
 

User Motion Prediction in Large Virtual 

Environments 
 

Jaroslav Přibyl 

Department of Computer Graphics, FIT 
Brno University of Technology 

Božetěchova 2 
 612 66, Brno, Czech Republic 

pribyl@fit.vutbr.cz 

 Pavel Zemčík 

Department of Computer Graphics, FIT 
Brno University of Technology 

Božetěchova 2 
612 66, Brno, Czech Republic 

zemcik@fit.vutbr.cz

 

ABSTRACT 
Motion prediction of various objects is important for work of many people. We have to distinguish between near 

and distant time prediction queries. The trajectory of an object represented by mathematical functions can be 

used for near time prediction. These formulas are often called motion functions and they use recent movements to 

predict future locations of the objects. It is impossible to use simple mathematical formulas to evaluate distant 

time queries, because the movement trajectory between current and distant future time can alter widely. 

Trajectory pattern of an object is suitable prediction method to take into account for both near and distant time 

queries. Consequently, data mining methods can mine trajectory patterns from historic movements and these 

patterns can be used to predict the future objects movement. The best contemporary methods exploit combination 

of trajectory pattern method and motion function. This means that in case no trajectory pattern is found, the 

motion function is used to determine object near location. Using the trajectory pattern prediction principle a new 

approach to optimize communication between client and server in large virtual environments is introduced. Both 

short time and long time prediction queries are used to minimize the overall amount of downloaded data from 

network server and to obtain the probably requested parts of the scene in advance. 
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1. INTRODUCTION 
User (or object) motion prediction in large virtual 

environments will be described in this paper. The 

large virtual environment can be a terrain model or a 

model of a building. Whole scene is stored in a 

network database. The client application transmits to 

the server information about recent movements of 

object and its current position. The server predicts the 

future object position and sends necessary data (e.g. 

geometry, textures and other application dependent 

data) to the client application. The near time query 

prediction is sufficient (e.g. rendering optimization, 

data preprocessing, etc.) in many cases, but a need of 

long time prediction (e.g. mobile networks, deliver 

network services, traffic information etc.) is 

sometimes necessary to uncover the future location of 

the object. 

Current location and current movement of the object 

are needed to perform a short time prediction. Several 

techniques were invented to predict near time 

location of the object. These methods work fine for 

near time prediction queries but fail when they’ll be 

used to predict location far away from the current 

position of the object. 

Motion functions can be used to predict the near 

locations. These functions describe motion of an 

object by simple mathematical formulas. They can 

predict trajectory of the object reasonably well for 

near time locations. The motion function cannot be 

used to predict locations far away from the current 

object position because the motion of object might be 

affected by various circumstances (terrain obstacles, 

road networks, regular traffic jams, etc.). Let us 

consider an example (see Figure 1.). Some linear 

motion functions [Tao03a, Pat04, Jen04, Sal00 and 

Tao03b] can be used to predict the future object 

location during several consequent days. The 

prediction may fail e.g. on Friday in our example. To 

avoid this, nonlinear functions can be used [Tao04a]. 

They can capture the regular path of the object on 

Friday, but they may fail too (e.g. predict the “wrong 

place” in our example). Instead of the motion 

function, the movement pattern principle can be used 

to predict future location of the object accurately. 
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Figure 1. User go from home to work each week. 

Trajectory pattern can be used to examine that on 

Friday the user goes to work with some probability 

and during other week days with another probability 

[Yav05, Yan06]. 

The main interest of the above mentioned technical 

articles is to discover trajectory patterns. They 

assume that the prediction can be easily done through 

the discovered trajectory patterns. But they don’t take 

into account that the prediction query result can 

consist of many of patterns. The total amount of 

discovered patterns grows with every new object in 

the virtual environment. Therefore we need a method 

to organize the large amount of trajectory patterns 

and an efficient data structure to answer the 

predictive queries fast and accurately. Only several 

technical articles address the problem of large 

amount of discovered patterns [Jeu08]. Some of them 

address the problem partially [Mam04] and they 

develop pattern indexing techniques. Very few works 

[Jeu08] solve the case when no pattern is found. They 

use trajectory patterns to answer the predictive query 

and in case when no pattern is found call motion 

function to predict future location of the object. 

