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ABSTRACT 
Lattice-based B-spline driven deformation has become a useful method in shape matching applications. Here, the 
challenge is to find a configuration of the B-spline deformation model that effectuates a deformation that 
spatially aligns one shape (the source) to another shape (the target). Literature study indicates that few B-Spline 
deformation based algorithms were implemented that target polygonal meshes. In contrast, in the field of 
medical image registration, B-spline deformation has been extensively applied in matching shapes that use a 
voxel-based shape representation. For exploring the opportunities of applying these voxel-based methods to the 
shape matching of polygonal meshes, in this paper we propose to match polygon meshes by transforming them 
to voxel models and apply established techniques from the field of medical imaging. Two voxel-based methods 
are selected and implemented: Global Optimization methods, which globally optimize the B-spline model, and 
Markov Random Field methods, which locally optimize the B-spline model. These methods are compared to 
parameterized B-spline-based shape matching methods previously proposed by the authors. These methods 
directly match polygon meshes. Results indicate that the proposed methodology outperforms the parameterized 
approach in terms of accuracy and computation time and therefore is a promising alternative to existing methods. 
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1. INTRODUCTION 
In 1986, Sederberg and Parry introduced the concept 
of lattice-based B-spline driven deformation that 
allowed the freeform deformation of (in their case) 
solid geometric models [Sed86]. B-spline driven 
freeform deformation makes use of the 
correspondence between a target shape and an 
overlying grid of B-Spline control points. A change 
in the configuration of the B-Spline control points 
results, through a trivariate Bernstein polynomial 
function, in a deformation of the underlying shape 
(see figure 1). B-spline deformation has turned out to 
be an intuitive method of shape modeling, as the 
nature of the B-Spline paradigm allows both global 
and local deformation. Long after its introduction, B-
spline driven deformation has been and is being 

applied in shape modeling applications (e.g. [Igar99], 
[Karp06], [Song06], [Pern05]). However, there is 
also another important application of B-spline driven 
freeform deformation: that of shape matching. In 
shape matching the challenge is to find a 
transformation that spatially aligns two shapes. This 
transformation can be given as a transformation 
matrix, but it can also be enacted by a matrix of B-
Spline control points. 
B-Spline driven shape matching techniques have 
been applied to reverse engineering [Lang07][Ver01] 
and shape retrieval. In addition, B-spline driven 
shape matching has found an application in the area 
of medical image registration [Glo08], [Rue99], 
[Mattes03]. Here, the main advantage of the B-spline 
deformation model is that it is successful in 
mimicking natural tissue deformation and expressing 
anatomical variance. 
When looking closely at the existing literature on B-
spline driven shape matching, one cannot fail to 
notice that shape matching has been given much 
more attention in the field of medical image 
registration than it has in the registration of 
polygonal meshes or solid models.

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 
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Figure 1: Example of B-Spline driven freeform deformation (taken from [Sed86]) 

 
Partly, this can be explained by the fact that for voxel 
models, B-spline driven shape matching is less 
computationally costly. Because the validity of 
voxels is easier to maintain (through interpolation) 
than the validity of polygonal models, computation 
costs are considerably lower, especially for large 
and/or complex shapes. In this paper we therefore 
propose a new technique for matching shapes 
represented by polygonal meshes (see figure 2).  

 
Figure 2: The direct (left) and the proposed shape 

matching method (right) 
In a first step, both meshes are converted to a voxel 
model. Then, using proven techniques from the field 
of medical image registration, these voxel models are 
registered. This  results in a transformation that can 
also be applied to the original polygonal mesh to 
align it with the target mesh, after which only some 
finetuning is needed. The purpose of this approach is 
to reduce the computation cost of the shape matching 
of polygonal meshes, and hopefully increase the 
accuracy. 

In this paper we will investigate two medical image 
registration methods: global optimization and 
Markov Random Field minimization. Both will be 
applied to polygonal models after they have been 
converted to a voxel model, and the result will be 
compared to a method that makes use of parametric 
models for matching polygonal models without 
converting them to voxel models (i.e. as depicted on 
the left side of figure 2). This method is an adaptation 
of a method previously proposed by the authors 
([Song05],[Lang07], [Lang08]). 
In section 2 we will first define the B-Spline 
deformation model. In section 3, we will review the 
three employed shape matching techniques. In 
section 4 we will compare the performance of all 
three techniques when applied to four polygonal test 
models and investigate if the techniques that are 
taken from the field of medical image registration 
outperform parametric models. Finally, in section 5 
we will draw conclusions and speculate on future 
research. 

