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ABSTRACT

In this article, we present a new 3D non-rigid surface registration algorithm for unstructured point clouds. The algorithm
has very low data requirements and can easily be adapted to use additional information other than vertex positions such as
texture information or prior knowledge about local deformations. It is robust to noise, outliers and to some extent to missing
data. The mathematical theory is based on probability density estimation. Furthermore, we use the mean shift formula for
fast computation. The algorithm is able to use different regularisation models for the deformation. Quantitative and qualitative
experiments are conducted on artificial surfaces and on real 3D face data.
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1 INTRODUCTION

1.1 3D shape registration

Registration, defined as finding a mapping between two
(3D) images or other geometric data structures, is an
important computer vision research topic with many
applications, such as 2D automatic panorama stitching
[7] or object detection in 2D camera surveillance [2].
In medical imaging, registration is of key importance
to combine the complementary properties of different
imaging modalities like CT (Computed Tomography)
and MRI (Magnetic Resonance Imaging) [18], for com-
paring medical images of the same person but on dif-
ferent time points (where tumors might have grown or
shrunk, contrast has been injected [16]. . . ), or for the
alignment of intra-operative surfaces to pre-operative
images.

The subfield of registration we are concerned with
in this paper is 3D surface registration: finding a map-
ping between two 3D shapes, in our case represented
as point clouds. As 3D capturing devices become less
expensive and prove to be of value for face recognition,
registration of 3D surfaces also becomes important. It
is a problem of considerable interest in, e.g., computer
graphics, 3D shape aquisition and reconstruction and
statistical shape analysis in computer vision and medi-
cal imaging. For instance, the morphable statistical face
model of Blanz and Vetter [6] is a method based on 3D
face scans. For this method, all the faces have to be
represented by one topologically consistent mesh con-
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figuration, meaning that all faces have to be represented
by a mesh with a constant number of vertices and trian-
gles. As this cannot be done at capturing time, a 3D
surface registration is needed.

1.2 Related work
Most of the 3D registration literature covers rigid regis-
tration, in which only translations and rotations can be
dealt with (a transformation is called rigid if the Eu-
clidean distance between any two points remains con-
stant). The most popular example is the Iterative Clos-
est Point (ICP) algorithm of Besl and McKay [5], which
has shown to be very successful and for which many
variants have been developed. In a nutshell, ICP is a
two-step iterative algorithm. In step one, the closest
points between two matches are sought, and in the sec-
ond step, the rigid transformation parameters that best
account for the ensemble of these correspondences are
calculated, after which this transformation is applied.
These two substeps are repeated until convergence.

The problem of non-rigid registration, in which more
general deformations besides translations and rotations
are admissible, is far more difficult. Recently, a num-
ber of 3D non-rigid registration algorithms have been
presented in the literature. Most of these algorithms are
based on the ICP-algorithm. One example is the opti-
mal step non-rigid ICP algorithm of Amberg et al. [1]
in which the ICP framework is extended to non-rigid
registration, while keeping the advantageous properties
of the original ICP (Iterative Closest Point) algorithm
[5]. It is robust to missing data, but as it is based on
the ICP framework, it is not expected to be robust to
outliers.

Another popular non-rigid registration algorithm re-
lated to ICP is Robust Point Matching introduced by
Chui and Rangarayan in [9]. RPM is also a two-step
iterative algorithm. The first step is the calculation of
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a soft-assign (fuzzy) correspondence matrix including
outlier handling. In the second step, the transforma-
tion that parameterizes the non-rigid registration is up-
dated by solving a least-squares problem including a
specific non-rigid deformation parameterization (more
specifically, the Thin Plate Spline deformation model
is chosen). The iterations are governed by an anneal-
ing scheme where the annealing parameter controls the
fuzziness of the correspondences computed in the first
step.

