. Two experiments were performed: a less restrictive test where αE = βE = 0.1
(Figure 2.2(a)) and a more restrictive test where αE = βE = 0.01 (Figure 2.2(b)). Each
experiment comprised 1000 Monte Carlo simulations. There was 76 Type II errors in case of
the less restrictive test and 9 Type II errors in case the more restrictive test. Monte Carlo
simulations confirmed that SPRT meets Type I and Type II errors requirements. Decision are
taken sooner in case of the less restrictive test. On the other hand, number of false decisions is
higher in case of the more restrictive test. This illustrates the conflicting aims of quick detection
and noise insensitivity.
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2.1.2 Model based methods

Model based methods of fault detection use the relations between several measured
variables to extract information on possible changes caused by faults. These re-
lations are mostly analytic relations in form of process model equations. Special
features like model parameters or state variables are extracted and compared with
their nominal values by model based fault detectors.

In many cases the process models are not know exactly and have to be identi-
fied. Identification may be a source to gain information on process parameters that
change under influence of faults. Fault detection methods that make use of model
identification techniques are denoted as parameter estimation methods, [Ljung,
1987]. Parameter estimation can be done by various identification techniques from
basic least squares to State Space Subspace System identification, [Overschee and
Moor, 1993].

A straightforward way to detect process faults denoted as parity equations is
to compare the process behavior with a process model describing the nominal, i.e.,
non-faulty behavior, [Gertler and Singer, 1990]. The difference of signals between
the process and the model are expressed by residuals.

As state observers use an output error between a measured process output and an
adjustable model output, they are a further alternative for fault detection, [Gertler,
1998]. It is assumed, as in the case of parity equations approaches, that the structure
and parameters of the model are precisely known. State observers adjust the state
variables according to initial conditions and to the time course of the measured input
and output signals. Several approaches have been proposed for fault detection which
are based on the classical Luenberger state observer or so-called output observer.
In case of stochastic models, the state has to be estimated by a state estimation
filter, [Gustafsson, 2000].

State estimation based fault detection will be presented by means of a numerical
example. This fault detection method plays an essential role in the thesis because
an active version of this detector will be derived.

State estimation based fault detection

At each time step k ∈ T = {0, 1, . . . , F} the monitored system is described by one
of the following two discrete-time linear Gaussian models

xk+1 = Aµxk + Bµuk + Gµwk , (2.8)

yk = Cµxk + Hµvk ,

where µ ∈ M indicates the model in effect during the whole finite-time hori-
zon, xk ∈ Rnx denotes the state, uk ∈ Rnu is the input and yk ∈ Rny is the output.
The initial state x0 follows the Gaussian distribution with a known mean value x̂0

and a covariance matrix Σx0 and the discrete random variable µ has a known dis-
tribution P (µ). The state noise wk ∈ Rnw and measurement noise vk ∈ Rnv are
mutually independent white noises with the Gaussian distribution with zero means
and unit covariance matrices. They are also independent of the initial state x0 and
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variable µ. The matrices Aµ, Bµ, Gµ, Cµ, and Hµ for µ ∈ M are of appropriate
dimensions and also known.

The goal is to decide which model is in action on the basis of noisy measurements
and prior information. The decision is taken at the end of the prediction horizon.
The decision dF is given as follows

dF = arg max
µ∈M

P (µ|yF0 , uF−1
0 ) . (2.9)

The probability P (µ|yk0 , uk−1
0 ) is computed recursively as

P (µ|yk0 , uk−1
0 ) =

p(µ, yk0 , u
k−1
0 )

p(yk0 , u
k−1
0 )

=
p(yk|µ, yk−1

0 , uk−1
0 )P (µ|yk−1

0 , uk−2
0 )

p(yk|yk−1
0 , uk−1

0 )
, (2.10)

where the initial condition of the recursive equation is given by P (µ). A bank of
Kalman filters is used for evaluation of the predictive measurement pdf
p(yk|µ, yk−1

0 , uk−1
0 ).

Table 2.1: Estimates of misclassification probability based on 10000 Monte Carlo simula-
tions (Numerical example 2.2)

input misclassification (dk 6= µ)
signal probability estimate

u1 0.529
u2 0.422
u3 0.239
u4 0.178
u5 0.185
u6 0.235
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Numerical example 2.2 The goal of the numerical example is to demonstrate the effect of the
input signal profile on the detector performance. It will be shown that the reliability of passive
detector is determined by the input signal profile.
Three models are considered (M={1,2,3})

P (µ = 1) = 1/3, A1 = 0.4, B1 = 1.2, C1 = 1.0 , (2.11)

P (µ = 2) = 1/3, A2 = 0.6, B2 = 0.8, C2 = 1.0 , (2.12)

P (µ = 3) = 1/3, A3 = 0.8, B3 = 0.4, C3 = 1.0 , (2.13)

(2.14)

and Gi = 1, Hi = 1, i ∈ M. Initial condition is given by x̂0 = 0,Σx0 = 0.5. Six input signal
profiles are investigated

u1 zero signal,

u2 constant signal with amplitude 2,

u3 periodical signal oscillating between -2 and 2, period 12 time steps,

u4 periodical signal oscillating between -2 and 2, period 6 time steps,

u5 periodical signal oscillating between -2 and 2, period 4 time steps,

u6 periodical signal oscillating between -2 and 2, period 2 time steps.

The input signals profiles are depicted in Figure 2.3. The goal of the detector is to decide after
12 time steps which model was in effect. The results that are based on 10000 Monte Carlo
simulations are summarized in Table 2.1. The worst results are obtained when with input signal
u1. The input is zero as well as the expected initial state x̂0 and only the state noise excites
the monitored system. Slightly better results are obtained when u2 was used. All models
have the same static gain, therefore, the models can be distinguished on the basis of different
dynamics of transition from the initial state to the steady state. The periodical signals u3-u6
excite the monitored system and the detector obtains more valuable information for decision.
It can be seen that the best results were obtained when u4 with period 6 time steps was used.
Usage of the shorter as well as the longer period of the input signal resulted in a higher rate of
misclassification. No general conclusion can be drawn from this empirical observation. Design of
the optimal input signal for detection is a non-trivial task and it is determined by many factors
such as a selected detector, system dynamic, noise characteristics, etc. Design of the optimal
input signal for detection will be discussed in detail in the thesis and a method for design of
optimal input signal for detection will be presented.

2.2 Active fault detection

Active fault detection has been studied for more than three decades. Various meth-
ods have been investigated but there is, to the best of the author’s knowledge, no
monograph nor survey paper devoted to AFD that summarizes and classifies all
approaches to AFD. However, two main approaches to AFD can be distinguished,
namely the stochastic approach and the robust approach. The origins and main
contributions to both approaches are mentioned in this section.
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2.2.1 Stochastic approach

The stochastic approach utilizes probabilistic description of model uncertainties.
The solution is sought with respect to the known pdfs and probability mass func-
tions that describe the stochastic counterpart of the model. Active fault detection
of stochastic systems was inspired by optimal experiment design and design of opti-
mal input signal for identification. The optimal designs are a class of experimental
designs that are optimal with respect to some statistical criterion. The first article
dealing with optimal experiment design was published in 1815 by Joseph Diaz Ger-
gonne [Stigler, 1974] and this field has been intensively studied during the last 50
years [Kiefer and Wolfowitz, 1959]. The goal of design of optimal input signal for
identification is excitation of an identified system in order to improve identification.
The input signal has to respect limitation of the identified system such as input
constraints or experiment cost. Review of the pioneering works is given in [Mehra,
1974,Zarrop, 1979].

The first article that deals with design of the optimal input signal for fault
detection is [Zhang, 1989]. Design of auxiliary signal for improving SPRT fault
detection, and the extension of the SPRT to multiple-hypothesis testing is presented
in the paper. Improvement of statistical test used for fault detection by input
signal design was discussed also in [Kerestecioğlu, 1993]. The goal was to improve
the performance of the CUSUM test with respect to the average detection delay
and required false alarm rate. In [Uosaki and Hatanaka, 2004], authors deal with
design of optimal auxiliary input for fault detection based on Kullback divergence.
Proposed input signal design was tested by the CUSUM test. The periodical signal
was used for AFD in [Poulsen and Niemann, 2008]. The diagnosis is based on
using both amplitude and phase information with respect to the signature in the
residual output. Changes are detected and isolated by using a modified CUSUM
test. In [Bateman et al., 2008], AFD is also based on an auxiliary periodical signal.
The auxiliary signal is used for AFD of an unmanned aerial vehicle with redundant
flight control surfaces.

Another approach to design control inputs in order to improve fault detection
was introduced in [Blackmore and Williams, 2005]. The authors developed a new
method that uses constrained finite horizon control design to create control inputs
that minimize an upper bound on the probability of the model selection error. This
approach was further extended for handling an arbitrary number of models [Black-
more and Williams, 2006,Blackmore et al., 2008].

There is also a significant Czech contribution to research on AFD of stochastic
systems. Design of a suboptimal AFD system in multiple-model framework was
studied in [Šimandl et al., 2005]. The optimal active detectors and the dual con-
troller are discussed in [Šimandl and Punčochář, 2006]. A unified formulation of
AFDC was introduced in [Šimandl and Punčochář, 2007] and further elaborated
in [Šimandl and Punčochář, 2009]. The AFDC problem formulation stems from
the optimal stochastic control problem and includes important special cases: an
active detector and controller, an active detector and input signal generator, and
an active detector with a given input signal generator. Another special case with a
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given controller was discussed in [Punčochář et al., 2010]. The complete set of all
variants that can be defined within the AFDC framework was presented in [Šimandl
et al., 2011]. Nine special cases were defined and analyzed. Finally, the numeri-
cally tractable AFDC solution based on constrained optimization was presented
in [Široký et al., 2011b].

2.2.2 Robust approach

An alternative to stochastic formulation is the robust approach to AFD, where the
uncertainties are assumed to be bounded and guaranteed detection is sought. The
early works [Nett et al., 1988, Jacobson and Nett, 1991] were focused on an inte-
grated approach to control and fault detection using the four parameter controller
structure. The interaction between detection and control module was studied. A
nominal plant model as well as a model with uncertainty was considered. The early
works were extended in [Tyler and Morari, 1994] where a recast of four the parame-
ter controller allowed the employment of more general results studied in optimal H2

and robust H∞ control literature. It was also shown that an integrated approach
using the H2 performance measure for both controller and detector designs can be
performed independently for nominal plants, but must be carried out simultane-
ously for those which contain structural uncertainty. The question of integrated
fault detection and control design for models with uncertainties was further inves-
tigated in [Stoustrup et al., 1997,Niemann and Stoustrup, 1999]. In [Khosrowjerdi
et al., 2004], AFDC1 was formulated as a mixed H2/H∞ optimization problem and
its solution was presented in terms of two coupled Riccati equations. Fault detection
objectives were expressed by H2 norm while H∞ was used as a measure for control
objective. The setup for AFD based on the Youla-Jabr-Bongiorno-Kucera param-
eterization was investigated in [Niemann, 2006, Niemann and Stoustrup, 2006]. A
review of different robust AFDC design schemes and the evaluation of the diagnostic
performance was given in [Ding, 2009].

An alternative approach to robust AFD is studied by Stephen L. Campbell and
Ramine Nikoukhah. A theory of the auxiliary signal design for robust multi-model
fault detection is given in monograph [Campbell and Nikoukhah, 2004]. It is as-
sumed that there are two candidate models and the objective is to find an auxiliary
signal of least energy and to perform a detection test during a test period that can
guarantee the identification of the correct model. The auxiliary signal separates the
sets of possible outputs of two models which represent nominal and faulty behav-
iors. This approach has been extended to include incipient faults [Nikoukhah et al.,
2010], sampled systems [Nikoukhah and Campbell, 2005], systems with a priori in-
formation [Nikoukhah and Campbell, 2006] and discrete-time systems [Esna Ashari
et al., 2011]. Detection of more than two incipient faults is presented in [Fair and
Campbell, 2009]. The extension of robust approach for nonlinear system is can be
found in [Andjelkovic et al., 2008].

1In [Khosrowjerdi et al., 2004], AFDC is denoted as simultaneous fault detection and control (SFDC)
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(a) Less restrictive test, αE = βE = 0.1, 76 of 1000 simulations resulted in
Type II error.

(b) More restrictive test, αE = βE = 0.01, 9 of 1000 simulations resulted in
Type II error.

Figure 2.2: Figures capture results of 1000 Monte Carlo simulations when H1 was true.
Blue line illustrates one test realization, while red crosses represents time steps and Λk
values when any of the thresholds were crossed (Numerical example 2.1). The grey areas
represent Λk values where some of thresholds is crossed. The red crosses in the top grey
area represent correct decision (H1 accepted), while the red crosses in the bottom grey are
represent wrong decisions (H0 accepted). It can be seen that decisions are taken sooner
in case of the first (less restrictive) test. On the other hand there is also higher rate of
Type II errors. Type I and II error requirements were fulfilled in both tests. Note that
there was no Type I error since H1 was always true.
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Figure 2.3: Input signal profiles (Numerical example 2.2).
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Chapter 3

Goals of the thesis

The thesis focuses on AFD problems with special attention to handling of control.
Two approaches to AFD can be distinguished: robust and stochastic. The robust
approach to AFD has been intensively studied in literature as discussed in the
previous chapter. In the thesis, the stochastic approach is addressed. In stochastic
AFD, simultaneous design of active detector and controller is essential, however,
most of the works on stochastic AFD problems published so far have not been
focusing on rigorous handling of control objectives.

The branch of stochastic AFD that focuses on design of an auxiliary input signal
for statistical tests does not directly address control objectives. The negative effect
of an auxiliary input was considered in [Uosaki and Hatanaka, 2004], where “the
auxiliary input should be chosen not to affect the model so much”. This aim was
expressed as a maximal allowed deviation of the monitored system output with
and without auxiliary input applied. Also the absolute value of the input signal
was constrained. Maximum input power on an auxiliary signal within a certain
frequency region was constrained in [Kerestecioğlu, 1993]. Some of the works did
not consider control objectives at all [Zhang, 1989, Poulsen and Niemann, 2008].
In general, it can be said that there is only a very limited apparatus for handling
of control objectives within AFD based on statistical tests. In [Blackmore and
Williams, 2005,Blackmore et al., 2008] a constrained optimization approach to AFD
for multiple state-space models discrimination was introduced. It allowed handling
of input constraints as well as expected states constraints, however, control aims
were not considered. Explicit handling of control objectives in AFD stochastic
problems was introduced in [Šimandl and Punčochář, 2009]. Problem of AFDC
was formulated as an optimization problem using closed loop (CL) information
processing strategy (IPS). Objective function expressed a required trade-off between
detection and control aims. The AFDC optimization problem was solved by means
of dynamic programming. Due to the complexity of the AFDC problem, the optimal
solution can be computed for a short prediction horizon only. Moreover, only input
constraints were considered in this AFDC formulation.

The main goal of the thesis is to overcome drawbacks of the aforementioned
approaches and to formulate a general stochastic AFDC framework that will allow
for a rigorous handling of detection and control aims. The focus will be laid on the
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optimal solution as well as on a numerically tractable suboptimal solution of the
defined AFDC problems. The main goal will be achieved by subsequent fulfillment
of the following three sub-goals.

1 - Formulation of general active fault detection and control framework

The first goal of the thesis is to formulate a general AFDC framework that will
allow a precise formulation of AFDC problems. The AFDC framework has to
be able to handle common practical design requirements such as input and state
constraints. Both detection and control aims have to be defined within one AFDC
problem formulation. Besides handling of different AFDC problems, the AFDC
framework shall also allow for dealing with exclusive active fault detection (no
control objectives) and exclusive control (no fault detection objectives).

2 - Active fault detection and control problems solution

The second goal of the thesis is to derive solution to AFDC problems. The class
of problems that is analyzed in the thesis generally results into complex functional
optimization problems that are numerically intractable. The goal is to make use
of dynamic programming that allow to decompose complex AFDC problems into
smaller problems. However, employment of dynamic programming provides a nu-
merically tractable solution for small scale problems only. Therefore, the focus will
be laid also on the derivation of a numerically tractable suboptimal solution for a
representative subclass of AFDC problems.