In this paper we present a new approach to predict 

object motion in large virtual environment. To the 

best of our knowledge no one has solved the object 

motion prediction in context of 3D virtual 

environment. We use the prediction for optimize the 

rendering process and the data flow between client 

application and network server. 

2. RELATED WORK 
In this section we introduce state of the art of object 

motion prediction methods. Generally the object 

motion prediction methods can be categorized into 

two main classes. 

Motion function based prediction 
Motion functions result from vector representation of 

object motion, position and direction. Motion 

functions can be categorized into linear and nonlinear 

types. Linear models [Sal00, Tao03b] assume only 

linear movement of an object. Moreover, nonlinear 

models assume nonlinear movement [Tao03c].  

At time t0, the object location equals l0 and velocity 

equals v0. Object future location can be predicted for 

the linear model at time tf through this following 

equation: 

)()( 000 ttvltl ff −×+= , 

where l and v are 3-dimensional vectors. 

The nonlinear prediction methods are generally more 

accurate in comparison with the linear methods. 

Today most accurate prediction mathematical method 

is recursive motion function (RMF) [Tao03c]. Object 

location l at time t is defined as follows: 

∑ = −⋅=
f

t itit lcl
1

, 

where ci is a constant matrix and f is the minimum 

number of the most recent timestamps which are 

needed to compute the elements of all ci. The RMF 

method can be used only for near future prediction. 

The prediction accuracy can drop severely if we 

would like to know where the object is located in 

some distant time. Generally the motion functions 

predict wrong locations when movement of the object 

contains sudden changes in its direction or velocities. 

It is due to the motion function is strongly dependent 

on current previous locations. 

Pattern based prediction 
A lot of methods solve a pattern based prediction 

problem. One of them is neural network pattern based 

prediction. The classical back propagation network 

joined with a self organizing feature map (SOFM) 

can be used. 

Further useful method is discrete Markov model 

[Rab89]. Some works derive Markov transition 

probabilities from one or multiple cells to another. 

Association rules can be used to predict future 

locations of an object as well. Work [Yav05, 

Tao04b] address spatio-temporal association rules of 

the form ),(),,( 21 trctr ji → , with confidence c, where 

ri and rj are regions at time t1 a t2 respectively (t2 > 

t1). In other words an object in location ri at time t1 is 

likely appear in location rj at time t2 with probability 

c. Study [Yan06] mine sequential patterns from 

object trajectories. 

All above mentioned techniques can discover large 

amounts of patterns and amounts of patterns 

discovered as a result of a predictive query can be 

large as well. Only [Jeu08] method organizes the 

discovered patterns and can quickly answer to the 

predictive query. 

No previous article solves the case if large amount of 

objects in virtual environment store and use their own 

motion history. Otherwise no study describes an 

opportunity to use the pattern based prediction 

techniques in computer graphics especially in 

distributed 3D virtual environment. The main 
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purpose of this paper is to optimize the rendering 

process and communication between client and 

network server. 

3. PREDICTION MODEL FOR LARGE 

VIRTUAL ENVIRONMENT 
The proposed approach is intended for large 

distributed virtual environments. The prediction 

system is formed as a part of a server including 

representation of all models. The client applications 

request data from the server and render the scene. 

The virtual environment is divided into a regular grid. 

This approach was chosen for several reasons. The 

first reason is that the virtual environment consists of 

large amount of textures. In order to save free 

memory, the quad tree data structure was employed 

to handle texture level of detail. Furthermore fast 

rendering, distributed character of the scene and 

prediction related to distributed parts of the virtual 

environment were good reasons for involving the 

regular grid. Each cell of the grid represent one 

distributed piece of the scene and has to be managed 

in the network server. There can be a large amount of 

cells to be managed on the server. Each cell of the 

grid can be a possible object location on his path 

through the virtual environment. Therefore the 

prediction granularity should be one cell. 