2. B-SPLINE DEFORMATION 
MODELS 
The basic principle of the B-spline deformation 
model is the duality between the parametric 
coordinates of the model and the spatial coordinates 
of the shape that is being deformed. The basic 
elements of a B-spline deformation model are its 
control points. Although theoretically there is no 
reason for a specific starting point of the B-spline 
control points, usually they are assumed to be 
initially positioned in a uniform lattice, as in figure 1, 
left. Alternatively, they can be positioned with regard 
to a previously identified shape [Song05], or in 
lattices of arbitrary topology [Mac96]. 
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2.1 Definition of the Deformation Model 
In three dimensions, the B-spline deformation model 
B can be defined as B { }dP,=  with P  being a set 

of nml ××  control points ( ), ,ijk ijk ijk ijkP x y z= . 

For i, j and k  it holds that li <≤0 mj <≤0  and 
nk <≤0 ; d is the degree of the B-spline model. 

Without loss of generality we assume here that B-
Splines are uniform and rational, for the reason that 
most of the methods that are dealt with in this paper 
have only been described for these types of B-
Splines. A NURBS deformation model would also 
incorporate knot vectors and control point weights 
and although this makes the B-spline deformation 
more complex, in an application to shape matching 
the only relevant difference lies in the dimensionality 
of the shape similarity function. 
 A deformation T  can be denoted as a function 
( ), ,T I B Δ , where Δ  is a set of l m n× ×  vectors that 

contains, for each control point, a three-dimensional 
spatial transformation vector ( )ijkijkijkijk zyx ΔΔΔ=Δ ,, . 
The coordinates of the B-spline control points can be 
expressed both in a ( ), ,x y z  coordinate system and in 
a ( , , )u v w  coordinate system. The ( ), ,x y z  coordinates 
indicate the spatial location of the control point. 
These coordinates can be directly manipulated 
manually or automatically, and are therefore the main 
focus of both shape modeling and shape matching 
techniques. The ( ), ,u v w  coordinates indicate the 
position of the control point in the parametric space 
of the B-spline model and it is an important notion of 
B-spline deformation that this position is invariant 
under freeform deformation. 

Given the ( ), ,u v w  coordinates of an arbitrary point in 
an image I , the corresponding ( ), ,x y z  coordinates 
can easily be found using the trivariate Bernstein 
polynomial: 

0 0 0

( , , )
l m n

ijk
i j k

I x y z Pμ
= = =

=∑∑∑ , where 

( ) ( ) ( )1 1 1l i m j n k i j kl m n
u v w u v w

i j k
μ − − −⎛ ⎞⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

Then, the deformation of an arbitrary point in the 
image I  can be described as: 

( )( ) ( ) ( )zyxIPzyxIT
l

i

m

j

n

k
ijkijk ,,,,,,

0 0 0
∑∑∑
= = =

−Δ+=Δ μB  

Unfortunately, ( ), ,u v w  coordinates are not always 
readily available and must first be found. Given the 
( ), ,x y z  coordinates of a point, this can be done by 
iterative subdivision of the B-spline control point 

lattice, for example by using one of the many 
variants of Newton’s iteration. 

2.2 The Shape Matching Problem 
In this paper we will focus on an application of the 
lattice-based B-spline deformation model to shape 
matching. Using the definitions given before, this 
problem can be defined as follows: 
Given a source image sI , a target image tI , a shape 
similarity function ( )δ  and a B-Spline deformation 
model B , find the set of translation vectors Δ such 
that ( )( )ts IIT ,,, ΔBδ  is minimal. 