3 - Illustrative examples and applicability demonstration

Finally, the suboptimal AFDC solution will be demonstrated by means of several
numerical examples that can be divided into two parts. The aim of the first part is
to illustrate the key aspects of AFDC such as shape of constraints sets and objective
functions using a simple scalar model.

The aim of the second part is to demonstrate applicability of AFDC and high-
light some practically interesting properties of the presented AFDC framework using
an application example. The application example will focus on AFDC of an Air
Handling Unit (AHU) and it will cover the whole procedure of AFDC design from a
model construction, through constraints and objective function definition, to a dis-
cussion of results and implementation aspects. The goal of the application example
is to show that AFDC can make use of recent trends in energy systems and provide
an economically efficient solution that fulfills all design requirements.
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Chapter 4

General framework for active fault
detection and control

A general framework for AFDC is introduced in this chapter. After the framework
definition, several special cases that fit into the framework are highlighted.

4.1 Active fault detection and control framework

Introduction of AFDC framework will start with a description of AFDC topology.
Two subsystems are recognized within the AFDC framework: a given subsystem S1

and a subsystem S2 that has to be designed, see Figure 4.1. The given subsystem
S1 includes the observed and controlled system (denoted as S). The detector or
the controller can be also given and included in S1. All elements in S1 represent
equality constraints that have to be respected while designing S2. The subsystem S2

includes the controller and the detector that have to be designed with respect to S1

and other design requirements that are expressed in form of inequality constraints
and objective function. Each component will be discussed in detail.

S AFDC
y d

S1 S2

u

Figure 4.1: The block diagram of active detection and control.
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4.1.1 Observed and controlled system

The observed and controlled system S is described by a nonlinear stochastic discrete-
time state space model

xk+1 = fk (xk, µk,uk,wk) , k = 0, 1, . . . , F − 1,

µk+1 = gk (xk, µk,uk, ek) , k = 0, 1, . . . , F − 1,

yk = hk (xk, µk,vk) , k = 0, 1, . . . , F. (4.1)

The index k denotes a time step and F ∈ (0,∞) denotes the last time step of
the finite horizon. The input and output of the system S are denoted as uk ∈
Uk ⊆ Rnu and yk ∈ Rny , respectively. The unmeasured state x̄k =

[
xTk , µ

T
k

]T
of

the system S is composed of the vector variable xk ∈ Rnx and the discrete scalar
variable µk ∈ M ⊆ N. The variable xk represents the basic part of the state
x̄k, which is usually driven by the input uk to a desirable value or a region of
the state space. The variable µk carries information about changes or faults in
the system S. It can be seen as a scalar variable indexing a mode of behavior
of the system S. The initial state x̄0 is described by a known probability density
function (pdf) p (x̄0) = p (x0) p (µ0). The white noise sequences {wk}, {ek} and
{vk} are described by known pdf’s p (wk), p (ek) and p (vk), respectively. For the
sake of brevity, all noise signals are denoted as w̄k = [wT

k , e
T
k ,v

T
k ]T . The initial state

x̄0 and the noise sequence {w̄k} are mutually independent. The general nonlinear
vector functions fk (xk, µk,uk,wk) : Rnx×M×Rnu×Rnw 7→ Rnx , gk (xk, µk,uk, ek) :
Rnx×M×Rnu×Rne 7→ M and hk (xk, µk,vk) : Rnx×M×Rnv 7→ Rny are known.
Note that the function gk (xk, µk,uk, ek) represents a stochastic model of faults.

4.1.2 Detector and controller

Within the general formulation the aim is to design the causal deterministic sys-
tem S2 that generates the decision dk and the input uk based on a complete available
information at each time step k ∈ T = {0, 1, . . . , F}. All the available information

from time step 0 to time step k is denoted as Ik0 = [yk0
T
,uk−1

0

T
, dk−1

0

T
]T . The no-

tation zji is used for expressing the time sequence of variables or functions zk from
the time step i up to the time step j. If it happens in an expression that i is greater
that j, then the sequence zji is empty, and the corresponding variable or function is
simply left out from the expression. According to this rule, the information vector
for the time step k = 0 is defined as I0

0 = I0 = y0. The system S2 can be described
at each time step k ∈ T by the relation[

dk
uk

]
= ρk

(
Ik0
)
, (4.2)

where dk ∈ M is the decision providing information about the variable µk and
ρk
(
Ik0
)

: R(k+1)×ny × U0 × · · · × Uk−1 × Mk 7→ M × Uk is an unknown vector
function. Note that the decision dk can be regarded as a point estimate of the
variable µk. It is assumed that the function ρk

(
Ik0
)

belongs to the set of competing
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functions Γk ⊆ Γ+
k , where Γ+

k is the set of all functions that are admissible at
the time step k, i.e. functions that do not create an algebraic loop. A sequence of
functions ρF0 =

[
ρ0 (y0) ,ρ1 (I1

0) , . . . ,ρF
(
IF0
)]

is called policy. The set of admissible
policies is denoted Γ+ = Γ+

0 × Γ+
1 × . . . × Γ+

F and the set of competing policies is
denoted Γ ⊆ Γ+.

For the further analysis, it is useful to separate ρk
(
Ik0
)

into two parts[
dk
uk

]
=

[
γk
(
Ik0
)

δk
(
Ik0, dk

)] = ρk
(
Ik0
)
, (4.3)

where γk
(
Ik0
)

: R(k+1)×ny × U0 × · · · × Uk−1 × Mk 7→ M is the detector and

δk
(
Ik0, dk

)
: R(k+1)×ny × U0 × · · · × Uk−1 ×Mk+1 7→ Uk is the controller. The con-

troller can be a function of the decision dk that is given by the detector in the
current time step. The function ρk

(
Ik0
)

can be partially fixed. For example, the

detector γk
(
Ik0
)

can be given in advance. Then the aim is to design the controller

δk
(
Ik0, dk

)
with respect to the given detector. Or vice versa, the controller can be

given in advance and the aim is to design the detector only. Partially fixed ρk
(
Ik0
)

will be discussed in section 4.2.

4.1.3 General criterion

Similarly to the optimal stochastic control [Bar-Shalom, 1981], a suitable criterion is
needed for evaluating behavior of the closed loop system. The design of the optimal
system S2 is then based on minimization of such a criterion. An additive criterion
is considered in the following form

J
(
ρF0
)

= E

{
F∑
k=0

Lk (µk, dk,xk,uk)

}
, (4.4)

where J
(
ρF0
)

is an objective function that express the expected cost when the policy

ρF0 is applied. The cost function Lk (µk, dk,xk,uk) :M×M×Rnx ×Rnu 7→ R+ is
a non-negative real-valued function.

Remark 1 The output yk can be used as an argument of the cost function
Lk (µk, dk,xk,uk) as well, however, the aim is to control the state variable xk not
the noisy output yk. Therefore, the output yk is not included in the cost function.

Two competing aims can be distinguished in AFDC problems: the detection and
the control aim. The detection aim concerns the quality of the detection that can be
measured, for example, by the probability of making a wrong decision. The control
aim focuses on the quality of control that requires the state to follow a reference
trajectory as close as possible while the control effort is not excessive. These two
aims are usually in contradiction. The particular structure of the cost function that
captures this contradiction will be considered in the thesis as

Lk (µk, dk,xk,uk) = αLd
k (µk, dk) + (1− α)Lc

k (xk,uk) , α ∈< 0, 1 >, (4.5)
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where α is a weighting factor, Ld
k (µk, dk) :M×M 7→ R+ is a detection cost function

and Lc
k (xk,uk) : Rnx×Rnu 7→ R+ is a control cost function. The detection objective

function Ld
k (µk, dk) penalizes wrong decisions. It is reasonable to require that the

detection cost function Ld
k (µk, dk) satisfies the inequality Ld

k(µk, µk) ≤ Ld
k(µk, dk)

for all µk ∈M, dk ∈M, dk 6= µk at each time step k ∈ T , and the strict inequality
holds at least at one time step. The control cost function Lc

k (xk,uk) is a non-
negative function chosen by a designer. The detection objective function is defined
as

JD
(
ρF0
)

= E

{
F∑
k=0

Ld
k (µk, dk)

}
(4.6)

and the control objective function is defined as

JC
(
ρF0
)

= E

{
F∑
k=0

Lc
k (xk,uk)

}
. (4.7)

4.1.4 Constraints

Two groups of constraints could be taken into account during design of the system
S2. The first group contains the constraints that follow from design considerations
and physical, logical or other restrictions imposed by the system S. Since these
constraints apply at individual time steps, they will be called instantaneous. The
second group comprises the constraints that are imposed exclusively by the designer
to meet some detection or control aims. In contrast to the instantaneous constraints,
these constraints deal with the behavior of the system S over the whole finite-time
horizon and they are referred to as sum constraints. Both types of constraints are
discussed in detail in the following.

Instantaneous constraints

Various types of instantaneous constraints such as linear, quadratic, second order
cone or even set membership constraints can be considered [Boyd and Vanden-
berghe, 2004]. For the sake of simplicity, linear instantaneous constraints will be
considered in the thesis. Note that linear constraints can be used to approximate
any convex constraints to an arbitrary degree of accuracy. Moreover, most of the
results presented in the thesis do apply for other types of constraints as well but
numerical evaluation can be more demanding. The instantaneous constraints will
be defined for the inputs uk and the expected states E{xk|µk}.

Although the input uk is given by a function of random variables δk
(
Ik0, dk

)
,

it is possible to constrain individual realizations of the input by considering only
functions with an image satisfying the given instantaneous constraint. Therefore,
the set of admissible inputs Uk can be defined using instantaneous input constraints
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as

Uk = {uk : uk ∈ Rnu , Su
kuk ≤ su

k} , (4.8)

U = U0 × U1 × . . .× UF−1, (4.9)

where the matrix Su
k ∈ Rns×nu and the vector su

k ∈ Rns are given. Note that the
inequality is taken element-wise over the vectors Su

kuk and su
k.

In contrast to the input uk, the state xk is an internal random variable of the
system S and it cannot be constrained directly. To overcome this issue, three ap-
proaches were proposed in literature, namely expectation constraints, chance con-
straints and worst case constraints [Prékopa, 2010]. In the worst case constraints
formulations, disturbances are assumed to be bounded. Therefore, the worst case
constraints fit into the robust approach. Within the stochastic approach to AFDC,
the expectation and the chance constraints can be used. The expectation con-
straints allow for constraining the expected value only. The chance constraints
allow for expressing required probability of constraints fulfillment. For the sake of
simplicity, the expectation constraint are considered in the AFDC framework. The
set of admissible expected states is defined for each time step and it is conditioned
by µk

Xk|µk =
{

E{xk|µk} : Sx
k|µk E{xk|µk} ≤ sx

k|µk

}
, (4.10)

where the matrices Sx
k|µk ∈ Rnr×nx and vectors sx

k|µk ∈ Rnr are given. This formu-
lation allows to define state expectation constraints for each model separately i.e.
different state expectation constraints can be defined for fault free and for faulty
operation.

Sum constraints

The objective functions JD
(
ρF0
)

and JC
(
ρF0
)

can be simultaneously minimized in
order to obtain the optimal controller. However, a less strict requirements can be
imposed for those two aims in some applications. Instead of requiring to minimize
both objective functions it may be sufficient to keep their values below a prescribed
upper limit value. Therefore, two sum constraints on detection and control objective
functions can be considered

JD
(
ρF0
)
≤ JD

max, (4.11)

JC
(
ρF0
)
≤ JC

max, (4.12)

where JD
max ∈ {R,∞} and JC

max ∈ {R,∞} are maximal acceptable levels of the
detection and control objective functions, respectively.

4.1.5 Problem formulation

The aim is to find a policy ρF0
∗

that minimizes the given objective function with
respect to all constraints and the system S1
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ρF0
∗

= arg min
ρF
0 ∈Γ

E

{
F∑
k=0

αLd
k (µk, dk) + (1− α)Lc

k (xk,uk)

}
, (4.13)

subject to

uF−1
0 ∈ U , input instantaneous constraints (4.14)

E{xk|µk} ∈ Xk|µk , µk ∈M state expectation instantaneous constraints
(4.15)

JD
(
ρF0
)
≤ JD

max, detection sum constraints (4.16)

JC
(
ρF0
)
≤ JC

max, control sum constraints (4.17)

xk+1 = fk (xk, µk,uk,wk) , system S1 (4.18)

µk+1 = gk (xk, µk,uk, ek) ,

yk = hk (xk, µk,vk) ,

x0 ∼ p(x0), µ0 ∼ p(µ0). initial conditions (4.19)

Remark 2 The general problem formulation (4.13)-(4.19) incorporates the detec-
tion as well as the control sum constraints. Any of the sum constraints can be left
out by setting its maximal acceptable level JD

max or JC
max to infinity.

Remark 3 The instantaneous constrains can be left out from the general formula-
tion (4.13)-(4.19) as well by setting U = Rnu×F and Xk|µk = Rnx ×M.

4.2 Special cases

The AFDC framework covers a wide range of special cases that can be derived
from the formulation (4.13)-(4.19). In this section, several important variants of
the general framework are pointed out. Two possible distinctions are discussed
separately. The first distinction arises when the structure of S2 is partially fixed.
The second distinction focuses on the different usage of the detection and the control
objective. These two possible distinctions are combined at the end of the chapter,
where nine special cases are defined.

Detector and controller

Design of the function ρk
(
Ik0
)

can be restricted by structural requirements. Namely,
the detector or the controller can be given in advance. Then the goal is to design only
the remaining part of ρk

(
Ik0
)
. There are three important combinations that can be

investigated within the AFDC framework. For sake of completeness one additional
combination that can be interpreted as a feasibility study will be mentioned as well,
however, this combination is out of the scope of the AFDC framework.
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• No structural constraints The goal is to design an active fault detector
and controller

ρF0
∗

= arg min
ρF
0 ∈Γ

J
(
ρF0
)

(4.20)

subject to (4.14)- (4.19). (4.21)

• Given detector The goal is to design a controller

δF0
∗

= arg min
δF0 ∈Γ

J
(
ρF0
)

(4.22)

subject to (4.14)- (4.19) and the given detector γF0 . (4.23)

• Given controller The goal is to design an active fault deetector

γF0
∗

= arg min
γF
0 ∈Γ

J
(
ρF0
)

(4.24)

subject to (4.14)- (4.19) and given the given controller δF0 . (4.25)

• Given detector and controller The goal is to decide if

the given detector γF0 and the given controller δF0 do satisfy (4.14)- (4.19).

The topology of all four combinations is depicted in Figure 4.2. In case of
no structural constraints, the goal is to design the whole system S2 without any
additional structural constraints on the designed system. In some situations, the
detector is given in advance, and it has to be taken into account while designing
the controller δk

(
Ik0, dk

)
. Such a situation typically arises when the detector has

been already hardwired into the system, for example, in case of hardware redun-
dancy fault detection. Then the goal can be to influence the input signal in order to
improve performance of the hardwired detector. Another scenario is when a subop-
timal detector is used because the optimal one is too complex to be implemented.
When the controller is given, the goal is to design the detector γk

(
Ik0
)
. Contrary to

the given detector where the decision dk is a function of Ik0, in the case of the given
controller the input uk is generally a function of Ik0 and also the current decision dk.
In other words, the decision of the detector dk can influence the input in the cur-
rent time step uk. A multimodel controller consisting of several controllers that are
switched according to the decision dk can be considered as a typical example of such
a situation. When the detector and the controller are given, then there is nothing
to be designed, however, feasibility of the given problem can be validated.

Criterion and sum constraints

It was pointed out in [Široký et al., 2011b], that expressing the detection or the
control aim as a constraint rather than including it into an objective function makes
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Figure 4.2: Topology of AFDC with different structural constraints.

it possible to guarantee the required quality by keeping one of the objective functions
under a prescribed upper limit value while the other one is minimized. Different
problem formulations can be derived by varying the weighting parameter α and the
maximal acceptable levels of the detection and control sum constraints. Specifically,
the following five formulations of AFDC are of interest

• ProbC The goal is the minimization of the control objective function with
no sum constraints.