In the same paper ([9]), also another algorithm is de-
veloped and used as baseline: a non-rigid Thin Plate
Spline (TPS) ICP algorithm. Here, at each iteration,
hard point correspondences are calculated and then
TPS transformation parameters are optimized. The
hard point correspondences are found using the near-
est neighbor heuristic. To handle outliers, points too far
away are not considered. The second step is the cal-
culation of the transformation parameters for the TPS
transformation by minimizing

ET PS( f ) = ∑
i
||yi− f (xi)||2 +

λ

∫ ∫ [
(

∂ 2 f
∂x2 )2 +2(

∂ 2 f
∂x∂y

)2 +(
∂ 2 f
∂y2 )2

]
dxdy, (1)

with f (xi) = xi · d + φ(xi) · w and φ(xi) =
||x − xi||2log||x − xi|| the TPS kernel, d a matrix
representing the affine transformation and w a warping
coefficient matrix representing the non-affine trans-
formation. The parameter λ is set using an annealing
procedure.

An algorithm that is not based on ICP but bears close
resemblance to ours is the simultaneous non-rigid reg-
istration method for multiple point sets for atlas con-
struction of Wang et al. [19]. Here, the 3D model point
clouds that need to be registered are represented by a
Probability Density Estimate (PDE), which is also a
key feature in our algorithm. The algorithm of Wang et
al. proceeds by quantifying the distance between these
PDE’s using an information theoretic measure, which is
optimized over the parameters of a deformation model.

2 MEAN SHIFT REGISTRATION

2.1 Probability Density Estimation and
Mean Shift

In the majority of 3D surface processing algorithms, 3D
objects and surfaces are represented as a mesh: a bunch
of vertices (3D points) on the object’s surface connected
by polygons, mostly triangles. An example of a mesh
is shown in figure 1(a). But, as has already been men-
tioned, we will, in this work, represent 3D surfaces as
a Probability Density Estimate (PDE) based on a dis-
crete point cloud version of the surface. These points

(a) (b)

Figure 1: The Stanford bunny represented as (a) a mesh;
(b) a volume rendered Probability Density Estimate.

are most readily available and are the most basic repre-
sentation of surfaces, and are sometimes the only avail-
able information. By representing the 3D surface as a
PDE, every point in 3D space has a probability of lying
on the surface of the 3D object we are working with.
This statistical way of representing 3D objects will –
to a certain amount – give our algorithm the ability to
deal with missing data and outliers. An example of a
3D PDE can be seen in figure 1(b).

We construct the PDE of the 3D surface by using the
Kernel Density Estimation (KDE) technique. The PDE
is thus constructed in the following way:

p̂(x) =
1
n

n

∑
i=1

K(x−xi), (2)

where p̂ is the PDE itself, x1,x2, . . . ,xn are the 3D
points of the discretized surface, and K(x) is a scalar
function satisfying∫

R3
xxT K(x)dx = cKI, (3)∫
R3

xK(x)dx = 0, (4)

lim
‖x‖→∞

‖x‖3K(x) = 0, (5)∫
R3

K(x)dx = 1. (6)

Here, ‖ · ‖ is the Euclidean norm, and cK is a constant.
We follow the method of Comaniciu and Meer [10] for
Kernel Density Estimation and are thus only interested
in the special class of radially symmetric kernels sat-
isfying K(x) = ck,dk(‖x‖2) with ck,d a normalization
constant to make K(x) integrate to one (d stands for
the dimensionality of the problem). k(·) is called the
profile of the kernel. Using a kernel with bandwidth h,
the kernel density estimate is:

p̂(x) =
ck,d

nhd

n

∑
i=1

k(||x−xi
h
||2). (7)

If we define g(x) =−k′(x), we can write the density
gradient estimate as:
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∇̂p(x) =
2ck,d

nhd+2

[ n

∑
i=1

xig(||x−xi
h
||2)
]
·[

∑
n
i=1 xig(|| x−xi

h ||
2)

∑
n
i=1 g(|| x−xi

h ||2)
−x
]

(8)

The last factor is called the mean shift:

mh(x) =
∑

n
i=1 xig(|| x−xi

h ||
2)

∑
n
i=1 g(|| x−xi

h ||2)
−x. (9)

Because this can be written as

mh(x) =
1
2

h2c
∇̂ph,K(x)
p̂h,G(x)

, (10)

it can be seen that, at location x, the mean shift is
proportional to the density gradient estimate with ker-
nel K, normalized with the density estimate computed
with kernel G, and thus always points at the direction
of maximum increase in density.

Because of the normalization, the mean shift can be
thought of as an adaptive gradient estimation for use in
gradient ascent methods. The mean shift is adaptive in
the way that it is bigger in regions with low density,
and smaller in regions with high density. This is what
we will need for our registration algorithm.