The trajectory pattern of an object is represented by 

sequence {(l0, l1, ..., li, ..., ln-1)}, where li denotes object 

location l0 at time i. Location coordinates are [x, y, ..., 

d]
dR∈ , where d is used dimension. Object 

trajectory pattern can be discovered from its 

historical movement [Mam04]. A given period T is 

defined by a number of timestamps such that a 

trajectory pattern may reappear. An object trajectory 

can be decomposed into 







T

n sub-trajectories. The 

period T is data dependent. To identify all locations 

with the same time offset the term group is used. In 

other words each group Gt represents all locations 

visited by object at time offset t. Consequently, the 

groups are clustered to dense clusters Rt. We call Rt a 

frequent region at time t. The
j

tR  symbol is used to 

distinguish between frequent regions with the same 

time offset. It represents j-th frequent region at time 

offset t. 

These definitions can be adapted to our model of 

virtual environment. We need to predict the future 

cells which will be necessary to be downloaded from 

network server in near and far future. For our virtual 

environment, the time period T is a sequence of 

visited cells during one client session. A group G 

corresponds to frequent region R. At this point the 

dense cell and the dense region terms have to be 

defined. 

Definition 1: Dense cell c is a cell with more than 

one pass through of an object along the movement 

history of the object in virtual environment. 

Definition 2: The size of a dense cell Size(c) is 

defined by amount of visitors of the cell c along the 

movement history of an object in virtual environment. 

Definition 3: Dense region is a group of adjacent 

dense cells with the same dense cell size. All dense 

cells associated with dense region m

jR  have the same 

dense cell size j. The variable m is dense cell 

identifier and >∈< nm ,1 , where n is number of 

discovered dense regions. 

Let us consider an example. Each red and green cell 

is a dense cell in Figure 2. The green groups are 

dense regions at level 2 and the red groups of cells 

are dense regions at level 3. Overall we have five 

dense regions counted from left to right and from 

bottom to top in this example. The bottom-leftmost 

red region is dense region 1

3R  and the top-rightmost 

dense region is marked as 
5

2R . 

 

Figure 2. Virtual environment is divided into 

regular grid. The colored groups of cells are dense 

regions. 

A density based clustering algorithm DBSCAN 

[Est96] was adapted to obtain dense regions. We 

modify the algorithm to work as follows. For every 

dense cell c from dense region R a dense cell q from 

dense region R exists, so that dense cell c is inside the 

Eps-neighborhood of dense cell q and NEps(q) 

contains at least minPts dense cells.  

Definition 4: The Eps-neighborhood of a dense cell c 

marked as NEps(c) is defined by:  

)}()(|{)( qsizecsizeDqN cEps =∈= , 

where D is input set of dense cells. 

We have introduced a method to obtain dense regions 

R from a sequence of object locations. Dense regions 

allow us to describe object motion by trajectory 

pattern and to predict next movement of the object. 
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Trajectory pattern concept 
The concept of a trajectory pattern was defined in 

earlier work [Jeu08]. Now our modification of the 

trajectory pattern concept is proposed. 

Definition 5: The trajectory pattern P is an 

association rule of form n

j

confm

jjj RRRR →∧∧∧ ...21 . The 

form m

jjj RRR ∧∧∧ ...21  is sequence of dense regions 

visited by object. We call this sequence a premise. 

The form m

jR  is a dense region called a consequence 

and this dense region might be visited by the object 

with probability conf. The term conf stands for 

confidence. 

Thanks to current visited dense regions we are able to 

predict the object future location (dense region). The 

prediction is done by a prediction query. The 

prediction query is defined by number of dense 

regions which will be predicted. Two types of 

prediction queries are defined. 

Definition 6: The distant time prediction query is a 

spatio-temporal query satisfying the condition that the 

number of predicted dense regions is greater than d, 

where d is user defined threshold. 

The boundary between distant time query and non-

distant time query is strictly application-dependent. 

Trajectory pattern retrieval 
The trajectory pattern discovery process can be 

divided into two parts. First of all we have to detect 

the dense regions. This task can be completed by 

modified DBSCAN algorithm which was described 

previously. The second task in trajectory pattern 

discovery process is to extract trajectory patterns (it 

corresponds to association rules) from input dense 

regions. The apriori algorithm [Agr94] can be used to 

extract association rules from user movement history 

described by sequences of dense regions. 

Apriori algorithm 
We briefly describe the apriori algorithm used to 

obtain the association rules from dense regions. 