ρF0
∗

= arg min
ρF
0 ∈Γ

JC
(
ρF0
)

(4.26)

subject to (4.1), uF−1
0 ∈ U , E{xk|µk} ∈ Xk|µk , µk ∈M, k ∈ T . (4.27)
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• ProbC
D The goal is minimization of the control objective function with re-

spect to the detection sum constraint.

ρF0
∗

= arg min
ρF
0 ∈Γ

JC
(
ρF0
)

(4.28)

subject to (4.1),uF−1
0 ∈ U , E{xk|µk} ∈ Xk|µk , µk ∈M, k ∈ T , JD

(
ρF0
)
≤ JD

max.

(4.29)

• ProbCD The goal is minimization of the objective function expressing the
trade-off between control and detection with no sum constraints.

ρF0
∗

= arg min
ρF
0 ∈Γ

αJD
(
ρF0
)

+ (1− α)JC
(
ρF0
)

(4.30)

subject to (4.1),uF−1
0 ∈ U , E{xk|µk} ∈ Xk|µk , µk ∈M, k ∈ T . (4.31)

• ProbD
C The goal is minimization of the detection objective function with

respect to the control sum constraint.

ρF0
∗

= arg min
ρF
0 ∈Γ

JD
(
ρF0
)

(4.32)

subject to (4.1),uF−1
0 ∈ U , E{xk|µk} ∈ Xk|µk , µk ∈M, k ∈ T , JC

(
ρF0
)
≤ JC

max.
(4.33)

• ProbD The goal is minimization of the detection objective function with
no sum constraints.

ρF0
∗

= arg min
ρF
0 ∈Γ

JD
(
ρF0
)

(4.34)

subject to (4.1),uF−1
0 ∈ U , E{xk|µk} ∈ Xk|µk , µk ∈M, k ∈ T . (4.35)

These five formulations are denoted as principal AFDC formulations in the the-
sis. A summary of predefined parameters that allow to derive the principal AFDC
formulations from the general formulation (4.13)-(4.19) is given in Table 4.1.

The formulations ProbC
D, ProbCD and ProbD

C align with the main goal of the
thesis that is AFDC, while the formulations ProbC and ProbD are marginal cases
that outline the relationship of the proposed framework to the well known fields
of optimal control and AFD. The formulation ProbC

D focuses on maintaining a
desired quality of detection while minimizing the control objective function. The
formulation ProbD

C focuses on attaining the best possible detection quality while
keeping the control objective function below a prescribed limit value. Finally, the
formulation ProbCD focuses on minimizing the weighted sum of both objective
functions which can be useful when the detection and control objective functions
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Table 4.1: Principal AFDC formulations parameters. Symbol ’n/a’ denotes the parame-
ters that are not determined by problem formulation and has to be chosen by a designer
and ∞ indicates that the particular sum constraint is not applied.

α JD
max JC

max

ProbC 0 ∞ ∞
ProbC

D 0 n/a ∞
ProbCD n/a ∞ ∞
ProbD

C 1 ∞ n/a
ProbD 1 ∞ ∞

express the same quantity (e.g. monetary control cost and cost of unhandled failures
and false alarms).

It was shown that reasonable special cases of AFDC can be derived based on
two different criteria: partially fixed structure of ρk

(
Ik0
)

and definition of sum con-
straints. These two criteria can be combined and many unique special cases can be
defined. In the thesis, special attention will be focused on all principal formulations
in combinations with a given detector. Analysis of these formulations allows for
comparing active and passive approach to fault detection. The formulation ProbC

with a given detector can be interpreted as an example of passive detection. The
input signal is designed regardless to detection aims, however, fault detection is
performed by the given fault detector. All other principal formulations with a given
detector can be seen as examples of active approach to fault detection.

4.3 Discussion

The general AFDC framework was introduced. The AFDC framework allows ex-
pressing various AFDC design requirements. The detection and the control aim can
be expressed as a part of the cost function or as a sum constraint. The expected
state trajectory as well as the input trajectory can be also constrained. Moreover,
the AFDC framework allows handling of partially predefined structure of AFDC sys-
tem, such as given detector or controller. It is advantageous, for example, in case
of retrofitting of an existing controller or passive detector. The proposed AFDC
framework then allows for adapting the AFDC formulation to the existing system
and make advantage of all properties of AFDC.

Some of the preceding works in the field of stochastic AFD and AFDC can be
identified in the proposed AFDC framework, see Table 4.2. This table is partially
taken from [Šimandl et al., 2011], where nine special cases of AFDC were intro-
duced. However, no sum constraints were considered in [Šimandl et al., 2011]. The
AFD formulation defined in [Blackmore and Williams, 2006] can be interpreted
as ProbD with input as well as state expectation constraints. In contrast to the
AFDC framework introduced in the thesis the formulation proposed in [Blackmore

27



and Williams, 2006] does not allow to handle the control aim. The control aim
was not considered as a part of objective function nor as a sum constraint. Four
formulations introduced in [Šimandl and Punčochář, 2009] can be interpreted as
ProbC, ProbCD and ProbD without structural constraints and ProbD with the
given controller. Only the input constrains were taken into account in [Šimandl
and Punčochář, 2009], no sate expectation constraints nor sum constraints were
considered.
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Table 4.2: Summary of AFDC special cases and their realition to the previously published AFDC papers. In the first row, there
are cases where the goal is to design S2 without any limitations. In the second row, there are cases with the given detector. The
detector is denoted as passive in the first column because the given detector does not influence the input signal design at all. It
the third column of the second row, the only purpose of S2 is to minimize the detection objective function. Therefore, S2 is called
generator instead of controller. The same terminology is used in the third row of the third column, where the detector is given.
Finally, S2 is called decision generator in the first column of the third row because the decision dk serves only for improvement of
the control objective. For details regarding each special case, see the references in the table.

Control aim Detection and control aims Detection aim
ProbC ProbC

D, ProbCD, ProbD
C ProbD

No structural constraints Active controller Active detector and Active detector
active controller

[Šimandl and Punčochář, 2009] [Šimandl and Punčochář, 2009] [Šimandl and Punčochář, 2009]

[Bertsekas, 2005a] [Šimandl et al., 2011] [Blackmore and Williams, 2006]

[Šimandl et al., 2011] [Šimandl et al., 2011]

Given detector Active controller and Active controller for Active generator for
a passive detector a given detector a given detector

[Široký et al., 2011b] [Široký et al., 2011b] [Široký et al., 2011b]

[Šimandl et al., 2011] [Široký et al., 2012] [Šimandl et al., 2011]

[Šimandl et al., 2011]

Given controller Active decision generator for Active detector for Active detector for
a given controller a given controller a given generator

[Punčochář et al., 2010] [Šimandl et al., 2011] [Šimandl and Punčochář, 2009]

[Šimandl et al., 2011] [Šimandl et al., 2011]
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Chapter 5

Optimal solution

The vast majority of problems that can be defined within the presented AFDC
framework represent a complex functional optimization problem. There is no gen-
eral technique how to obtain the optimal solution for this class of problems. There
are some AFDC formulations that can be easily solved such as ProbC with linear
Gaussian system, no constraints and quadratic control cost that is known as the
linear quadratic Gaussian control problem [Rawlings and Mayne, 2009]. In cases
of some AFDC problems, it is possible to use dynamic programming and break
the complex optimization problem into simpler sub-problems using the backward
recursion [Bertsekas, 2005a]. However, presence of the state expectation and sum
constraints defined in the AFDC framework causes that the optimal solution cannot
be, in general, obtained by the backward recursion. In this chapter, the optimal
solution to AFDC problems based on dynamic programming is presented first, then
the complications related to the state expectation and sum constraints are discussed.

The AFDC problems that can be solved by dynamic programming

Dynamic programming breaks the original problem into smaller sub-problems.
Richard E. Bellman’s principle of optimality describes how to do this: An opti-
mal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision [Bellman, 1957].

Dynamic programming can be used for solving the AFDC problems that do not
have any sum constraints nor state expectation constrains. The set of accessible
inputs U can be a strict subset of Rnu×F , i.e. the inputs uk can be constrained.
The optimal policy for this class of AFDC problems can be found by solving the
backward recursive equation

V ∗k
(
yk0 ,u

k−1
0

)
= min

dk∈M
uk∈Uk

E
{
Lk (µk, dk,xk,uk) + V ∗k+1

(
yk+1

0 ,uk0
) ∣∣ yk0 ,u

k
0, dk

}
,

(5.1)

where k = F, F − 1, . . . , 0. The Bellman function V ∗k
(
yk0 ,u

k−1
0

)
is the mini-

mal expected cost that will be incurred from the time step k up to the final
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time step F given the information [yk0 ,u
k−1
0 ]. The function V ∗k

(
yk0 ,u

k−1
0

)
is also

called cost-to-go function. The initial condition for the backward recursive equa-
tion (5.1) is V ∗F+1 = 0. An optimal policy ρF0

∗
is obtained by first minimizing

V ∗F
(
yF0 ,u

F−1
0

)
for every possible value of [yF0 ,u

F−1
0 ] to obtain ρ∗F . Simultaneously,

V ∗F
(
yF0 ,u

F−1
0

)
is computed and used in computation of V ∗F−1

(
yF−1

0 ,uF−2
0

)
via

minimization in (5.1), which is carried out for every possible value of [yF−1
0 ,uF−2

0 ].
This is done iteratively until V ∗0 (y0) is computed.

The backward recursive equation (5.1) can be rewritten as follows

V ∗k
(
yk0 ,u

k−1
0

)
= (5.2)

min
dk∈M
uk∈Uk

{∫ ∑
µk∈M

Lk (µk, dk,xk,uk) p
(
xk|yk0 ,uk−1

0

)
P
(
µk|yk0 ,uk−1

0

)
dxk+∫

V ∗k+1

(
yk+1

0 ,uk0
)
p
(
yk+1|yk0 ,uk0

)
dyk+1

}
. (5.3)

Nonlinear filtering has to be used for obtaining the pdfs p
(
xk|yk0 ,uk−1

0

)
,

p
(
yk+1|yk0 ,uk0

)
and probability mass function P

(
µk|yk0 ,uk−1

0

)
that are needed for

evaluating the conditional expectations in the backward recursive equation (5.3).
Nonlinear filtering is a non-trivial task and its detailed discussion is out of the scope
of the thesis. Detailed information about nonlinear filtering can be found in [Simon,
2006, Crassidis and Junkins, 2011, Šimandl and Duńık, 2009, Šimandl et al., 2006].
If the monitored system is linear and Gaussian then a bank of Kalman filters can
be used. However, the amount of filters that are needed grows exponentially in
time. Each sequence of models µk0 requires a corresponding sequence of Kalman
filters. Techniques of merging or pruning can be used for reduction of the number
of analyzed sequences [Boers and Driessen, 2005].

The computational requirements of dynamic programming are usually over-
whelming. The number of state combinations grows exponentially in time. This
problem arises not only in automatic control but also in artificial intelligence, eco-
nomics, medicine, transportation and many other areas. Richard E. Bellman named
this phenomena ”curse of dimensionality” [Bellman, 1957]. Optimal solutions can
only be computed for special cases such as ProbC with linear system and quadratic
cost function (see [Bertsekas, 2005a]) or for small-scale problems as illustrated by
the following example.
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Example 5.3 The goal of the example is to demonstrate derivation of the optimal solution of a
particular AFDC problem. The problem to be solved can be described as ProbD without sum
and state expectation constraints. Prediction horizon is two steps F = 1.
The initial condition of the Bellman equation is V ∗2 = 0. The optimal input and decision at time
step 1 are given by the following minimization

V ∗1 (y1
0,u0) = min

u1∈U1
d1∈M

E
{
Ld
1 (µ1, d1) + V ∗2 |y1

0,u
1
0, d1

}
= min
d1∈M

E
{
Ld
1 (µ1, d1) |y1

0,u
1
0, d1

}
. (5.4)

The decision d1 has to minimize the expected value of Ld
1 (µ1, d1), the input u1 does not affect

criterion value and can be chosen arbitrary

γ1

(
I10
)

= arg min
d1∈M

E
{
Ld
1 (µ1, d1) |y1

0,u0, d1
}
, (5.5)

δ1
(
I10, d1

)
=any u1 ∈ U1. (5.6)

At time step 0, the Bellman equation has the following form

V ∗0 (y0) = min
u0∈U0
d0∈M

E
{
Ld
0 (µ0, d0) + V ∗1 (y1

0,u0)|y0,u0, d0
}

= (5.7)

min
u0∈U0
d0∈M

E

{
Ld
0 (µ0, d0) + min

d1∈M
E
{
Ld
1 (µ1, d1) |y1

0,u
1
0, d1

}
|y0,u0, d0

}
. (5.8)

For each u0, the cost-to-go V ∗1 (y1
0,u0) has to be evaluated with respect to the probability of

measurement y1. The decision dk has to minimize cost Ld
0 (µ0, d0) only because it does not affect

any further cost. At time step 0, ρ0 (y0) is given as follows

γ0 (y0) = arg min
d0∈M

E
{
Ld
0 (µ0, d0) |y0, d0

}
, (5.9)

δ0 (y0, d0) = arg min
u0∈U0

E

{
min
d1∈M

E
{
Ld
1 (µ1, d1) |y1

0,u
1
0, d1

}
|y0,u0, d0

}
. (5.10)

The optimal policy ρF0 is given by (5.9), (5.10), (5.5) and 5.6. It can be seen that the policy is
given by minimization of the expected value of detection costs that are conditioned by u0,y0,y1

and d1. Computational requirements depend on the particular model structure and the cost
functions Ld

1 (µ1, d1) and Ld
0 (µ0, d0), however, the minimization shall be numerically tractable

thanks to a low complexity of the optimization problem.

The AFDC problems that cannot be solved by dynamic programming

The complications arise when state expectation or sum constraints are included
in the AFDC problem formulation. The fulfillment of further instantaneous state
expectation constraints and sum constraints has to be taken into account. A decision
dk and an input uk that does not violate any constraints applied at the current time
step (uk ∈ Uk, dk ∈ M) can cause that some of further instantaneous expectation
state constraints or sum constraints cannot be fulfilled. For example, the selected
input uk ∈ Uk can cause such an increase in the control cost that there is no policy[
ρk+1,ρk+2, . . . ,ρF

]
that can guarantee fulfillment of the sum constraints. The

admissible policy has to guarantee fulfillment of all constraints that are applied to
further states, inputs and decisions.

The standard formulation of stochastic optimal control [Bertsekas, 2005a] as-
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sumes that the set of all competing policies Γ and the set of all admissible policies Γ+

are identical and the optimal controller is found using the CL IPS by solving the
backward recursive equation that relies on the principle of optimality [Bertsekas,
2005a]. However, it was pointed out in [Žampa et al., 2004] that if the set of com-
peting policies is a strict subset of all admissible policies, it may not be possible
to resolve the backward recursive equation at all time steps, i.e., it may happen
that the set of competing policies does not contain the policy that is optimal for all
past input-output data. This does not mean that there is no optimal policy ρF0

∗
,

however, the problem cannot be separated and solved by the backward recursive
equation that uses only past input-output data regardless of past functions.

Although the set of competing policies Γ is not constrained explicitly in any
of the presented formulations, the instantaneous expectation state and the sum
constraints restrict the set of competing policies Γ implicitly. The set Γ can be
specified as a set that contains all admissible policies ρF0 ∈ Γ+ except those that
result in violation of the instantaneous expectation state constraints or the sum
constraints. An explicit description of the set Γ is extremely difficult to obtain.