In this paper, we will use the Gaussian kernel func-
tion G(x) = 1

(2π)
d
2

exp(− 1
2‖

x
h‖

2), leading to:

mh,G(x) =
∑

n
i=1 xi exp(|| x−xi

h ||
2)

∑
n
i=1 exp(|| x−xi

h ||2)
−x. (11)

It should be noticed that this theory and the associ-
ated algorithms are also valid for other kernel functions.

2.2 Rigid mean shift registration
If the PDE of interest represents a 3D surface, the mean
shift vector will always point in the direction that needs
to be followed to get closer to the surface. This is ex-
actly what we need for a registration algorithm. Also,
as can be seen from equation (11), the mean shift vec-
tor in every point x is not only dependent on the nearest
point xi in the (target) point cloud, but every point in the
(target) point cloud, weighted with its distance to point
x, is taken into account. This will assure the robustness
of our method against noise and outliers.

As a start, the two objects that need to be registered
are assumed to lie in the same 3D Euclidean space.
From now on, we will talk about the target surface, the
static surface to which the other surface, the moving
floating surface, has to be registered. We can now for
every point x in the floating point cloud compute the
mean shift vector mh,G(x) in the PDE of the target sur-
face by using equation (11). This is illustrated in figure
2.

(a) (b)

Figure 2: (a) The floating and the target surface in the
same Euclidean space; (b) the mean shift vectors of
the target surface, evaluated in the points of the floating
surface (subsampled for clarity).

After the calculation of the mean shift vectors, we
need to transform these vectors into one rigid transfor-
mation for the whole 3D model. We do this by calcu-
lating the optimal rigid transformation matrix that ap-
proximates these vectors in a least squares sense and
applying it. This is the same procedure as used in the
traditional ICP algorithm.

These two steps, the calculation of the mean shift
vectors and the computation of the optimal rigid trans-
formation matrix, are then iterated, until convergence.

The algorithm can thus be summarized as follows:

REPEAT
- Calculate mean-shift vectors at the

points of the floating surface.
- Calculate the optimal rigid

transformation matrix and
apply it.

UNTIL convergence

An example of a Mean Shift Rigid Registration be-
tween two different facial surfaces can be seen in figure
3 .

2.3 Non-rigid mean shift registration
The classical non-rigid registration algorithm scheme is
a two-step scheme very similar to the rigid registration:
first, compute a displacement vector for every point in
the floating surface, and then optimize the parameters of
a non-rigid transformation model with relation to these
displacement vectors.

We on the other hand use the mean shift vectors as
local estimates of a non-parametric deformation, and
in such a way we don’t need any explicit deformation
model . These displacement vectors are then regular-
ized using smoothing or quasi-interpolation and scaling
before they are applied to the points of the floating sur-
face.

For the regularization, we implemented two different
strategies, but of course there are a plethora of other
possibilities.
Radial Basis Function regularization The first strat-
egy is quasi-interpolation with radial basis functions
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(a) before registration

(b) after registration

Figure 3: A Sample Mean Shift Rigid Registration of
two different faces.

(RBFs). A radial basis function interpolant s(x) is a
function of the form:

s(x) =
n

∑
i=1

µiΦ(||x−xi||)− p(x), (12)

where xi are the interpolation data points, Φ(x) are
radially symmetric basis functions, p(x) is a low degree
polynomial and µi are the unknown RBF coefficients.
For interpolation, the RBF coefficients µi are computed
assuring

s(xi) = mi, i = 1, . . . ,N, (13)

with mi the values at the data points xi. For quasi-
interpolation, the RBF coefficients can be determined
by minimizing

ρ||s||2 +
1
N

N

∑
i=1

(s(xi)−mi)2, (14)

where ||s||2 denotes the smoothing penalty defined by

‖s‖2 =
∫

R2
((

∂ 2s(x)
∂x2 )2 +(

∂ 2s(x)
∂y2 )2 +(

∂ 2s(x)
∂ z2 )2

+2(
∂ 2s(x)
∂x∂y

)2 +2(
∂ 2s(x)
∂x∂ z

)2 +2(
∂ 2s(x)
∂y∂ z

)2)dx (15)

and ρ is a smoothing constant: the smaller ρ , the more
the interpolant is passes through the data points xi, and
vice versa. This approach is known as spline smooth-
ing [8]. For the regularization of the mean shift vectors

using radial basis functions, we make use of three radial
basis function interpolants sx,sy,sz: one for each com-
ponent dimension of the mean shift vector. This means
that we have to compute three RBF interpolants;

s(x) =

 sx(x) = ∑
n
i=1 µi,xΦ(||x−xi||)− px(x)

sy(x) = ∑
n
i=1 µi,yΦ(||x−xi||)− py(x)

sz(x) = ∑
n
i=1 µi,zΦ(||x−xi||)− pz(x)