In other words, to align two images, coordinates for 
each control point in the B-spline deformation model 
must be found such that the resulting deformation 
minimizes the distance between source and target 
image. Since there are many strategies to approach 
this problem, without loss of generality the following 
assumptions are made in this paper: 
1. Only the source image is deformed 

In some applications, it may be logical to deform 
both the fixed and the moving image and end up 
somewhere in the middle [Yang08], to average 
the deformation fields of both, or to enforce that 
both registrations are consistent [Chri01]. Such 
strategies may be beneficial in cases where one 
or both of the images contain noise. In general, a 
deformation of the target image can be 
approximated as a deformation of the source 
image through a process of interpolation, but this 
process may suffer from many off-topic 
difficulties and for simplicity’s sake we therefore 
assume that deformation only occurs in one 
direction. 

2. B-spline models are non-hierarchical 
A common strategy for B-spline driven shape 
matching uses a multi-resolution approach, in 
which the resolution of the B-spline control 
point mesh increases in a step-wise fashion, so 
that in each step the level of detail of the 
procedure is increased [Szel97]. By performing 
global deformations first, and gradually 
increasing the resolution of the deformation, 
local deformation becomes less dependent on the 
global image similarity. However, in each 
resolution, the formulation of the problem is the 
same and because our findings can easily be 
generalized to multiple resolutions, we assume 
that the shape matching procedure only takes 
place within a single resolution. 

3. Source and target image have been affinely 
registered prior to B-spline deformation. 
In the normal practice of image registration, a 
rigid or affine transformation is performed 
before applying a B-spline deformation, to make 
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sure that scale and position do not have an effect 
on the B-spline deformation and to reduce the 
risk of getting stuck in a local minimum of the 
search space. Similar to multi-resolution 
registration, this improves the local effects of a 
B-spline deformation. Because a rigid or affine 
transformation can in principle be expressed as a 
strictly constrained B-spline deformation, such a 
registration does not compromise the validity of 
our deformation model. 

2.3 Regularization 
Although B-spline driven deformation is a powerful 
deformation model that is particularly well-suited to 
performing local deformations, there is also a risk: 
because the variables of the shape matching problem 
are the B-spline control points rather than the 
underlying image, it may happen that a configuration 
of the B-spline control point network results in a 
deformation under which the underlying image 
violates some validity constraints. The most common 
violation of image validity is folding, which occurs 
when two or more control points swap their relative 
position.  Rather than checking the validity of the 
underlying image during the shape matching 
procedure, often a regularization mechanism or 
penalty is included in the optimization routine, such 
that the problem of shape matching can be 
reformulated as: 

Given a source image sI , a target image tI , a shape 
similarity function ( )δ , a B-Spline deformation 
model B and a regularization function ρ ,  find the 
set of translation vectors Δ  such that 

( )( ) )(, Δ+ ρδ ts IIT  is minimal 

The difficulty here lies in constructing the 
regularization function and throughout the literature 
several options have been proposed. 
The most common approach is to relate the 
regularization function to the elastic energy of the B-
spline deformation [Rue99][Kybic03] [Sorz05], such 
that the translation of a single B-spline control point 
is penalized depending on the magnitude of the 
translation vector. In [Hart00] it has been shown that 
folding can be detected using the Jacobian 
determinant of the deformation field and in [Rohl03] 
it has been shown that deviations of this Jacobian can 
be used to obtain an incompressibility constraint that 
can be used to guarantee a volume-preserving 
deformation. Staring et al. [Star06] propose a local 
rigidity constraint that can be used to penalize large 
deformation in some areas, but less so in other areas.  

3. DEFORMATION METHODS 
As the deformation that is enacted by the B-spline 
model depends on the position of its control points, a 
logical approach to the optimization problem 

described in section 2 is to treat the coordinates of 
these control points as variables of the minimization 
problem. Although this seems straightforward, there 
are several approaches to this problem, which will be 
discussed in this section. This section will review two 
approaches that are used in the area of medical image 
registration, and will also discuss a parametric 
approach that the authors of this paper have 
successfully applied in the area of reverse 
engineering. In section 4, we will test all three 
methods in an application to polygonal meshes to see 
if they lead to comparable results. 