Remark 4 The AFDC problems with state expectation and sum constraints can
be interpreted as multistage stochastic programming problems, where various forms
of stochastic constraints are considered [Dupačová and Sladký, 2002, Shapiro and
Philpott, 2007]. This interpretation, however, does not refer to any general tech-
nique that can be used for derivation of the optimal solution of AFDC problems.
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Chapter 6

Suboptimal solution

It was shown, that the optimal solution of AFDC can be obtained only for a specific
subclass of AFDC problems. Most of the AFDC problems have to be solved by some
approximation technique that can provide a suitable suboptimal solution. The
goal of this chapter is to shortly introduce basic concepts of approximate dynamic
programming and to demonstrate design of a suboptimal solution.

6.1 Approximate dynamic programming

Computational demands of many dynamic programming problems are overwhelm-
ing due to the “curse of dimensionality”. Even the dramatic speed up of computers
that was achieved during the last decades did not change the fact that problems such
as AFDC problems remain computationally intractable. Nevertheless, a subotimal
solution can be usually computed using techniques denoted as approximate dynamic
programming1. There is no general suggestion which of the approximate techniques
is the best. Properties of the specific problem at hand have to be taken into con-
sideration when selecting a convenient dynamic programming approximation. In
this chapter, three basic concepts will be introduced. For more information on
approximate dynamic programming see [Powell, 2007, Bertsekas, 2005a, Bertsekas,
2005b].

6.1.1 Rollout algorithm

Rollout algorithm is a specific type of cost-to-go approximations within the context
of limited lookahead methods [Bertsekas, 2005a]. When one step lookahead method
is applied, input and decision are given by the following minimization

min
dk∈M
uk∈Uk

E
{
Lk (µk, dk,xk,uk) + Ṽk+1

(
yk+1

0 ,uk0
) ∣∣ yk0 ,u

k
0, dk

}
, (6.1)

where Ṽk+1

(
yk+1

0 ,uk0
)

is an approximation of V ∗k+1

(
yk+1

0 ,uk0
)
. In the rollout al-

gorithm, the approximation Ṽk+1

(
yk+1

0 ,uk0
)

is based on a heuristic policy, called

1Sometimes denoted as neuro-dynamic programming or reinforcement learning
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base policy. The base policy is used for Monte Carlo simulations that estimate
the cost-to-go for different inputs uk and decisions dk. It must be possible to per-
form Monte Carlo simulations and calculate the rollout algorithm in real time. The
computational burden can be substantial, however, it is possible to speed up the cal-
culation of the rollout algorithm by restricting attention to a few promising inputs
uk and decisions dk. Usage of rollout algorithm for AFDC problems was presented
in [Punčochář and Šimandl, 2009].

6.1.2 Restricted structure policies

Another approach is based on narrowing the focus on particular class of feedback
policies ρk(Θk, I

k
0), where Θk denotes a set of parameters of the policy. The goal is

to find feedback policy parameters ΘF
0 that minimize the objective function

min
Θk

E
{
Lk (µk, dk,xk,uk) + V ∗k+1

(
yk+1

0 ,uk0
) ∣∣ yk0 ,u

k
0, dk

}∣∣∣
[dk,uk]T =ρk(Θk,I

k
0)
, (6.2)

where |[dk,uk]T =ρk(Θk,I
k
0) denotes an equality constraint defined by the given policy.

The cost-to-go V ∗k+1

(
yk+1

0 ,uk0
)

is also evaluated with respect to the given policy.
Note that the optimal solution within the given class of feedback policies does not
have to be the optimal solution of the original problem. Affine disturbance feedback
is an example of a restricted structure feedback policy [Oldewurtel et al., 2008].

6.1.3 Open loop strategy

In problems with imperfect information such as AFDC problems defined in the the-
sis, the performance of the optimal policy improves when extra information is avail-
able. However, the use of this information may render the dynamic programming
calculation of the optimal policy intractable. This motivates an approximation,
that in part ignores the availability of extra information.

The design of the active detector and controller is formulated similarly to a
stochastic optimal control problem, where the controller design can be carried out
using three different assumptions on measurements availability at individual time
steps [Bar-Shalom and Tse, 1974].

Open loop (OL) - this IPS assumes that only model and a priori information will
be used by the active detector and controller. The output yk is not available
at any time step k = 1, . . . , F and the input uk is a function of the time step k
only. Since no measurements are used, this IPS is considered the simplest one.

Open loop feedback (OLF) - this IPS assumes that model, a priori information
and measurements received up to time step k are used by the active detector
and controller at time step k. However, potential availability of future mea-
surements is not taken into account. As available measurements are utilized,
this IPS performs better or at least as good as the OL IPS.
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Figure 6.1: The block diagram of AFDC problems with no structural constraints and
AFDC problems with a given detector when the OL IPS is used

Closed loop (CL) - this IPS assumes that model, a priori information and mea-
surements received up to the current time step are used. Moreover, the avail-
ability of further measurements in the future is respected. As such, this IPS
results into the same or better performance compared to the previous two
IPSs.

All IPSs can be used within the AFDC framework and their detailed description
in this context can be found, e.g., in [Punčochář and Šimandl, 2008]. Although the
use of the CL IPS ensures the best performance of AFDC, its implementation is
computationally prohibitive in most cases. Usage of OL IPS reduces computational
demands significantly and allows a numerical solution of the AFDC problems. Al-
though the OL IPS is the most naive strategy, it allows to find a basic controller
that may be further improved. A natural extension is to employ the OLF IPS that
requires to use the OL IPS at each time step of the finite horizon. A block diagram
of OL IPS based AFDC is depicted in Fig. 6.1. It can be seen that the controller
does not utilize any measurement y.

It was shown in [Šimandl and Punčochář, 2009] that the optimal decision dk and
the optimal input uk can be designed independently in case of AFDC formulations
with no structural constraints. The optimal decision is given by minimization of
the detection cost function in the current time step only, it does not influence the
expected cost-to-go. It can be easily evaluated using the CL IPS. The same applies
to AFDC problems with a given detector because the given detector is based, in
general, on CL IPS. Therefore, the OL IPS is used for finding only the suboptimal
input trajectory uF0 in case of AFDC problems with no structural constraints and
AFDC problems with a given detector. Different formulation of has to be used in
case of the AFDC problems with a given controller. Suboptimal solutions of the
special cases with a given controller will not be discussed here. Analysis of these
special cases can be found in [Punčochář et al., 2010,Šimandl and Punčochář, 2009].

The mathematical formulation of OL IPS based suboptimal solution for AFDC
problems with no structural constraints and AFDC problems with a given detector
reads as

min
uF
0 ∈U

E

{
F∑
k=0

Lk
∣∣uF0
}
. (6.3)
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The goal is to express the objective function E
{∑F

k=0 Lk
∣∣uF0 } as a function of inputs

uF0 that can be minimized using a numerical solver. The structure of the objective
function determines the numerical solution tools. Preferable are simple convex
functions such as linear or quadratic functions that can be efficiently minimized by
various numerical solvers.

Usage of OL IPS allows for handling of instantaneous as well as sum constraints.
Expected value of detection and control costs as well as the expected state trajectory
can be evaluated for each combination of inputs uF0 and decisions dF0 . It allows to
exclude the set of inputs uF0 that do not fulfill the sum and instantaneous state
constraints from the minimization. In the rest of the chapter, design of the OL IPS
based suboptimal solution will be demonstrated.

6.2 Design of suboptimal active fault detection and control

The goal of this section is to demonstrate the design of the suboptimal solution of
AFDC problems using the OL IPS. A particular structure of a monitored system
and the objective functions will be chosen. In the general AFDC framework formu-
lation, the model is described by general nonlinear vector functions (4.1). Nonlinear
models significantly complicate the numerical solution of AFDC problems. Use of a
nonlinear model in AFDC framework was discussed in [Široký et al., 2012]. In this
chapter, only linear Gaussian time invariant systems will be considered. Moreover,
it is assumed that µk is constant, i.e., there is no model switching. Analysis of AFDC
problems with model switching can be found in [Punčochář et al., 2009,Blackmore
et al., 2008]. These assumptions can be seen as too restrictive, however, many of
practical applications can be described by such simplified models.

As mentioned in section 4.2, focus will be laid on AFDC problems with a given
detector. Control cost function is a quadratic function. The detection cost function
penalizes wrong decision in the last step of the prediction horizon only. Detailed
description of the selected AFDC problems is given in the following section.

6.2.1 Problem formulation

Observed and controlled system

The AFDC problem is considered on a finite-time horizon and it is assumed that the
observed and controlled system can be described by one of the following discrete-
time linear Gaussian models

xk+1 = Aµxk + Bµuk + Gµwk, k = 0, 1, . . . , F − 1, (6.4)

µk+1 = µk, k = 0, 1, . . . , F − 1,

yk = Cµxk + Hµvk, k = 0, 1, . . . , F,

where µk ∈ M = {1, 2} indicates the model in effect during the whole finite-time
horizon. The initial state x0 has the Gaussian distribution with the known mean x̂0

and covariance matrix Σx0 . A priori probability P (µ0|−1) is also known. The state
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noise wk ∈ Rnw and measurement noise vk ∈ Rnv are mutually independent white
Gaussian noises with zero means and unit covariance matrices. They are also in-
dependent of the initial state. The matrices Aµ, Bµ, Gµ, Cµ, and Hµ are of
appropriate dimensions. Note that matrix time index subscript is omitted since µk
is constant. The matrix dimensions are same for all µ ∈M.

Remark 5 The assumption that there is no model switching significantly simpli-
fies filtration and output prediction because the number of possible model sequences
is fixed over time. Only two sequences µk0 are considered. Note that µk remains
stochastic variable because it depends on the unknown initial state that is given by
P (µ0|−1).

Given detector

Although the general formulation of AFDC allows for the detector γk
(
Ik0
)

to be

designed together with the controller δk
(
Ik0, dk

)
, a special case of the general for-

mulation, in which the detector γk
(
Ik0
)

is given in advance, is treated. A particular

detector that utilizes the outputs yF0 and the inputs uF−1
0 to generate only the final

decision dF optimal in the maximum a posteriori probability sense is considered.
The detector is defined as follows

dF = γF
(
IF0
)

= arg max
µF∈M

P
(
µF |yF0 ,uF−1

0

)
, (6.5)

where dF ∈ M is the decision, i.e., an estimate of the true model µF and
P
(
µF |yF0 ,uF−1

0

)
is the conditional probability of the model µF based on input-

output data [(yF0 )T, (uF−1
0 )T]T.

Detection and control cost functions

The detection aim consists of minimizing the probability that the final decision dF
of the given detector (6.5) is incorrect. Such aim is expressed by the following
detection cost function

Ld
k (µk, dk) =

{
1 if k = F ∧ dF 6= µF ,

0 otherwise.
(6.6)

The control cost function Lc
k (xk,uk) is chosen to be quadratic

Lc
k (xk,uk) =

{
xT
kQkxk + uT

kRkuk for k = 0, 1, . . . , F − 1,

xT
kQkxk for k = F.

(6.7)

with a symmetric positive semidefinite matrix Qk and a symmetric positive definite
matrix Rk.
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6.2.2 Solution for open loop strategy

In the original problem formulation, the goal was to find an optimal policy. When
the OL IPS is used, the goal is to find a sequence of inputs uF−1

0 that minimizes
the given objective function. To highlight this fact, the sequence of inputs uF−1

0

will be used as the argument of the objective function. Note, that the last input
uF is not considered because it does not change the value of the objective function.
The detection and control objective functions will be expressed as functions of the
input sequence. Then, nonlinear programming techniques will be used to solve the
optimization problems.

For further derivations, it is useful to express the pdfs of the state and output
trajectories for both models analytically. The state trajectories are described by
the following conditional probability density functions

p
(
xF0 |µF = i,uF−1

0

)
∼ N

(
x̂F0|i,Σx|i

)
, (6.8)

x̂F0|i = Aix̂0 + BiuF−1
0 , (6.9)

Σx|i = AiΣx0AT
i + GiGT

i . (6.10)

The output trajectories are described by the following conditional probability den-
sity functions

p
(
yF0 |µF = i,uF−1

0

)
∼ N

(
ŷF0|i,Σy|i

)
, (6.11)

ŷF0|i = CiAix̂0 + CiBiuF−1
0 , (6.12)

Σy|i = CiAiΣx0AT
i CT

i + CiGiGT
i CT

i +HiHT
i , (6.13)

where i ∈ M and the matrices Ai ∈ Rnx(F+1)×nx , Bi ∈ Rnx(F+1)×nuF , Gi ∈
Rnx(F+1)×nwF , Ci ∈ Rny(F+1)×nx(F+1) and Hi ∈ Rny(F+1)×nv(F+1) are defined as fol-
lows

Ai =


eye(nx)

Ai

A2
i

...
AF
i

 ,Bi =


0 0 . . . 0
Bi 0 . . . 0

AiBi Bi . . . 0
...

...
. . .

...
AF−1
i Bi AF−2

i Bi . . . Bi

 , (6.14)

Gi =


0 0 . . . 0
Gi 0 . . . 0

AiGi Gi . . . 0
...

...
. . .

...
AF−1
i Gi AF−2

i Gi . . . Gi

 , Ci = eye(F + 1)⊗Ci,Hi = eye(F + 1)⊗Hi,

(6.15)

where Ap
i denotes pth power of matrix Ai, eye(n) is the identity matrix of dimen-

sion n and ⊗ stands for the Kronecker product.
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Remark 6 The covariance matrices Σx|i and Σy|i do not depend on the input se-

quence uF−1
0 . The mean values x̂F0|i and ŷF0|i are affine functions of the input se-

quence uF−1
0 .

Detection objective function

Considering the detection cost function (6.6), the detection objective function can
be expressed as

JD(uF−1
0 ) = E

{
F∑
k=0

Ld
k (µk, dk) |uF−1

0

}
= E

{
Ld
F (µF , dF ) |uF−1

0

}
=∫ ∑

µF∈M

Ld
F (µF , dF ) p(µF ,y

F
0 |uF−1

0 )dyF0 =∫ ∑
µF∈M

Ld
F (µF , dF )P (µF |yF0 ,uF−1

0 )p(yF0 |uF−1
0 )dyF0 . (6.16)

The decision dF is determined by the given detector (6.5). The detector selects the
model with the highest a posterior probability, however, it could happen that this
decision is not correct. Using (6.6), the detection objective function can be written
as

JD(uF−1
0 ) =

∫ ∑
µF∈M

µF 6=arg maxi P(i|yF
0 ,u

F−1
0 )

P (µF |yF0 ,uF−1
0 )p(yF0 |uF−1

0 )dyF0 =

∫
1−max

i∈M
P (µF = i|yF0 ,uF−1

0 )p(yF0 |uF−1
0 )dyF0 . (6.17)

The setM contains only two models, therefore the detection objective function can
be simplified as follows

JD(uF−1
0 ) =

∫
min
i∈M

P (µF = i|yF0 ,uF−1
0 )p(yF0 |uF−1

0 )dyF0 . (6.18)

Using Bayes’ theorem

P (µF = i|yF0 ,uF−1
0 ) =

p(yF0 |µF = i,uF−1
0 )P (µF = i)

p(yF0 |uF−1
0 )

(6.19)

the detection objective function can be further rewritten into the form

JD(uF−1
0 ) =

∫
min
i∈M

p(yF0 |µF = i,uF−1
0 )P (µF = i)

p(yF0 |uF−1
0 )

p(yF0 |uF−1
0 )dyF0 =∫

min
i∈M

p(yF0 |µF = i,uF−1
0 )P (µF = i)dyF0 . (6.20)
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Since the integral in (6.20) cannot be computed analytically and its numerical eval-
uation is computationally expensive, an upper bound on the detection objective
function JD(uF−1

0 ) is used instead. This upper bound was introduced in the context
of AFD in [Blackmore and Williams, 2005] and it can be expressed as a quadratic
function of the input sequence uF−1

0 . This bound makes it possible to find a sub-
optimal input sequence using numerically efficient solvers.

Using the inequality

min(a, b) ≤
√
ab, a ≥ 0, b ≥ 0, (6.21)

the detection objective function JD(uF−1
0 ) can be bounded from above by JD

B (uF−1
0 )

as follows

JD(uF−1
0 ) ≤ JD

B (uF−1
0 ) =√

P (µF = 1)P (µF = 2)

∫ √
p(yF0 |µF = 1,uF−1

0 )p(yF0 |µF = 2,uF−1
0 )dyF0 ,

(6.22)

where the integral on the right hand side represents the Bhattacharyya coefficient
between two probability density functions.