,

(16)
with constraints

s(xi) = mh,i =

 mh,i,x
mh,i,y
mh,i,z

, (17)

where mh,i are the mean shift vectors from equation
(11). The regularized mean shift vectors are then com-
puted as

m̃h,i(xi) = λ · (sx(xi),sy(xi),sz(xi)), (18)

with xi the points of the floating point cloud and λ a
scaling parameter.
Gaussian smoothing as regularization Another pos-
sibility for regularizing the mean shift vectors is us-
ing Gaussian smoothing. Because the interpolation
points do not lie on a regular grid, we perform Gaus-
sian smoothing using the Gauss transform. Here, the
regularized mean shift vectors are computed using (18),
with xi the points of the floating point cloud, and

s(x) =


∑

N
i=1 mh,i,x exp(|| x−xi

hs
||2)

∑
N
i=1 mh,i,y exp(|| x−xi

hs
||2)

∑
N
i=1 mh,i,z exp(|| x−xi

hs
||2)

. (19)

Here, hs is the smoothing parameter. The regularized
mean shift vector at point x is thus computed as an in-
verse distance weighted sum of the mean shifts in all
points of the point cloud.
Algorithm The non-rigid registration algorithm can
thus be summarized as follows:

REPEAT
- Calculate (weighted) mean-shift

vectors at the points of the
floating surface.

- Regularize and scale the
displacement vectors.

- Move the points of the floating
surface using the computed
displacement vectors.

UNTIL convergence

2.4 Implementation
The algorithm was implemented in MATLAB. Both the
mean shift computation and the Gaussian smoothing
are essentially a series of Gauss transforms:
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N

∑
i=1

qi exp(‖
xj−xi

h
‖2),∀ j = 1 . . .M (20)

When solved naively, and M = N the Gauss trans-
form’s complexity is quadratic (O(N2)). The Fast
Gauss Transform (FGT) of Greengard and Strain [14]
reduced the complexity of the Gauss Transform to
linear (O(N)). The Improved Fast Gauss Transform
(IFGT) of Yang et al. [20] has further increased
the speed of the Gauss transform, mainly for high
dimensional problems.

In another class of fast implementations, the Gauss
Transform is computed using a space-partitioning data
structure for organizing the point clouds. These meth-
ods are often referred to as kd-tree methods (short for
k-dimensional tree methods) [13, 15].

The FIGTree algorithm of Morariu et al. [17] is an
implementation that combines various fast algorithms,
including a IFGT and kd-tree algorithm, automatically
selecting the best parameters for each problem. As
such, the speed of our registration algorithms can bene-
fit from using this package.

The RBF calculation is of a similar complexity. Con-
ventional methods for RBF calculation, using 3D bihar-
monic (thin-plate) splines are O(N3). Hierarchical and
fast multipole methods [3] can reduce this complexity
to O(N logN). These fast results can for instance be
obtained using the FastRBF Toolbox [12].

To increase the robustness of our algorithm, the itera-
tions are done in an annealing or multiscale way. In op-
timization, annealing is a way of iterative improvement
of the cost function by letting a temperature parame-
ter decrease in a controlled way. In our algorithm, the
Gauss transform’s kernel bandwidth parameter for the
mean shift computation is large in the beginning and is
decreased over the iterations.

3 EXPERIMENTS
In this section, we present some results for our regis-
tration algorithm. In this paper, we will focus on the
non-rigid registration. For results of the rigid registra-
tion, we refer to [11].