3.1 Global Optimization 
The most straightforward way of finding a 
deformation that minimizes the distance between 
source and target image is a global optimization 
approach. A global optimization approach treats all n 
B-spline control point coordinates as if they are 
coordinates of a global vector Δ , which can be 
defined as { }0 1, , , , nx y zδ δ δΔ = K K , where n i j k= ⋅ ⋅  
This vector can be minimized using any known 
multi-dimensional function optimization technique. 
Most approaches use a gradient descent (GD) 
approach [Rue99][Matt03], in which an iterative 
approach to the minimization of Δ  is taken. In each 
iteration step, a number of points are sampled in the 
target image and projected backwards onto the source 
image. The distance between the sample points and 
their backwards projection is used to calculate the 
distance between the source and target image and in 
the next step the direction of further optimization is 
chosen to be the direction of steepest descent of the 
distance function. This method is straightforward but 
computationally costly because it requires a 
computation of the gradient of the distance function. 
Although gradient descent is the most popular global 
optimization approach, other (gradient-based) 
methods are also possible. Klein et al. [Klein07] 
compare different methods, including gradient 
descent, quasi-Newton, nonlinear conjugate gradient, 
simultaneous perturbation, evolution strategy, 
Robbins-Monro and Kiefer-Wolfowitz. Although 
small differences between the methods can be 
observed, it is unclear to what extent these 
differences are application-independent. 

3.2 Markov Random Fields 
Another approach to the shape matching problem, in 
which there is no need to compute the gradient, is to 
formulate it as a discrete Markov Random Field 
(MRF) objective function [Glo08]. Basically this 
boils down to treating the deformation vectors for 
each point as independent, such that the movement of 
a single control point is evaluated regardless of the 
movement of its neighbors. Note that under certain 
constraints, this approach is similar to Powell’s 
direction set approach to global optimization. 
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Clearly, such a search covers a much larger part of 
the search space, involving all the risks and benefits 
that go along with it. In addition, a MRF approach 
requires a much more thoroughly defined (and, 
ideally, an adaptive) regularization term: the 
independent movement of control points increases 
the risk of folding and violation of other validity 
constraints. A primary-dual linear programming 
approach can be used to quickly compute the optimal 
MRF [Komo07]. 

3.3 Parametric Models 
Both of the previous methods assume that no 
information is available when translating the B-spline 
control points. In other words: these methods look for 
any deformation that is optimal given a certain shape 
similarity measure: it is not guaranteed, however, that 
this deformation is valid or that it is the least 
complex way of deforming the source image. 
Imagine, for example, the alignment of two 2D 
pictures of faces: in this case from the point of view 
of the shape similarity function it is valid to deform 
the source image in such a way that the eyes are 
swapped while the rest of the model is kept constant. 
However, in practice this deformation is invalid and 
unnecessary and therefore an undesirable result of the 
shape matching procedure. 
In this particular example, it makes much more sense 
to incorporate knowledge of the shapes in question 
into the shape matching procedure. Models on the 
way a shape can be deformed are called Active Shape 
Models (ASM) or Active Appearance Models 
(AAM) [Cootes95]. In the application of reverse 
engineering, a similar concept is the freeform feature 
model [Song05],[Lang07]. In terms of the definitions 
given earlier in this paper, these models operate by 
enforcing a set of displacement vectors 

{ }0 1, , , , nx y zπ π π πδ δ δΔ = K K , such that the shape 

matching procedure is reduced to finding the set of 
scalar values { }0, , nπ πΠ = K , such that 

{ }0 0 1 1, , , , n nx y zπ π ππ δ π δ π δΔ = K K . If πΔ  is 

unknown, then it can be estimated and iteratively 
maximized using an expectation-maximization 
approach (as suggested in [Lang08]), but such an 
estimation is only meaningful if there is indeed a 
(perceived) parametric difference between source and 
target image. If this is not the case, the shape 
matching routine is likely to become over-
parameterized. Π  can be optimized using global 
optimization methods or MRF models, but the latter 
would be difficult to implement because a 
regularization penalty cannot be directly defined on 
Π . Song et al. [Song05] use a quasi-Newton 
approach to match a parameterized shape, or feature, 
to a target shape. In [Lang07] an evolutionary 
approach to global optimization is proposed, which is 

computationally costly but turns out to be successful 
in traversing the search space in meaningful 
directions. 