Remark 7 A more general inequality

min(a, b) ≤ aβb1−β, a ≥ 0, b ≥ 0, 0 ≤ β ≤ 1 (6.23)

can be used to derive a tighter upper bound. However, the use of this inequality in-
troduces an additional optimization variable β, that makes the optimization problem
more difficult.

The expected output sequence is described by a multivariate Gaussian distribu-
tion, therefore the detection objective upper bound using (6.22) is

JD
B (uF−1

0 ) =
√
P (µF =1)P (µF =2)e−K , (6.24)

K=
1

2
ln

|Σ|√
|Σy|1||Σy|2|

+
1

8

(
ŷF0|1−ŷF0|2

)T
Σ−1

(
ŷF0|1−ŷF0|2

)
,Σ =

Σy|1 + Σy|2

2
,

where |Σ| denotes the determinant of the matrix Σ. Since the covariance ma-
trices Σy|i do not depend on the input sequence uF−1

0 , they can be evaluated
in advance. The only term that is a function of the input sequence in (6.24) is(
ŷF0|1−ŷF0|2

)T

Σ−1
(
ŷF0|1−ŷF0|2

)
.

When substituting (6.12) and (6.13) into (6.24), the detection objective upper
bound JD

B (uF−1
0 ) can be expressed in closed form as follows

JD(uF−1
0 ) ≤ JD

B (uF−1
0 ) = β1e

−β2−0.125((uF−1
0 )THDuF−1

0 +fTDuF−1
0 +gD), (6.25)
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where

β1 =
√
P (µF =1)P (µF =2), (6.26)

β2 =
1

2
ln

|Σ|√
|Σy|1||Σy|2|

, (6.27)

HD = (C1B1 − C2B2)TΣ−1(C1B1 − C2B2), (6.28)

fD = 2(C1B1 − C2B2)TΣ−1(C1A1 − C2A2)x̂0, (6.29)

gD = x̂T
0 (C1A1 − C2A2)TΣ−1(C1A1 − C2A2)x̂0 (6.30)

can be evaluated in advance.

Remark 8 The matrix HD is positive semidefinite.

Control objective function

Unlike the detection objective function, the control objective function can be ex-
pressed as a quadratic function of the input sequence uF−1

0 without any approxi-
mation. The control objective function with respect to the cost function (6.7) can
be expressed in a compact form as

JC(uF−1
0 ) = E

{(
xF0
)TQxF0 +

(
uF−1

0

)TRuF−1
0

∣∣uF−1
0

}
(6.31)

where the matrices Q ∈ Rnx(F+1)×nx(F+1) and R ∈ RnuF×nuF are defined as follows

Q =

Q0 . . . 0
...

. . .
...

0 . . . QF

 ,R =

R0 . . . 0
...

. . .
...

0 . . . RF−1

 . (6.32)

Two features of the trace operator will be used in the following derivation. Since
the quadratic form is a scalar quantity and mean value and trace are linear operators

E
{(

xF0
)T QxF0

}
= tr

(
E
{(

xF0
)T QxF0

})
= E

{
tr
((

xF0
)T QxF0

)}
. By the cyclic

property of the trace operator, E
{

tr
((

xF0
)T QxF0

)}
= E

{
tr
(
QxF0

(
xF0
)T)}

E
{(

xF0
)TQxF0 +

(
uF−1

0

)TRuF−1
0

∣∣uF−1
0

}
=

E
{

tr
(
QxF0

(
xF0
)T
) ∣∣uF−1

0

}
+
(
uF−1

0

)TRuF−1
0 =

tr
(
QE

{
xF0
(
xF0
)T ∣∣uF−1

0

})
+
(
uF−1

0

)TRuF−1
0 . (6.33)

The variable µF has to be taken into account while evaluating E
{

xF0
(
xF0
)T
}

E
{

xF0
(
xF0
)T ∣∣uF−1

0

}
=
∑
i∈M

P (µF = i) E
{

xF0
(
xF0
)T ∣∣µF = i,uF−1

0

}
=∑

i∈M

P (µF = i)
(
x̂F0|i

(
x̂F0|i
)T

+ Σx|i

)
. (6.34)
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The control objective function can be expressed as

JC(uF−1
0 ) =

∑
i∈M

P (µF = i) tr
(
Qx̂F0|i

(
x̂F0|i
)T

+QΣx|i

)
+
(
uF−1

0

)TRuF−1
0 =∑

i∈M

P (µF = i)
((

x̂F0|i
)TQx̂F0|i + tr

(
QΣx|i

))
+
(
uF−1

0

)TRuF−1
0 =∑

i∈M

P (µF = i)
((
Aix̂0 + BiuF−1

0

)TQ
(
Aix̂0 + BiuF−1

0

)
+ tr

(
QΣx|i

))
+

(
uF−1

0

)TRuF−1
0 =∑

i∈M

P (µF = i)
(
x̂T

0AT
i QAix̂0 + 2x̂T0AT

i QBiuF−1
0 +

(
uF−1

0

)T BT
i QBiuF−1

0 +

tr
(
QΣx|i

))
+
(
uF−1

0

)TRuF−1
0 . (6.35)

Finally, the control objective function with respect to the cost function (6.7) can
be expressed as a quadratic function of the input sequence in the following form

JC(uF−1
0 ) =

(
uF−1

0

)T
HCuF−1

0 + fT
C uF−1

0 + gC, (6.36)

where

HC =
∑
i∈M

P (µF = i)BTi QBi +R, (6.37)

fC =
∑
i∈M

P (µF = i)2BT
i QAix̂0, (6.38)

gC =
∑
i∈M

P (µF = i)
(
x̂T

0AT
i QAix̂0 + tr

(
QΣx|i

))
(6.39)

Remark 9 The matrix HC is positive definite.

Suboptimal, numerically tractable AFDC formulation

The objective functions are expressed as functions of input sequences. The con-
strained AFDC problems can now be formulated as optimization problems where
the goal is to find such input sequences uF−1

0 that minimize the objective functions
while respecting all constraints. When detection cost function (6.6) and control
cost function (6.7) are considered, OL IPS suboptimal solution uF−1

0

∗
based on

approximation (6.22) can be computed as follows

• ProbC

uF−1
0

∗
= arg min

uF−1
0

[(
uF−1

0

)T
HCuF−1

0 + fT
C uF−1

0 + gC

]
(6.40)

subject to (6.4) and

uF−1
0 ∈ U , x̂k|µk ∈ Xk|µk , µk ∈M, k ∈ T (6.41)
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• ProbC
D

uF−1
0

∗
= arg min

uF−1
0

[(
uF−1

0

)T
HCuF−1

0 + fT
C uF−1

0 + gC

]
(6.42)

subject to (6.4), (6.5) and

uF−1
0 ∈ U , x̂k|µk ∈ Xk|µk , µk ∈M, k ∈ T

(6.43)

−
[
(uF−1

0 )THDuF−1
0 + fT

DuF−1
0 + gD

]
≤ J̄D

max, (6.44)

where J̄D
max = 8

(
ln

(
JD

max

β1

)
+ β2

)
(6.45)

• ProbCD

uF−1
0

∗
= arg min

uF−1
0

[
α
((

uF−1
0

)T
HCuF−1

0 + fT
C uF−1

0 + gC

)
+ . . .

(1− α) β1e
−β2−0.125((uF−1

0 )THDuF−1
0 +fTDuF−1

0 +gD)
]

(6.46)

subject to (6.4), (6.5) and

uF−1
0 ∈ U , x̂k|µk ∈ Xk|µk , µk ∈M, k ∈ T (6.47)

• ProbD
C

uF−1
0

∗
= arg min

uF−1
0

−
[
(uF−1

0 )THDuF−1
0 + fT

DuF−1
0 + gD

]
(6.48)

subject to (6.4), (6.5) and

uF−1
0 ∈ U , x̂k|µk ∈ Xk|µk , µk ∈M, k ∈ T (6.49)(

uF−1
0

)T
HCuF−1

0 + fT
C uF−1

0 + gC ≤ JC
max (6.50)

• ProbD

uF−1
0

∗
= arg min

uF−1
0

−
[
(uF−1

0 )THDuF−1
0 + fT

DuF−1
0 + gD

]
(6.51)

subject to (6.4), (6.5) and

uF−1
0 ∈ U , x̂k|µk ∈ Xk|µk , µk ∈M, k ∈ T (6.52)

The optimization problems were derived based on the following steps.

• ProbC Follows directly from (6.36).
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• ProbC
D Using (6.22) and (6.25), the original sum constraint JD

(
ρF0
)
≤ JD

max

is replaced by a more restrictive constraint JD
(
ρF0
)
≤ JD

B (uF−1
0 ) ≤ JD

max,

β1e
−β2−0.125((uF−1

0 )THDuF−1
0 +fTDuF−1

0 +gD) ≤ JD
max, (6.53)

−0.125
(
(uF−1

0 )THDuF−1
0 + fT

DuF−1
0 + gD

)
− β2 ≤ ln

(
JD

max

β1

)
. (6.54)

Note that the terms β2 and ln
(
JD

max/β1

)
do not depend on uF−1

0 and can be
precomputed.

• ProbCD Follows directly from (6.25) and (6.36).

• ProbD
C, ProbD The logarithm is a monotonically increasing function and the

value of x that minimizes f(x) also minimizes ln(f(x)). Therefore, the input
sequence that minimizes

−
(
(uF−1

0 )THDuF−1
0 + fT

DuF−1
0 + gD

)
(6.55)

minimizes JD
B (uF−1

0 ) as well.

Remark 10 If there are no instantaneous constraints, the problems ProbCD and
ProbDC are strongly dual [Boyd and Vandenberghe, 2004] and can readily be solved.

Remark 11 The formulations ProbC does not on the detection objective function
and Bhattacharyya upper bound is not used. Therefore, the ProbC OL solution is
the optimal ProbC OL solution. All the other principal formulation OL solutions
are suboptimal OL solutions.

Remark 12 The obtained results are based on the following two strong assump-
tions. Only two models are considered and the model in action does not change
during the whole finite horizon. If these assumptions are relaxed, the upper bound
on the detection objective becomes a more complicated function as discussed, e.g.,
in [Blackmore et al., 2008].

Numerical solution

The resulting optimization problems are in general non-convex and they are there-
fore not possible to solve using “standard tools” as linear, quadratic or semidefinite
programming solvers, which are commonly used in areas like model predictive con-
trol (MPC) for linear systems, [Camacho and Bordons, 2004,Rawlings and Mayne,
2009]. In this section it is described how these non-convex optimization problems
can be solved numerically.

The approach chosen in this work is to use a global optimization routine bmibnb

in the freely available Matlab toolbox Yalmip, [Löfberg, 2004]. This routine im-
plements a spatial branch and bound routine similar to the one introduced in [Mc-
Cormick, 1976] for bilinear non-convex optimization problems. The main idea in

45



the algorithm is to compute convex envelopes that work as a convex outer approx-
imations of the nonlinear functions. During the branch and bound process, better
and better outer approximations are computed and these are used to compute lower
bounds on the optimal objective function value. In the spirit of branch and bound,
also upper bounds on the optimal objective function value are computed, and these
are used to prune the branch and bound search tree. In this work, the lower bounds
are computed using CPLEX, [CPLEX’s webpage, ], and the upper bounds using
SNOPT, [SNOPT’s webpage, ].

Since this solution strategy is based on non-convex global optimization, the
computational performance cannot in general be expected to be tractable. The
bmibnb solver is very suitable for the experiments performed in this work. In a
practical implementation, some relaxed version of the problems are more tractable
to solve, especially if the procedure is to be performed in real-time. Some special
cases, however, can be solved by less general solvers. Namely, the special case
ProbC can be easily solved by a quadratic convex solver.

Discussion

A numerically tractable solution for an important subclass of linear AFDC prob-
lems with Gaussian uncertainty was derived using OL IPS. It was shown, that each
of five principal AFDC formulations can be formulated as an optimization problem
where all objectives and constraints are expressed as a function of inputs uF−1

0 . In
case of ProbC, ProbC

D, ProbD
C and ProbD, the objective function is a quadratic

function. The selected approach is analogous to the MPC approach that is widely
used in practice. During the eighties of the last century, MPC became popular in
process industries such as chemical plants and oil refineries. The formulation ProbC

can be interpreted as an elementary MPC problem that can be efficiently solved by
quadratic programming solvers [Boyd and Vandenberghe, 2004]. All other formu-
lations do result in constrained non-convex optimization problems due to presence
of the detection aim. A numerically tractable solution for an important subclass
of linear AFDC problems with Gaussian uncertainty was derived using OL IPS.
It was shown, that each of five principal AFDC formulations can be formulated
as an optimization problem where all objectives and constraints are expressed as
a function of inputs uF−1

0 . In case of ProbC, ProbC
D, ProbD

C and ProbD, the
objective function as a quadratic function. The selected approach is analogous to
the MPC approach that is widely used in practice. During the eighties of the last
century, MPC became popular in process industries such as chemical plants and
oil refineries. The formulation ProbC can be interpreted as an elementary MPC
problem that can be efficiently solved by quadratic programming solvers [Boyd and
Vandenberghe, 2004]. All other formulations do result in constrained non-convex
optimization problems due to presence of the detection aim.

The numerical solution presented in [Blackmore and Williams, 2006] is similar
to the solution used in the thesis, however, it is less demanding due to absence of
the control objective. The optimization problem that is solved in [Blackmore and
Williams, 2006] can be interpreted as minimization of a concave quadratic func-
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tion with convex constraints. The suboptimal solution proposed in this chapter
can be used for computation of all problems presented in [Šimandl and Punčochář,
2009]. Only the state filtration will be more demanding because the assumptions
in [Šimandl and Punčochář, 2009] are not so strict as the assumptions in this chap-
ter.

47



Chapter 7

Numerical example

Two experiments that demonstrate the constrained optimization approach to AFDC
are presented in this chapter. The first experiment is intended to graphically illus-
trate the shapes of the objective functions and the instantaneous as well as sum
constraint sets. The second experiment demonstrates the design of the input se-
quence uF−1

0 using a simple fault detection and control problem. For the sake of a
clear demonstration, simple scalar models are used. The parameters of two models
that are used in both experiments are as follows

A1 = 0.8, A2 = 0.1, B1 = 0.1, B2 = 0.45,

C1 = C2 = 1, G1 = G2 = H1 = H2 = 0.4. (7.1)

The initial condition x0 is given by its mean x̂0 = 0 and covariance Σx0 = 0.1. The
matrices in the control cost function are chosen as Qk = 0, Rk = 1, and the initial
probabilities of models are set to P (µ = 1) = P (µ = 2) = 0.5.

7.1 Objective function and constraint sets demonstration

In the first experiment all five principal formulations are considered. Besides illus-
trating the shapes of the objective functions and the constraint sets, the influence of
the sum constraints is highlighted. Prediction horizon is chosen F = 2. The short
prediction horizon allows for visualization of objective function and constraints. The
instantaneous input constraints are Uk = {uk ∈ R : −5 ≤ uk ≤ 5} for all k ∈ T and
there are no instantaneous expectation state constraints. The limit values for the
sum constraints are JD

max = 0.3 and JC
max = 25, and the weighting factor α = 0.9999

is used in ProbCD.
The experiment results are summarized in the following list.

ProbC

Since the control objective function JC(uF−1
0

∗
) is strictly convex and the mean

value of the initial state x̂0 is zero, the minimum of the control objective
function is attained at u1

0
∗

= [0, 0]T . This input sequence also fulfills all in-
stantaneous constraints and therefore it is the optimal solution of ProbC, see
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Fig. 7.1(a).

ProbC
D

The detection sum constraint determines a non-convex set that excludes input
sequences close to the origin and prevents insufficient excitation of the mon-
itored system (for example, the solution of ProbC u1

0
∗

= [0, 0]T violates the
detection sum constraint). The solution of ProbC

D lies on the boundary of the
detection sum constraint set, see Fig. 7.1(a).