3.1 Proof of concept
To proof the concept of the mean shift based non-rigid
registration algorithm, we make use of meshes of su-
perquadric surfaces. Deformed meshes were then cre-
ated by non-rigidly transforming them using a thin plate
spline deformation field and resampling the deformed
meshes. Afterwards, the original configuration was es-
timated by applying the mean shift non-rigid registra-
tion algorithm from the deformed (floating) surface to
the original (static) surface. To make the challenge fair,
since the surfaces were deformed using a TPS deforma-
tion field, we used Gaussian smoothing as regularizer.

landmark number landmark name
1 nose tip
2 left inner eye corner
3 right inner eye corner
4 left outer eye corner
5 right outer eye corner
6 left mouth corner
7 right mouth corner

Table 1: The landmarks used in the registration of intra-
subject face scans experiment.

The results of these registrations as illustrated in figure
4, and prove qualitatively that the new non-rigid regis-
tration algorithm can lead to good registrations. The
non-rigid registration took less then 2 minutes on one
cluster node with a dual-core AMD Opteron 2220 pro-
cessor.

3.2 Registration of intra-subject face
scans with face expressions

To test the ability of our algorithm to deal with real-
world data, we make use of the Binghamton University
3D Facial Expression (BU-3DFE) Database [21]. This
is a database containing 100 subjects, with for each sub-
ject 25 scans for different face expressions. In this ex-
periment, we tried to register the neutral face scan of
one person to eight of the expression face scans, on
which seven anatomical landmarks were manually in-
dicated. A set of face scans with different expressions
are visualised in figure 5. To construct reliable statis-
tical models, it is required that the landmark locations
of one face instance are mapped as closeby as possi-
ble to the landmark locations of the target face, when
registered. The result of the non-rigid registration can
then be validated by the statistical distribution of the
Euclidean distances of the landmarks on the registered
face to the real landmark locations:

d =
√

(lo,x− lr,x)+(lo,y− lr,x)+(lo,z− lr,x), (21)

where lo = lo,x, lo,y, lo,z are the landmark locations be-
fore registration and lr = lr,x, lr,y, lr,z are the landmark
locations after registration . This is what can be found
in figure 6. For comparison, also results of the non-rigid
TPS-ICP registration described in the introduction are
included.

The landmark numbers are explained in table 1. The
experimental results show that the mean shift non-rigid
registration algorithm outperforms the TPS-ICP algo-
rithm, especially in regions where large expression-
induced shape variations are to be expected, at the
mouth corners. For these experiments, we tuned the
parameters of both algorithms as well as possible.
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Figure 6: Registration of intra-subject face scans with
face expressions. The red bars (1,4,7,10,13,16 &
19) represent the results after only rigid registration,
green bars (2,5,8,11,14,17 & 20) indicate results af-
ter mean shift non-rigid registration, and blue bars
(3,6,9,12,15,18 & 21) represent results after non-rigid
ICP registration. (Color version online.)

4 CONCLUSIONS AND FUTURE
WORK

We developed a novel non-rigid point cloud based sur-
face registration algorithm based on mean shift. The
algorithm shows to be able to perform good non-rigid
registrations. Quantitative experiments prove the power
of our algorithm.

The algorithm’s theory is stated in 3D, and we make
only use of the 3D point locations of the discretisized
surface representation. The framework can however be
expanded to N dimensions. A straightforward applica-
tion that can benefit from a 4D registration is recogni-
tion for 3D facial gestures, which can be seen as a 4D
surface [4]. We however plan to use the extendibility
to N dimensions for improving the performance of the
3D registration. In its current implementation, the al-
gorithm is expected to be more suitable for expression-
less inter-person registration than for intra-person reg-
istration where it has to deal with face expressions. We
want to tackle this problem by building a N dimensional
space consisting of 3 Euclidean shape space dimensions
and additional dimensions containing a.o. texture and
curvature information.

Furthermore, we plan to review variable kernel meth-
ods, to deal with unevenly sampled surfaces and the
non-uniform nature of face surfaces. A broad validation
of the algorithm on a 3D face database is also planned.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Results of the mean shift non-rigid registration algorithm. (a), (d) and (g) are the original surfaces. (b),
(e) and (h) are deformed, noisy version hereof. These were registered to the originals, and the result is shown in
(c), (f) and (g). Only the point clouds were used, but for clarity of visualization, the point clouds are displayed as
shaded meshes with black dots on the point locations.

Figure 5: Nine face surfaces captured from the same person but with different facial expressions.
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