Inputs of the apriori algorithm are sequences of dense 

regions. This set of sequences represents movement 

history of the object. Outputs of the apriori algorithm 

are sets of association rules with various length and 

probabilities. 

3.1.1 Obtain frequent 1-patterns 
We can obtain frequent 1-patterns from dense regions 

discovered by DBSCAN algorithm. Each frequent 1-

pattern corresponds to one dense region Rj.  

3.1.2 Obtain frequent k-patterns 
The time period T is a sequence of visited dense cells 

during one client session. 

Trajectory ID Sequence of visited cells 

TID1 1, 2, 10, 11, 19, 27, 28, 36, 44, 

45, 53, 61, 62 

TID2 1, 2, 3, 11, 12, 20, 28, 36, 44, 

52, 53, 61, 62 

TID3 1, 2, 3, 4, 12, 13, 21, 22, 30, 

38, 46, 53, 54, 58, 59, 60, 61 

Table 1. Database of visited grid cells. 

The TIDx identifiers represent sequence of visited 

dense cells during one client session. The colored 

blocks represent the dense regions. The numbers in 

the table correspond to dense region identifiers. 

Candidate item set can be generated from input dense 

regions.  Please follow the work [Agr94] because of 

candidate item set definition. For each candidate item 

set the trajectory ID has to be kept together with the 

candidates. This defines the TID modification of the 

apriori algorithm. 

The apriori algorithm has also three input parameters. 

The first parameter is set of frequent 1-patterns, 

second parameter is the trajectory database 

represented by sequences of dense regions and the 

last parameter is candidate item set. The key idea of 

the apriori algorithm it to generate candidate item set 

of length k from candidate item sets of length k-1. 

Outputs of the apriori algorithm are sets of frequent 

k-patterns with property parameter called a support. 

We can compute probability for each association rule 

using the support property. The Table 2. shows 

discovered k-patterns for data from Table 1. 

k Discovered sets of k-patterns 

1 {1}, {2}, {3}, {4}, {5} 

2 {{1,2}, {1,3}, {1,4}, {1,5}}, {{2,3}, {2,4}, 

{2,5}}, {{3,4}, {3,5}}, {{4,5}} 

3 {{1,2,3}, {1,2,4}, {1,2,5}}, {{1,3,4}, 

{1,3,5}},{{1,4,5}}, {{2,3,4}, {2,3,5}}, 

{{2,4,5}}, {{3,4,5}} 

4 {{1,2,3,4},{1,2,3,5}}, {{1,3,4,5}},{{2,3,4,5}} 

5 {{1,2,3,4,5}} 

Table 2. The discovered sets of k-patterns. Each 

subset corresponds to one association rule. 

For example, the first association rule from 3-pattern 

set is 3

2

2

2

1

3 RRR → . The corresponding support for 

each association rule is defined in the next table. 

k Probabilities discovered for association rules 

1 {0.23}, {0.23}, {0.15}, {0.23}, {0.15} 

2 {{0.30}, {0.20}, {0.30}, {0.20}}, {{0.29}, 

{0.42}, {0.29}}, {{0.5}, {0.5}}, {{1.0}} 

3 {{0.29}, {0.42}, {0.29}},{ {0.5}, {0.5}}, 
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{{1.0}}, {{0.5}, {0.5}}, {{1.0}}, {{1.0}} 

4 {{0.5},{0.5}},{{1.0}},{{1.0}} 

5 {1.0} 

Table 3. Each association rules has defined a 

support property obtained from the apriori 

algorithm. The probabilities are computed from 

the support properties. 

For our example, the first association rule from the 3-

pattern set is 3

2

29.0
2

2

1

3 RRR → .  

At this point the association rules and corresponding 

probabilities are known. These rules can be used to 

predict the object future location. If overall amount of 

the trajectory patterns grows, then the prediction 

process gradually becomes inefficient. This is why 

the principle of trajectory pattern tree [Jeu08] has to 

be adapted. Now, the main ideas of the trajectory 

pattern tree have to be briefly pointed out. 

Trajectory pattern tree 
The trajectory pattern tree is a variant of signature 

tree [Mam03] which is dynamically balanced tree 

designed for signature bitmaps. 