3.4 A Comparative Analysis 
The main difference between global optimization and 
Markov Random Fields lies in two aspects: 
computational complexity and allowed deformation. 
Global optimization allows less deformation during 
the shape matching procedure, but is more stable as a 
result and converges to a solution in a much 
smoother way. The fact that the global deformation is 
taken into account during the optimization means that 
it is slower, especially so when the gradient is used. 
In an application to the registration of voxel models, 
the need for a gradient descent approach is justified 
by the fact that shape similarity measures are often 
dependent on other aspects than spatial 
correspondence. 
Markov Random Fields methods have the advantage 
that they explore much more of the search space, and 
although this also increases the risk of getting stuck 
in a local minimum, there are plenty of strategies 
available in the literature to reduce this risk. That 
deformation is not looked at from a global 
perspective allows for fast computation, for example 
using linear programming. MRF optimization has 
been reported to be up to four times as fast as global 
optimization. 

4. RESULTS 
To test the merit of the method proposed in section 2 
we have applied both shape matching using 
parametric models and shape matching using the two 
reviewed approaches to the registration of voxel 
models to four polygonal meshes. These meshes have 
been selected to pose a variety of problems that are 
commonly encountered in shape matching problems, 
specifically varying polygon density and complex 
topology. In addition, the test cases had several 
characteristics that can be expected to be a challenge 
in converting them to voxel models, most 
importantly the aforementioned varying polygon 
density and connectivity. The four test models are 
shown in figure 3. Test models a) and b) are 
industrial parts that have been obtained from the 
practice of computer-aided design and that pose 
various challenges: model a) exhibits a large variety 
in the level of detail while model b) has a complex 
topology. Models c) and d) were taken from the 
internet. Model c) has a straightforward topology but 
a large number of polygons, due to the texture of the 
skin of the figure. Model d) poses a challenge 
because of its topology. In addition, some parts of the 
model are connected only through thin strips, which 
may form a challenge when converting the model to 
a voxel model. In table 1, data for all four models is 
given. 

WSCG 2010 FULL Papers 147



 

 
(a)   (b) 

 
(c)   (d) 
Figure 3: The four test shapes 

 
Of each model, a region was selected to serve as the 
target polygonal mesh (see figure 3). This region was 
chosen to be smaller than the source image, because 
this is a requirement of the reviewed image 
registration methods due to the backwards projection 
of the sample points used to compute the shape 
similarity. Table 1 also displays the data for the 
selected regions, as well as the dimensions of the 
voxel models that were generated. 

Table 1: Basic data on experiment models 
 Model (a) Model (b) Model  (c) Model (d) 

Model:  

#polygons 46930 57914 71924 53688 

#voxels 53x57x38 112x61x23 62x97x63 72x59x123 

Selected 

Region 

    

#polygons 6441 2967 48703 6083 

#voxels 

 

31x11x33 42x61x23 62x68x63 64x52x48 

 
The original polygonal meshes were chosen as the 
source images and are denoted as  0

sI  to 3
sI  . The 

selected regions were used as the target images and 
denoted as 0

tI  to 3
tI .  

The proposed method proceeded in the following 
steps: 

1. Noise was added to the target images as follows: 
a B-spline control point lattice with a resolution 
of 20x20x20 was constructed around each target 
image, such that the entire part was contained in 
the lattice. All B-spline deformation vectors 
were initialized with a zero displacement vector, 
to which white Gaussian noise in the domain 
[ ]1,1− was added. The resulting deformation 
was applied to the polygonal meshes and the 
displacement vectors were recorded as the set of 
vectors noiseΔ . 

2. The source images were registered to the target 
images using a parametric model that was 
initialized by the normalized vector set noiseΔ , 
such that it indicated the direction but not the 
magnitude of the deformation that was 
performed in step 1. Although in practice noiseΔ  
is not known, in this case we felt that using it 
was justified because no obvious 
parameterization is available. In section 5 we 
will argue why this does not affect our findings. 

3. Both source and target images were voxelized 
using the VoxelModeller algorithm implemented 
in the Visualisation Toolkit (VTK) Library. The 
voxelization took less than a minute for models 
a, b, and d, and a little over two minutes for 
model c. 

4. All voxelized source images were registered to 
the corresponding voxelized target image using 
both an MRF approach and a global optimization 
approach, using a 20x20x20 B-spline control 
point grid. 