ProbCD

The objective function of ProbCD is a weighted sum of a convex function
and a log-concave function, therefore, no general statement about the solution
can be made. In contrast to other principal formulations, there are ProbCD

set-ups when none of the constraints is active. In the current example, the
solution ProbCD lies on the boundary of the instantaneous input constraints,
see Fig. 7.1(b).

ProbD
C

The detection objective functions JD
B (uF−1

0 ) is concave and the instantaneous
input as well as the control sum constraint constraints set are convex. There-
fore, the minimum lies on the boundary of the intersection of constraint sets.
The control sum constraint defines a disk {u1

0 ∈ R2 : (u0)2 + (u1)2 ≤ 25} with
the center at the origin. Since the disk is entirely inside the set U , the solution
of ProbD

C lies on the boundary of the control sum constraints, see Fig. 7.1(c).

ProbD

In contrast to ProbD
C, no sum constraints are considered, therefore, the so-

lution of ProbD lies on the boundary of instantaneous constraint set, see
Fig. 7.1(c).

7.2 Simple active fault detection and control problem

The goal of the second experiment is to demonstrate all principal formulations
using a simple AFDC problem. The second experiment also focuses on a compar-
ison of passive and active approaches to fault detection. The instantaneous input
constraints are Uk = {uk ∈ R : 0 ≤ uk ≤ 5} for all k ∈ T . The the instantaneous

expectation state constraints are Xk|µk =
{

x̂k|µk ∈ R : 0 ≤ x̂k|µk

}
for all 0 ≤ k ≤ 10

and Xk|µk =
{

x̂k|µk ∈ R : 1 ≤ x̂k|µk

}
for all 10 < k ≤ F , where F = 14 and µk ∈M.

The sum constraints limits are JD
max = 0.2, JC

max = 140, and the weighting factor is
α = 0.998.

49



The numerical results of the experiment are summarized in Tab. 7.1. There are
also results of 10000 Monte Carlo simulations. The Monte Carlo simulations are
used for experiment validation. It can be seen, that the Monte Carlo estimates of
the detection objective function denoted as JD

MC(uF−1
0

∗
) are always smaller than the

upper bound of the detection objective function JD
B (uF−1

0

∗
).

Differences between the input sequences and differences between the the ex-
pected state trajectories are illustrated in Fig. 7.2 and discussed in the following
paragraphs. Note that the expected output trajectories are the same as the expected
state trajectories (C = 1).

ProbC

The input sequence is designed regardless of the detection aim. Therefore,
the minimum control effort that ensures the fulfillment of instantaneous con-
straints is exerted. It can be seen from Fig. 7.2(a) that the expected state
trajectories for both models are very similar and therefore the given detector
cannot distinguish the models easily.

ProbD

Since the goal is to minimize the detection objective function and there is
no control objective, the optimal input sequence oscillates between the mini-
mum and maximum values defined by the input instantaneous constraints in
order to perform the best excitation of the system, see Fig. 7.2(b). Such an
input sequence ensures good detector performance (less than one percent of
misclassification according to Monte Carlo simulations). However, the control
objective is almost four times higher than in ProbC.

ProbC
D, ProbD

C, ProbCD

The problem formulations ProbC
D, ProbD

C, and ProbCD make it possible to
overcome the mentioned drawbacks of ProbD and ProbC by finding the input
sequence that represents an optimal trade-off between the competing aims of
AFDC. The problem formulation ProbC

D was chosen as a representative exam-
ple of formulations ProbC

D, ProbD
C, and ProbCD. Figure 7.2(c) shows that

the detection sum constraint causes a small oscillation of the input signal that
allows for better distinction between the expected state trajectories without
any significant increase in the control objective function. It can be seen in
Tab. 7.1 that all the sum constraints are fulfilled. In case of ProbC

D, the de-
tection objective had to be smaller than or equal to 0.2 and it is 0.2. In case
of ProbD

C, the control objective had to be smaller than or equal to 140 and it
is 139.96.

The Pareto frontier depicted in Fig. 7.3 provides a helpful insight into the trade-
off between detection and control objectives. Each point of the Pareto frontier
represents a solution of a multi-objective optimization problem where the solution
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cannot be improved in one objective without worsening in the other objective. When
ProbC and ProbC

D are compared, it can be seen that a small increase of the control
cost can result into a significant improvement of the detection cost. On the other
hand, comparison of ProbD

C and ProbD shows that in some cases even a substantial
increase of the control cost does provide only an insignificant improvement of the
detection cost.

The problem formulation ProbC can be seen as an example of the passive fault
detection. Some control action is needed in order to fulfil the time varying instan-
taneous expectation state constraints, however, the input sequence design is not
influenced by any detection objective and therefore the control action may not pro-
vide a sufficient system excitation. All the other cases represent the active fault
detection approach because the detection objective is considered during the input
signal design. In accordance with the expectation, the highest value of the detec-
tion objective function was obtained in ProbC. It confirms the presumption that
the control and detection aims are in contradiction and that the active approach to
fault detection is superior to the passive approach.

Table 7.1: Results of the second experiment, where JD
B (uF−1

0

∗
) denotes the upper bound

of JD(uF−1
0

∗
) and JD

MC(uF−1
0

∗
) denotes estimated value of JD(uF−1

0

∗
) based on 10000

Monte Carlo simulations. It can be seen that both sum constraints were fulfilled
(JD

B (uF−1
0

∗
) ≤ 0.2 in case of ProbC

D and JC(uF−1
0

∗
) ≤ 140 in case of ProbD

C). The
formulation ProbC can be interpreted as an example of passive fault detection. All other
formulation represent active fault detection approach. In accordance with the expecta-
tion, the active approach outperformed the passive approach to fault detection in terms
of misclassification probability.

JC(uF−1
0

∗
) JD

B (uF−1
0

∗
) JD

MC(uF−1
0

∗
)

ProbC 52.42 0.2853 0.1353
ProbC

D 63.39 0.2000 0.0846
ProbCD 95.56 0.0936 0.0311
ProbD

C 139.96 0.0503 0.0160
ProbD 202.78 0.0385 0.0091
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(a) solution of ProbC is denoted by the plus symbol,
solutions to ProbC

D are denoted by the star symbols.

(b) Solutions to ProbCD are denoted by the star sym-
bols.

(c) Solutions to ProbD are denoted by the plus sym-
bols, solutions to ProbD

C are denoted by the star sym-
bols.

Figure 7.1: The dark gray area represents the set of inputs that do not satisfy the instan-
taneous input constraints. The light gray area represents the set of inputs that do not
satisfy the sum constraints. The small plus and star symbols denote the optimal inputs
u1

0
∗

while the large symbols denote the corresponding optimal values J(u1
0
∗
).
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(a) The formulation ProbC is an example of passive
fault detection.

(b) The formulation ProbD is an example of active
fault detection.

(c) The formulation ProbC
D is an example of active

fault detection and control.

Figure 7.2: Results of the second experiment are depicted in a three figures. The light
gray area represents the set of inputs that satisfy the instantaneous input constraints.
The dark gray area represents the set of states that do not satisfy the instantaneous
expectation state constraints. The input sequence uF−1

0

∗
, the expected fault free state

trajectory x̂F0|1 and the expected faulty state trajectory x̂F0|2 are represented by the black
solid line, the red dash-dot line, and the blue dashed line, respectively.
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Chapter 8

Air handling unit numerical
example

The goal of this chapter is to demonstrate how AFDC can be used in practice.
The application example focuses on an air handling unit (AHU). It covers the
whole procedure of an active fault detector and controller design from a model
construction, through constraints and the objective function definition, to a detailed
discussion of results and implementation aspects.

Advanced control and fault detection of Heating, Ventilation, and Air Condi-
tioning (HVAC) systems have gained a lot of attention during the last two decades
[Wong et al., 2005,Han et al., 2010]. Processes in buildings are getting more difficult
for operators to understand because contemporary buildings are complex systems
and it is not an easy task to find a relation between cause and effect. There are
thousands of measured values and it is not possible for an operator to evaluate all of
them. Therefore, building optimal control and reliable fault detection is the major
issue in building monitoring systems. Most of the faults result in inefficient usage
of energy. The economic point of view is the main motivation for implementation of
fault detection into buildings. Buildings account for 20–40 % of the total final en-
ergy consumption and its amount has been increasing at a rate 0.5–5 % per annum
in developed countries [Perez-Lombard et al., 2008]. Another important aspect is
the reduction of maintenance costs and more efficient usage of a maintenance staff.
The increase of quality of living for occupants is also of great importance.

8.1 Overview of building control and fault detection meth-
ods

The short overview presented in this section firstly focuses on fault detection meth-
ods used in buildings with special attention to AHU fault detection. Afterwards,
HVAC control techniques are discussed. Vast amount of HVAC control techniques
have been studied and applied in practice. The overview of control techniques
focuses on optimization based control techniques because these techniques are in
accordance with the presented AFDC framework. Special attention is laid on AHU
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control.

8.1.1 Building fault detection

Application of fault detection methods to buildings have been studied since the
seventies of the last century. The major expansion started in the nineties of the
last century [Katipamula and Brambley, 2005]. In the nineties, the International
Energy Agency initiated a research project Annex 25. Results of Annex 25 are
summarized in [Hyvärinen, 1996]. The fundamental topic of the book is the survey
of fault detection and diagnosis methods for buildings. It involves several topics
each requesting a different engineering knowledge. Lot of attention is laid on the
comprehensive overview of typical HVAC faults. A wide range of fault detection
related to buildings is presented in the book.

Many of fault detection methods are focused particularly on AHUs. Application
of neural networks to AHU fault diagnosis was presented in [Lee et al., 1996]. A
fault detection technique for an AHU that combines expert rules and performance
indexes is described in [Qin and Wang, 2005]. Several classification techniques
are considered for fault detection and diagnosis of a Variable Air Volume (VAV)
AHU in [House et al., 1999]. A simple but robust technique using common sense
rather than complicated mathematics was introduced in [House et al., 2001]. This
technique is denoted as AHU performance assessment rules (APAR) and it consist
of 28 if-then rules that are evaluated according to the operation regime of an AHU.
The APAR received a lot of attention and this technique was further elaborated,
e.g., in [Schein et al., 2006,Trojanova et al., 2009].

8.1.2 Optimization based building control

The aim of the following overview of building control methods is to show how
the optimization based building control methods can exploit specific properties of
buildings. The main challenges for optimal building control are active usage of
a building’s thermal mass, optimal operation of a thermal storage, power peak
reduction and shifting, efficient usage of external heat sources and incorporation of
a variable energy prices. It will be shown in this chapter that AFDC can also make
use of these specifics and provide an energy efficient solution.

During the last two decades application of Model Predictive Control (MPC) to
buildings was intensively studied. Application of MPC is meaningful especially in
case of buildings that do have a slow thermal dynamics or an active thermal storage.
A study presented in [Grünenfelder, 1985] was among the first papers which formu-
lated the control of the thermal storage as an optimization problem. The control of
a simple solar domestic hot water system considering the weather forecast and two
energy rates is discussed there. Some early papers [Snyder and Newell, 1990,Henze
et al., 2004] deal with a least-cost cooling strategy using the building mass as a
thermal storage. An overview of the active use of the thermal building mass is
given in [Braun, 2003], where a variable energy price and the cost of the peak power
are considered in the formulation of the optimization problem. The controller that
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minimizes cooling costs with respect to the time-varying electrical energy price is
presented also in [Ma et al., 2009]. The aim is to take advantage of night-time
electricity rates and to lower the ambient temperature while precooling the chilled
water tank. Experimental results of precooling are presented in [Ma et al., 2010],
where a more detailed building load model was used. Predictive control of heating
using the thermal mass is discussed in e.g. [Cho, 2003, Chen, 2002]. A successful
application of MPC to a university building in Prague is described in [Široký et al.,
2011a, Pŕıvara et al., 2011, Ferkl and Široký, 2010]. Energy savings making use of
MPC in relation to different thermal comfort criteria is discussed in [Freire et al.,
2008]. Besides the energy minimization, predictive control can also contribute to
power peak reductions [Rijksen et al., 2010, Katipamula et al., 2010]. Power peak
reduction can significantly lower the costs of the building operation and initial cost
of mechanical parts if considered in the building design. Electrical grid load and
power peak reduction was considered in [Oldewurtel et al., 2010]. Predictive control
used for the sizing of heating systems for discontinuously occupied buildings is dis-
cussed in [Hazyuk and Ghiaus, 2010], where the model is decoupled into four simple
RC models which allowed modeling of the contribution of outdoor air temperature,
solar radiation, and internal gains separately. There were numerous attempts to
utilize other optimization based control techniques that are well-known in indus-
trial process control also for building control [Dounis and Caraiscos, 2009]. The
general dynamic programming problem for the control of a borehole thermal energy
storage system is solved in [Vanhoudt et al., 2010], where the aim is to guarantee
the delivery of heat or cold all year around while minimizing the operational costs.
A reinforcement learning technique used for a building thermal storage control is
outlined in [Liu and Henze, 2006a,Liu and Henze, 2006b]. The real building exper-
iment provided only 8.3% cost savings because the thermal storage has been only
partially utilized by the learning control strategy. Genetic algorithms and simulated
annealing were used for optimal control of cooling in [Spindler and Norford, 2009].
The objective was to design an economically optimal use of a natural ventilation,
fan-driven ventilation, and a mechanical air conditioning with respect to indoor
temperature requirements. A comprehensive and continuously updated overview of
the literature related to advanced building control can be found on the web site of
the OptiControl project1.

In the recent years, optimization based techniques have been applied also to
control of AHUs. A model based approach to optimal VAV air-conditioning system
is presented in [Xu et al., 2009]. A genetic algorithm is used for solving a nonlinear
optimization problem. The cost function expresses the trade-off among the five main
objectives: thermal comfort, indoor air quality, maximum allowed relative humidity,
total ventilation rate and energy usage. A similar approach to air conditioning
system using a genetic algorithm is presented in [Mossolly et al., 2009]. Usage of
the particle swarm optimization algorithm for reheat of the VAV boxes is presented
in [Kusiak and Li, 2010]. Optimal control based on CO2 concentration is discussed in
[Kusiak and Li, 2009]. The control of CO2 concentration is formulated as an multi-

1www.opticontrol.ethz.ch
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objective optimization that takes into account the following objectives: fan run time,
average CO2 concentration above the threshold and time when CO2 concentration
is above the threshold. Control of an AHU and set of VAV boxes is discussed in [Ma
et al., 2011]. The authors use modifications of MPC, which allow to solve large scale
problems.

8.2 Air handling unit model

An AHU is a device used to condition and circulate air as part of HVAC system. It
is usually a large metal box containing a blower, heating and cooling elements, filter
racks or chambers, sound attenuators, and dampers, see Figure 8.1. The AHU is
usually connected to a ductwork ventilation system that distributes the conditioned
air through the building and returns it to the AHU. The basic function of the AHU
is to suck air from the rooms, mix it with the ambient air, let it pass through cooling
and heating coils and then discharge the cooled or heated air back to the rooms, see
Figure 8.2. Ratio between the fresh ambient air and air from rooms is maintained
by means a air mixing damper.

Figure 8.1: Air handling unit.

The AHU is susceptible to several faults. One of the common faults is stuck of
the air mixing damper, usually caused by a mechanical failure. Besides economical
losses, it can result into a significant thermal discomfort. For example, during a
winter when the damper is stuck in the fully open position. Then the freezing
ambient air sucked by the AHU poses a serious problem until the fault is detected.
A stuck damper will be investigated in the application example. The fault detection
objective is to determine if the damper is in the closed position as expected or if it
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Table 8.1: AHU model symbols description
unit description value

T ik
◦C Indoor air temperature

T ak
◦C Ambient air temperature

T sk
◦C Supply air temperature

Twk K Unmeasurable noise
T hk K Increase of T sk by the heating coil [0, 15]
T ck K Decrease of T sk by the cooling coil [−15, 0]
∆ Damper position [0, 0.9]
m kg/s Air mass supplied into the room 3.6
Cp kJ/Kkg Specific heat capacity of air 1.012
C kJ/K Thermal capacity of the room 3700
R K/W Thermal resistance of the outside wall 0.63
δt s Discrete time period 300

remained stuck in the fully opened position. Note, that a minimal amount of the
fresh air has to be supplied into the room and the air mixing damper cannot be
fully closed. The amount of minimum amount of the fresh air is determined by a
regulation, however, usually at least 10% of the fresh air is required.