5. The transformation that resulted from step 4 was 
applied to the original polygonal meshes. 

For the registrations, the following methods were 
used: 

• For the gradient descent registration of the 
voxel models, we made use of the open 
source software library Image Registration 
Toolkit (ITK). 

• For the registration of voxel models using 
Markov Random Fields, we used the DROP 
package, as described in [Glo08] 

• To register the polygonal meshes we used a 
reimplementation of the method given in 
[Lang07]. 

For the experiments with the voxel models, mutual 
information was used as a shape similarity measure. 
For the polygonal meshes, the Mean Directed 
Hausdorff Distance was used. Values for the 
regularization penalty were experimentally 
determined. Unfortunately this had to be done for 
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each test model individually and therefore the values 
for the regularization penalty could not be compared. 
The experiments were done using a computer with 
four 1.6 GHz processors and 8 GB of RAM memory. 
Table 2 shows the results of the experiments, where 
accuracy is measured as the distance in mm. of the 
source and target image after shape matching. 

Table 2: Results of the direct registration 

(acc./time) GO  MRF Par. 
Model (a) 4.8/6min 3.9/7min 3.4/24min 
Model (b) 4.5/5min 4.1/6min 3.4/16min 
Model (c) 4.8/6min 4.1/6min 3.3/48min 
Model (d) 6.2/8min 5.3/8min 2.8/31min 

 
Of the three methods, parameterized registration was 
the most accurate. This is not surprising, because this 
method alone made use of additional information 
regarding the optimal direction of a search for the 
most optimal deformation. To come to a more fair 
comparison between the methods, in a post-
processing step we applied the parameterized shape 
matching method to the results of the voxel-based 
methods until A) the accuracy as given in the 
rightmost column of table 2 was achieved and B) 
until convergence (but forced to stop when the time 
given in table 2 was reached). A) gives an indication 
of the improvement in computation time that can be 
achieved and B) gives an impression of the 
improvement in accuracy that can be achieved. In 
table 3, the computation times and accuracy 
including this post-processing step are given. As an 
example, for model (c), Global Optimization and 
MRF minimization achieved an accuracy of 3.3 mm. 
in respectively 25 and 27 minutes, where this took 48 
minutes using a parametric approach. In respectively 
37 minutes and 44 minutes, an accuracy of 2.9, 
respectively 3.0 was achieved, compared to the 3.3 
using a parametric approach. 

Table 3: Results of the post-processing stage 

 A  B  
 GO  MRF GO  MRF 
Mode
l (a) 

3.4/4min 3.4/4min 2.8/12mi
n 

2.6/17mi
n 

Mode
l (b) 

3.4/2min 3.4/3min 3.0/16mi
n 

3.1/11mi
n 

Mode
l (c) 

3.3/19mi
n 

3.3/21mi
n 

2.9/31mi
n 

3.0/38mi
n 

Mode
l (d) 

2.8/4min 2.8/5min 2.5/19mi
n 

2.3/24mi
n 

 

5. CONCLUSION AND DISCUSSION 
The purpose of this paper was to demonstrate that 
voxelizing a polygonal mesh may be beneficial for 
the registration of the mesh. Voxel images can be 
registered much quicker than polygonal meshes, 
because the validity maintenance of a voxel model is 
much easier than that of a polygonal mesh. 
Our results show that for the four presented test 
models, voxel-based shape matching is indeed much 
quicker than matching the polygonal meshes directly. 
In addition, in a post-processing, the results of the 
voxel-based methods can be used to improve the 
accuracy of the shape matching. As we said in 
section 4, making use of the noise vector does not 
affect our results: without this additional information, 
parametric shape matching would have performed 
even worse. 
Although the results of these tests are interesting, one 
must keep in mind that four test models is not enough 
to reach a strong conclusion on the results of the 
reviewed methods. In addition, the parametric 
approach to shape matching has not been optimized 
to the extent that image registration techniques have 
been optimized. Optimization of the parametric 
approach may lead to better and faster results, but 
this also applies to the post-processing step of which 
the results are shown in table 3. 
Nevertheless, the results indicate that, to obtain a 
better registration accuracy, it may pay off to first 
voxelise a polygonal mesh and then apply known 
registration methods. We intend to more thoroughly 
investigate this line of research in the future. 
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