Ti

TsTa

Th Tc

ambient 
air

indoor
air

Figure 8.2: Air handling unit model.

The plant model is crucial for all model based control strategies. Detailed models
of different AHU components are presented in [Ghiaus et al., 2007]. Each component
is described by a physical model and model parameters are identified using grey-
box identification methods. Similar level of detail of AHU components is discussed
in [Lee et al., 1997]. Such level of detail is not needed for AFDC. A simplified AHU
model that was used for example in [Ma et al., 2011] or [Wang, 1999] will be utilized
in the thesis. The AHU model can be expressed as

T ik+1 = T ik +
mCp
C

(T sk − T ik)δt +
1

RC
(T ak − T ik)δt + Twk (8.1)

T sk = ∆T ik + (1−∆)T ak + T hk + T ck .

The symbols are described in Table 8.1. The term mCp

C
(T sk − T ik) expresses

change of the room temperature caused by the air supplied by the AHU. The term
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1
RC

(T ak − T ik) expresses change of the room temperature caused by heat losses. The
unmeasurable noise Twk presents heat gains that could be caused by occupants or
equipment and it also presents heat losses caused by manual ventilation. It is
assumed, that Twk is Gaussian with zero mean and known variance. Heating and
cooling coils are not controlled directly. It is expected that a low level controller
(e.g. PID controller) is used for maintaining the required increase or decrease of
the supply air temperature that is expressed by T hk and T ck . The mass flow rate is
constant. Therefore, the energy use for heating and cooling is proportional to T hk
and T ck .

The model (8.1) can be written as a state space model. The state is composed

of the room air temperature and the ambient air temperature xk =
[
T ik T ak

]T
,

the input is composed of the heating and cooling coil set-points uk =
[
T hk T ck

]T
and the state noise is wk = Twk . The state is not measured directly, only a noisy
measurement of the room air temperature is available.

Based on a real position of the damper ∆, two models can be defined. The
fault free model (∆ = 0.9) and the faulty model with the stuck damper (∆ = 0).
Substituting two aforementioned values of the parameter ∆ into (8.1), two state
space models are

A1 =

[
1− 0.1K1 −K2 0.1K1 +K2

0 1

]
,A2 =

[
1−K1 −K2 K1 +K2

0 1

]
,

B1 = B2 =

[
K1 K1

0 0

]
,C1 = C2 =

[
1
0

]
,

where K1 = mCp

C
δt, K2 = 1

RC
δt. The noise characteristics are given as follows

G1 = G2 =

[
0.3 0
0 0.3

]
,H1 = H2 =

[
0.3 0
0 0.3

]
. (8.2)

The prediction horizon is 9 steps (F = 8), time period is 10 minutes.

8.3 Air handling unit experiments

The application example focuses on the optimal heating or cooling of a room in the
morning after the night set-back. It is reasonable to carry out an AFD experiment
before switching to the day regime when occupants move into the room. If a fault
is detected, maintenance can be performed in order to prevent a major discomfort
of the occupants.

Two different setups are presented in two sets of experiments. The first exper-
iment set is denoted as cold morning experiments represents a situation when the
room air is cold and some heat has to be delivered into the room in order to fulfill
the comfort requirements. The second set of experiments denoted as warm morning
experiments represents a situation when neither heat nor cold has to be delivered
into the room. It will be shown that some control action can be enforced by the
detection objective.
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8.3.1 Experiments setup

The common parameters for all AHU experiments will be defined first. The input
constraints are

Uk =

{[
T hk
T ck

]
: −15 ≤ T ck ≤ 0 ≤ T hk ≤ 15

}
, k ∈ T . (8.3)

The input constraints are given by a maximal heating and cooling gains of the
heating and cooling coils, respectively. The state expectation constraints for the
fault free model are referred to as comfort constraints and they are defined as
follows

Xk|1 =


{E{T ik|µk = 1} : 18 ≤ E{T ik|µk = 1} ≤ 25} . . . k ≤ 5,

{E{T ik|µk = 1} : 20 ≤ E{T ik|µk = 1} ≤ 23} . . . k > 5.

(8.4)

Narrowing of the constraints after the fifth time step represents the switch from
the night set-back to the day regime.

The input signal has to be designed in the way that an acceptable level of comfort
is maintained even if the damper is faulty. The state expectation constraints for
the faulty model are referred to as emergency constraints and they are defined as
follows

Xk|2 =
{

E{T ik|µk = 2} : 16 ≤ E{T ik|µk = 2} ≤ 27
}
, k ∈ T . (8.5)

The state variable expressing the ambient air temperature T ak is, of course, uncon-
strained in case of both models.

The control cost captures two different energy cost tariffs: the night tariff and
the normal tariff

Qk =

[
0 0
0 0

]
,Rk =



[
0.6 0

0 0.6

]
, k ≤ tTS,

[
1 0

0 1

]
, k > tTS,

where tTS denotes time step when the night tariff switches to the normal tariff.
The control objective function JC(uF−1

0 ) can be seen as a monetary control cost.
The tariff switching can be left out by setting tTS = −1. The control objective
function without the tariff switching will also be evaluated in order to demonstrate
the effect of the tariff switching. If there is no tariff switching, the control cost can
be interpreted as amount of used energy. Therefore it will be denoted as JC

e (uF−1
0 ).

The model probabilities are P (µk = 1) = 0.9 and P (µk = 2) = 0.1. Each
experiment set comprises eight experiments that are defined in Table 8.2. The tariff
is switched at the third time step for all experiments with tariff switching (label
with the symbol T). In case of experiments without the tariff switching tTS = −1.
The initial state pdfs are defined individually for each set of experiments.
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Table 8.2: AHU experiments definition. The symbol T at the end of a label indicates
that tariff switching is considered and∞ indicates that a particular sum constraint is not
used.

problem tariff
label type JC

max JD
max switching

ProbC ProbC ∞ ∞ no

ProbCT ProbC ∞ ∞ yes

ProbC
D ProbC

D ∞ 0.1 no

ProbC
DT ProbC

D ∞ 0.1 yes

ProbD
C ProbD

C 19 ∞ no

ProbD
CT ProbD

C 19 ∞ yes

ProbD ProbD ∞ ∞ no

ProbDT ProbD ∞ ∞ yes

8.3.2 Cold morning experiments

The initial state pdf is defined by the first two moments

x̂0 =

[
19
16

]
,Σx0 =

[
1 0
0 1

]
.

In other words, it expected that the room temperature is 19◦C and the ambient
air temperature is 16◦C. The required indoor air temperature (expressed by the
fault free state expectation constraints) is higher than the expected initial room air
temperature. It is also higher than the expected ambient air temperate. Therefore,
some amount of heat has to be supplied into the room in order to fulfill the design
requirements. The experiment results are summarized in Table 8.3, each special
case will be discussed now.

ProbC, ProbCT
Solution to ProbC provides important information about the minimal amount
of energy that has to be delivered in order to fulfill the comfort requirements,
see Figure 8.3. When the tariff switching is considered, heating is realized
mainly in the last time step of the night tariff. The amount of energy JC

e (uF−1
0 )

is higher in case of ProbCT, however, the control objective function JC(uF−1
0 )

is lower in case of ProbCT due to utilization of the cheap night tariff.

ProbC
D, ProbC

DT
The pair of experiments ProbC

D and ProbC
DT is shown in Figure 8.4. The

detection aim is expressed in form of the sum constraint JD
B (uF−1

0 ) ≤ 0.1 that
is fulfilled in case ProbC

D as well as in case ProbC
DT. The tariff switching

allows for a reduction of the control cost by 37.5%. The estimated probability
of misclassification based on Monte Carlo simulations JD

MC(uF−1
0 ) is smaller

than the detection sum constraint JD
B (uF−1

0 ) in both experiments.
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Table 8.3: Results of the cold morning experiments, where JC(uF−1
0 ) is the control cost

when the tariff switching is applied, JC
e (uF−1

0 ) is the control cost without tariff switch-
ing (only normal tariff is applied), JD

B (uF−1
0 ) is the upper bound of the detection cost

and JD
MC(uF−1

0 ) is the detection cost estimate based on 10000 Monte Carlo simulations.
All optimization problems were computed using the global optimization routine bmibnb

and Intel Core i5 CPU, note that ProbC and ProbCT can be solved much faster by a
specialized quadratic solver.

solution

JC(uF−1
0 ) JC

e (uF−1
0 ) JD

B (uF−1
0 ) JD

MC(uF−1
0 ) time [sec]

ProbC 16.10 16.10 0.220 0.064 10.8

ProbCT 12.75 19.02 0.180 0.040 9.7

ProbC
D 25.19 25.19 0.100 0.013 82.9

ProbC
DT 15.74 26.24 0.100 0.013 66.3

ProbD
C 19.00 19.00 0.171 0.037 41.3

ProbD
CT 19.00 31.67 0.052 0.003 17.6

ProbD 43.89 43.89 0.043 0.002 124.7

ProbDT 29.66 43.89 0.043 0.002 160.7

ProbD
C, ProbD

CT
Significant influence of the tariff switching can be seen also when ProbD

C and
ProbD

CT are compared, see Figure 8.5. In both experiments, the control sum
constraint JC

max ≤ 19 is fulfilled but there is a remarkable difference in misclas-
sification probability. The night tariff allows for excitation at the beginning
of the experiment. The value of the detection objective function JD

B (uF−1
0 ) in

case ProbD
CT is three times smaller than JD

B (uF−1
0 ) in case of ProbD

C. Note
that the difference between JD

MC(uF−1
0 ) of ProbD

C and ProbD
CT is even bigger.

ProbD, ProbDT
The experiments ProbD and ProbDT are depicted in Figure 8.6. The con-
trol cost is not considered at all. Therefore the night tariff makes no difference
and solutions to ProbD and ProbDT are the same. The room temperature
is pushed to the limits defined by the instantaneous state expectation con-
straints in order to maximize difference between the fault free and the faulty
state trajectory. The room air is firstly heated up to the maximal acceptable
air temperature, then cooling is used in order to fulfill narrowed comfort con-
straints and finally heating is used again to fulfill emergency as well as comfort
constraints.

The cold morning experiments confirmed that the active approach to fault detec-
tion provides more reliable fault detection results than the passive approach. The
passive approach is represented by ProbC and ProbCT while all other formulations
can seen be as examples of the active approach to fault detection. It was shown
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(a) ProbC (b) ProbCT

Figure 8.3: The expected states (the top charts) and inputs (the bottom charts) tra-
jectories. In the top charts, the gray areas indicates the regions in which the comfort
constraints are not satisfied . The dark gray areas indicate the regions in which the emer-
gency constraints are not satisfied. In the bottom charts, the light gray areas indicate
input values that do satisfy the input instantaneous constraints. The light green area
indicates the time steps in which the night tariff is valid. In the top charts, the expected
states x̂F0|1 and x̂F0|2 are represented by the red dash-dot line, and the blue dashed line,

respectively. In the bottom charts, the solid red line indicates T hk and the solid blue line
indicates T ck . Note that only the first elements T ik of the state vectors xk are depicted.
The same description applies to Figures 8.6 - 8.9.

(a) ProbC
D (b) ProbC

DT

Figure 8.4: For the charts description see Figure 8.3
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(a) ProbD
C (b) ProbD

CT

Figure 8.5: For the charts description see Figure 8.3

(a) ProbD (b) ProbDT

Figure 8.6: For the charts description see Figure 8.3
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that the proposed AFDC framework can make use the time varying energy price.
For example, in case of ProbD

C and ProbD
CT the utilization of the variable energy

price allowed for reduction of misclassification probability from 0, 171 to 0.052.

8.3.3 Warm morning experiments

The initial state pdf is defined as follows

x̂0 =

[
21.5
21.5

]
,Σx0 =

[
1 0
0 1

]
.

The expected ambient air temperature is the same as the expected room air tem-
perature and this temperature is exactly in the middle of the range given by the
comfort and emergency constraints. Therefore, no action is needed to fulfill the
state instantaneous state constraints. The experiment results are summarized in
Table 8.4, each special case will be discussed now.

ProbC, ProbCT
No control action is needed in order to fulfill all instantaneous constraints. See
Figure 8.7, where solution to ProbC and ProbCT is depicted. As expected,
all inputs are zero regardless of the tariff switching.

ProbC
D, ProbC

DT
The problems ProbC

D and ProbC
DT are infeasible because the goal is to keep

detection objective below 0.1 that is not possible without violation of the in-
stantaneous constraints. The minimal value of the detection objective function
JD

B (uF−1
0 ) which is achieved by ProbD is 0.147, see Table 8.4.

ProbD
C, ProbD

CT
The detection aim enforces some control action that minimizes the detection
objective function, see Figure 8.8. In both experiments heating as well as
cooling is used in order to excite the AHU. Utilization of the night tariff
allows reduction of JD

B (uF−1
0 ) by 33%.

ProbD, ProbDT
The experiments ProbD and ProbDT are depicted in Figure 8.9. Similarly
to the cold morning experiment, there is no difference between solution to
ProbD and ProbDT. The expected fault free state is pushed to the limits
defined by comfort constraints in order to minimize JD

B (uF−1
0 ).

The cold morning experiment illustrates the key difference between the active
approach and the passive approach to fault detection. Thanks to the experiments
setup, no action is needed in order to fulfill the comfort requirements. Therefore
the probability of misclassification is high in case of ProbC and ProbCT. In case
of active approach, the detection objective function causes AHU excitation that
significantly reduces the probability of misclassification. The experiments ProbC

D

and ProbC
DT demonstrate that the sum constraints have to be chosen reasonably,
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Table 8.4: Results of the warm morning experiments, where JC(uF−1
0 ) is the control cost

when the tariff switching is applied, JC
e (uF−1

0 ) is the control cost without tariff switch-
ing (only normal tariff is applied), JD

B (uF−1
0 ) is the upper bound of the detection cost

and JD
MC(uF−1

0 ) is the detection cost estimate based on 10000 Monte Carlo simulations.
All optimization problems were computed using the global optimization routine bmibnb

and Intel Core i5 CPU, note that ProbC and ProbCT can be solved much faster by a
specialized quadratic solver. Problems ProbC

D and ProbC
DT are unfeasible due to the

detection sum constraints that cannot be fulfilled.

solution

JC(uF−1
0 ) JC

e (uF−1
0 ) JD

B (uF−1
0 ) JD

MC(uF−1
0 ) time [sec]

ProbC 0.00 0.00 0.294 0.106 12.7

ProbCT 0.00 0.00 0.294 0.098 14.9

ProbC
D n/a n/a n/a n/a 176.0

ProbC
DT n/a n/a n/a n/a 142.2

ProbD
C 19.00 19.00 0.210 0.061 164.8

ProbD
CT 19.00 30.70 0.162 0.033 172.1

ProbD 35.38 35.38 0.147 0.024 129.9

ProbDT 28.31 35.38 0.147 0.025 157.6

(a) ProbC (b) ProbCT

Figure 8.7: For the charts description see Figure 8.3
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(a) ProbD
C (b) ProbD

CT

Figure 8.8: For the charts description see Figure 8.3

(a) ProbD (b) ProbDT

Figure 8.9: For the charts description see Figure 8.3
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Table 8.5: Analysis of state expectation constraints violation for ProbC and ProbD, cold
morning experiments set. The symbol T̄ ik|µ=1 denotes the arithmetic mean of T ik when µ1.
The symbol T̄ ik|µ=2 denotes the arithmetic mean of T ik when µ2. Arithmetical means in
the table are based on the same 500 Monte Carlo simulations as depicted in Figures 8.10.

ProbC ProbD

k T̄ ik|µ=1 T̄ ik|µ=2 T̄ ik|µ=1 T̄ ik|µ=2

0 18.92 18.90 18.96 18.87
1 18.47 17.65 22.86 21.92
2 18.10 16.93 25.00 22.52
3 17.97 16.75 25.03 21.17
4 17.96 16.74 25.04 20.24
5 19.97 18.69 23.05 17.77
6 19.98 18.12 20.79 15.77
7 20.00 17.87 20.05 15.75
8 20.01 17.78 20.09 16.41

otherwise the AFDC problem can become unfeasible. This issue can be solved by
introduction of so-called slack variables [Maciejowski and Jones, 2003] that allow
for violation of sum constraints. The sum constraints violation is then penalized in
the objective function.

8.3.4 Monte Carlo verification

Two experiments (ProbC and ProbD) from the cold morning experiments set will
be analyzed. The result of 500 Monte Carlo simulations is depicted in Figure 8.10.
It can be seen that the fault free and faulty state trajectories are overlapping in
case of ProbC. The fault free and faulty state trajectories cannot be easily distin-
guished. This fact is confirmed also by Monte Carlo simulations. There were 27
misclassifications from the total 500 simulations. In case of ProbD, the fault free
and faulty state trajectories can be easily distinguished. None of the 500 ended up
with a misclassification. These results are in accordance with the results based on
10000 Monte Carlo simulations summarized in Table 8.3.

Fulfillment of instantaneous state expectation constraints can be analyzed on
the basis of the Monte Carlo simulations. The simulation results are summarized in
Table 8.5. The expected fault free state is pushed to the margin given by comfort
constraints in case of ProbC in time steps k = 3, 4, 5, 6, 7, 8, see also Figure 8.3.
The arithmetical mean T̄ ik|µ=1 is close to the lower comfort constraint (i.e. 18◦C and
20◦C). In the time steps 3−6, the arithmetical mean T̄ ik|µ=1 is below the lower com-
fort constraint. Note that it does not mean that the state expectation constraints
are not fulfilled. The expectation constraints do not provide any guarantee for a set
of realizations. The expectation constraints do guarantee that the expected value
will fulfill the design requirements expressed by the constraints.
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(a) In case of ProbC, the the fault free and faulty state trajectories are overlap-
ping and they cannot be easily distinguished (27 of 500 Monte Carlo simulations
ended up with misclassification).

(b) In case of ProbD, the fault free and faulty state trajectories can be readily
distinguished (none of 500 Monte Carlo simulations ended up with misclassifica-
tion).

Figure 8.10: State trajectories of 500 Monte Carlo simulations, the cold morning experi-
ments set. The fault free state trajectories are red. The faulty state trajectories are blue.
Note that only the first elements T ik of the state vectors xk are depicted. Gray areas
indicate the constraints sets, their descriptions is the same as in Figure 8.3.
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Implementation aspects

All AFDC experiments presented in the thesis were coded in Matlab using toolbox
Yalmip. The main motivation for using Yalmip is rapid algorithm development.
A modeling language introduced by Yalmip allows for natural notation of optimiza-
tion problems regardless of the solver that is finally used. This feature is illustrated
by the following code snippet that captures the main loop where the AHU AFDC
problem is formulated and the sum constraints and objective function are defined.

for i=1:F

%input vector

u = [Th{i}; Tc{i}];

% fault free model

y1{i} = C * x1{i};

x1{i+1} = A1 * x1{i} + B * u;

% faulty model

y2{i} = C * x2{i};

x2{i+1} = A2 * x2{i} + B * u;

% constraints

constriants = [constriants, ...

0 <= Th{i} <= HeatingMaxGain, ... % heating constraints

CoolingMaxGain <= Tc{i} <= 0, ... % cooling constraints

Treq_low(i) <= y1{i} <= Treq_hig(i), ... % comfort constraints

Treq_low_fault <= y2{i} <= Treq_hig_fault, ... % emergency constraints

Th{i} == 0 | Tc{i} == 0]; % AHU cannot heat and cool at the same time

% constrol cost

controlCost = controlCost + HeatingCost(i) * Th{i} + CoolingCost(i) * Tc{i};

controlCostWithoutNightTariff = controlCostWithoutNightTariff + Th{i} - Tc{i};

end;

% sum constraints definition

if (constrainedByDetection)

constriants = [constriants, ...

EvaluateBhattacharyya(y1a’, y2a’, sig1, sig2, P1prob, P2prob) ...

<= maxMisclasificationProb];

end

if (constrainedByControl)

constriants = [constriants, controlCost <= maxControlCost];

end

if (detectionAsObjective)

objective = -(y1a - y2a)*inv(sig1 + sig2)*(y1a - y2a)’;

end;

if (controlAsObjective)

objective = controlCost;

end;
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It can be seen that the notation is readable and one can easily keep consistency
between the code and the equations. The advantage of using Yalmip became even
more evident when the optimization problem has to be solved. The following code
sets solver parameters and then solves the optimization problem.

options = sdpsettings(’solver’,’bmibnb’, ’bmibnb.lowersolver’, ...

’cplex’,’bmibnb.uppersolver’,’snopt’, ’bmibnb.maxiter’, 50);

solutionInfo = solvesdp(constriants, objective, options)

The command solvesdp translates the optimization problem into a formulation
that is required by a particular solver. This level of abstraction allows an easy
switching between different solvers. One can focus on the formulation of the op-
timization problem and does not have to pay attention to conventions used by a
particular solver.

The solution strategy is based on non-convex global optimization, therefore the
computational performance cannot in general be expected to be tractable. Hence,
the proposed solution is not suitable for real-time applications. Nevertheless, some
simplified real-time AFDC system can be derived off-line based on AFDC solution
analysis. For example, the proposed AFDC can be used for experiment design when
several input trajectories are pre-computed and one of them is selected according
to a current state during the on-line operation.

8.4 Discussion

The application of constrained AFDC to the AHU example approved the applica-
bility of the proposed approach. Monte Carlo simulations confirmed that all sum
constraints as well as state expectation constraints were met. It was shown, that
the AFDC framework allows for exploiting building dynamics and provide energy
efficient solutions. Similarly to MPC, AFDC can shift the power peak demand when
a variable energy price is applied. This aspect is beneficial especially for active fault
detection. The excitation of an AHU is done when energy price is low. In case of
ProbC

D the variable energy price allowed design of a cheaper AHU excitation. Cost
of the excitation was reduced by 40% when the variable energy price was taken
into account. In case of ProbD

C utilization of the variable energy price significantly
improved detection capabilities. According to Monte Carlo simulations, the rate of
misclassification was reduced ten times thanks to exploitation of the variable energy
price.

72



Chapter 9

Conclusion

The thesis focuses upon formulating a general framework for AFDC, derivating and
demonstrating a solution to the problems defined within the AFDC framework.
The AFDC framework allows to precisely formulate AFDC problems and to deal
with the contradicting aims of AFDC. Detection and control aims can be expressed
as objective function or as a constraint. The AFDC problems are formulated as
constrained optimization problems within the presented AFDC framework. It was
shown, that there is no general technique of deriving a numerically tractable op-
timal solution. The optimal solution can be found for a small subset of AFDC
problems only. Nevertheless, when carefully designed, a suboptimal solution can
be used instead of the optimal one. A procedure for suboptimal solution design
was demonstrated using linear Gaussian models and common control and detection
objectives. The numerical solution is based on global optimization solvers. The
solution was computed using a branch and bound solver that allowed to analyze
different scenarios and to demonstrate the key properties of AFDC problems. Fi-
nally, the applicability of the AFDC framework was illustrated on the example that
was focused on optimal control and diagnosis of AHU. Each of three sub-goals of
the thesis will be discussed in detail and the main achievements will be highlighted.

1 - Formulation of general active fault detection and control framework

The first goal of the thesis was to formulate an AFDC framework. The AFDC frame-
work formulation was inspired by the unified AFDC formulation defined in [Šimandl
and Punčochář, 2009]. Two major extensions of the unified AFDC formulation were
introduced. The first extension was about incorporating a given detector into the
AFDC framework. This enables the treatment of various practical setups. An exam-
ple would be a safety critical process when redundant hardware detectors are already
installed and the goal is to design a controller that fulfills control requirements and
improves performance of the installed detectors. The second major extension was
to introduce sum and state expectation constraints. The state expectation con-
straints allow expressing of physical and logical limitations of the controlled and
monitored system. The state expectation constraints are expressed for each model
separately. It allows, for example, to define different state expectation constraints
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for the fault free model and for the faulty model. The sum constraints allow for
expressing detection or control requirements as a constraint instead of an objective
function. Thanks to the sum constraints, the excitation of a monitored system de-
signed by the active fault detector can be constrained by a maximal control cost.
Symmetrically, the controller can be constrained in a way that a predefined detec-
tion reliability has to be guaranteed. There can be a variety of practical AFDC
formulations derived from the proposed AFDC framework. Five principal AFDC
formulations covering different design requirements are discussed in the thesis. The
main highlights of the first sub-goal can be summarized as follows.

• Detection and control aim can be expressed either as a part of the objective
function or as a sum constraint.

• Design of a AFDC system can further be constrained by a given detector, a
given controller, input constraints and state expectation constraints.

• Five principal formulations representing the most important AFDC formula-
tion were defined. The principal formulations include an optimal controller
and an active detector as marginal cases.

2 - Active fault detection and control problems solution

Introduction of state expectation and sum constraints substantially extended the
capabilities of the AFDC framework on the other hand it also unexpectedly compli-
cated the solution of the AFDC problems. The initial idea was to rely on dynamic
programming and employ some of approximate dynamic programming techniques
presented by Dimitri Bertsekas [Bertsekas, 2005a] for the solution of AFDC prob-
lems. However, the state expectation and sum constraints defined in the AFDC
framework cause that the backward recursion, the key technique of dynamic pro-
gramming, cannot be used. Surprisingly, it was not easy to find a literature deal-
ing with dynamic programming in conjunction with the state expectation or state
chance constraints.

The alternative goal was to derive a suboptimal solution at least for a represen-
tative subset of AFDC problems. In derivation of a suboptimal solution, the focus
was narrowed to linear Gaussian models with quadratic control cost and detection
objective based on maximization of a posterior probability. The key idea was to
reformulate the stochastic optimization problem to a deterministic optimization
problem where the solution of the deterministic problem guarantees the fulfillment
of all stochastic requirements. It was easily done for control cost function and state
expectation constraints. In case of detection objective function a lower bound had
to be used. A suboptimal solution was derived for all five principal formulations.
Four of of five principal formulations required use of a global optimization solver.
The main highlights of the second sub-goal can be summarized as follows.

• Only a subset of AFDC problems can optimally be solved by dynamic pro-
gramming.
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• A suboptimal solution was derived for Gaussian linear systems with a quadra-
tic cost function and a given detector based on a posterior probability maxi-
mization.

• The suboptimal solution is numerically tractable for all five principal formu-
lations.

3 - Illustrative examples and applicability demonstration

The key aspects of AFDC were demonstrated using a simple scalar model. Shapes
of constraint set as well as objective functions were graphically illustrated. The
trade-off between detection and control objectives was demonstrated by an outline
of Pareto frontier. Monte Carlo simulations confirmed that all design requirements
were met. All five principal formulations were investigated. A more complex ex-
ample was also presented in order to prove applicability of the proposed AFDC
framework in practice. The goal was to control and diagnose AHU using different
setups and design requirements. It was shown that AFDC framework can make
use of a time varying energy tariff and provide an economically effective solution
for AHU AFDC. The main highlights of the third sub-goal can be summarized as
follows.

• The key AFDC principles were illustrated by means of simple numerical ex-
amples.

• The AHU application example approved that the proposed AFDC framework
has a potential for practical applicability.

• The proposed AFDC framework can make use of recent trends in energy sys-
tems such as variable energy price.

Active fault detection and control prospective application
and further research

One of the recent trends in energy systems is the integration of buildings into so-
called smart grids. Smart grids are beginning to be used on electricity networks,
from the power plants and wind farms all the way to the consumers of electricity in
homes and businesses. Smart grids are based on two-way communication, the energy
price is time varying and each consumer and producer has to be able to react to
changes of the grid. Variability of energy price is increasing due to renewable energy
sources and more flexible energy markets are expected. Many research teams deal
with design of building control concepts that allow the utilization of time varying
energy prices. The experiments presented in the thesis show that time varying
tariffs can be utilized also by active fault detection. It was shown that there are
situations when a probing signal can be added without any significant increase of the
total cost. One can imagine, that HVAC appliance can perform automatic AFDC
self-diagnosis when low energy price is expected.
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It was mentioned that the numerical solution relies on a global optimization
solver and therefore it shall not be used in real-time applications. There are two
ways how to deal with this issue. The first is to analyze the solution offline and
derive some simplified version of AFDC. This can be done for example by means
of machine learning. The second way is to focus on specific properties of AFDC
optimization problems, exploit these properties and develop a solver tailored to
AFDC problems.

Usage of instantaneous state constraints is essential for process control, but there
are fields of application where instantaneous state constraints are not so important
such as Econometrics. Numerical solution can be substantially simplified thanks
to strong duality of the AFDC problems when instantaneous state constraints are
not considered. It will be interesting to find out a practical application of AFDC
framework with the presented suboptimal solution in Econometrics and provide a
numerically efficient solution.
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decision making for control. In Proceedings of the Conference on Control and
Fault-Tolerant Systems, pages 660–665, Nice, France.

[Qian and Chen, 1996] Qian, S. and Chen, D. (1996). Joint Time-Frequency Anal-
ysis: Method and Application. Prentice Hall.

[Qin and Wang, 2005] Qin, J. and Wang, S. (2005). A fault detection and diag-
nosis strategy of VAV air-conditioning systems for improved energy and control
performances. Energy and buildings, 37(10):1035–1048.

83



[Randall, 1987] Randall, R. B. (1987). Frequency Analysis. Bruel & Kjaer, 3rd
edition.

[Rawlings and Mayne, 2009] Rawlings, J. and Mayne, D. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing.

[Rijksen et al., 2010] Rijksen, D. O., Wisse, C. J., and Schijndel, A. W. M. V.
(2010). Reducing peak requirements for cooling by using thermally activated
building systems. Energy and Buildings, 42(3):298–304.

[Schein et al., 2006] Schein, J., Bushby, S., Castro, N., and House, J. (2006). A
rule-based fault detection method for air handling units. Energy and buildings,
38(12):1485–1492.

[Shapiro and Philpott, 2007] Shapiro, A. and Philpott, A. (2007). A tutorial
on stochastic programming. Manuscript. Available at www2. isye. gatech.
edu/ ashapiro/publications. html.
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cial cases of general active change detection and control problem. In Proceedings
of the 18th IFAC World Congress, pages 4260–4265, Milano, Italy. IFAC.

[Simon, 2006] Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity,
and Nonlinear Approaches. Wiley-Interscience.
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[Žampa et al., 2004] Žampa, P., Mošna, J., and Prautsch, P. (2004). Some conse-
quences of new approach to system theory in optimal control. In Proceedings of
the European Meeting on Cybernetics and System Research, Vienna, Austria.

[Zarrop, 1979] Zarrop, M. (1979). Optimal experiment design for dynamic system
identification, volume 21 of Lecture notes in control and information sciences.
Springer.

86



[Zhang, 1989] Zhang, X. (1989). Auxiliary Signal Design in Fault Detection and
Diagnosis. Springer.

[Zhang and Jiang, 2008] Zhang, Y. and Jiang, J. (2008). Bibliographical review
on reconfigurable fault-tolerant control systems. Annual Reviews in Control,
32(2):229–252.

87



Author’s publications

Cigler, J., Široký, J., Kulvejt, M., Chlupáč, M., and Gyalistras, D. (2011). Web
services based data acquisition from a process database. In Proceedings of the 19th
Annual Conference Proceedings: Technical Computing Prague 2011, pages 28–33,
Prague, Czech Republic.
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231.
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of model predictive control for an energy efficient building heating system. Applied
Energy, 88(9):3079–3087.
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