The key difference between the signature tree and the 

trajectory pattern tree is how the construction 

algorithm of the trees encodes signatures. The 

trajectory pattern tree encodes a trajectory pattern 

into a pattern key. The pattern key is designed to 

efficiently process the prediction query using 

trajectory pattern tree. The pattern key consists of 

two parts. The first part is a premise key and the 

second part is a consequence key. The premise part 

of the pattern key covers current trajectory pattern of 

an actual object and the consequence part of the 

pattern key covers destination dense region. 

3.1.3 Premise key 
Each dense region n

jR  has its own dense region id 

which is defined by n. We encode each dense region 

id using a hash function 
1

2
−n
. The bit length of each 

premise key is equal to the number of dense regions. 

The premise key of a trajectory pattern includes 

several dense regions. We use a bitwise operation OR 

for all current visited dense regions. Every set bit in 

the premise key represents actual dense region. 

3.1.4 Consequence key 
The consequence key is constructed as follows. We 

collect all destinations dense regions from all 

association rules and assign them an identifier with 

the same hash function which was used for premise 

key. The length of the consequence key is equal to 

the number of destination dense regions. The premise 

and consequence keys can be generated from 

association rules from Table 2. If we join the premise 

and consequence keys together then we get a pattern 

key. 

3.1.5 Pattern key 
The pattern key represents a trajectory pattern, which 

is encoded using premise and consequence keys.  

Pattern Pattern key 

{1,2,3,4} 01000 00111 

{1,2,3,5} 10000 00111 

{1,3,4,5} 10000 01101 

{2,3,4,5} 10000 01110 

Table 4 Pattern keys created from 4-patterns 

association rules from Table 2. Numbers in 

column Pattern correspond to dense region 

identifiers. 

Similarly to the existing approach [Jeu08], we place 

the consequence key before the premise key. Some 

generated pattern keys are shown in Table 4. where 

the red part of the formula is consequence key and 

the green part is premise key. The premise key is 

constructed using bitwise operation OR for the first 

three items of each association rule. The last item in 

each association rule is destination dense region. 

According to [Jeu08] we define some operations over 

pattern keys, where pk is pattern key, ck is 

consequence key and rk is premise key: 

Union(pk1, pk2,..., pkn): the function return a new 

pattern key formed as pk1|pk2|...|pkn, where the 

operator | is bitwise OR. 

Size(pk): the function return the number of set bits in 

pk. 

Contain(pk1, pk2): the function return true when 

pk1&pk2 = pk2. 

Difference(pk1, pk2): the function return 

Size(pk1⊕ (pk1&pk2)). 

Intersect(pk1, pk2): let ck1(ck2) denote the 

consequence key and rk1(rk2) denote the premise key 

of pk1(pk2). If Size(ck1&ck2) > 0 and Size(rk1&rk2) > 

0 then return true else return false. 

3.1.6 Search in trajectory pattern tree 
We have to create a predictive key to search future 

locations of an object in trajectory pattern tree. The 

predictive pattern key has specific format in our case 

of virtual environment.  

The predictive key is composed from premise and 

consequence keys as well as the pattern key. The 

premise key is composed from recent movement of 

the object. Further the consequence key is composed 

from dense regions which might we visited in future. 

The distance of such regions from current object 

location is less or equal than prediction length. 
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Definition 7: The prediction length of a predictive 

key is number of dense regions between current 

object location and future object location. 

Let us consider an example. The currently visited 

dense regions are identified by sequence 1

3R
2

2R . The 

prediction length is e.g. two. Now we construct a 

prediction key for this example. We have two current 

dense regions 1

3R
2

2R  and we have to predict two dense 

regions ahead. We can use pattern keys from Table 4. 

The bitwise operation OR is applied onto result of 

functions 
0
2  and 

1
2  for dense regions id 1

3R  and 
2

2R . 

The result of the operation OR is premise key 00011.  

The consequence key can be computed from the 

pattern key Table 4. First of all we select the pattern 

keys starting with sequence of dense regions 1

3R
2

2R . 

This fits in with two first pattern keys from the Table 

4. Second we perform OR between consequence keys 

from the first two pattern keys from Table 4. As a 

result we get the consequence key 11000. If we put 

the consequence and premise key together then the 

prediction key is 1100000011.  

At this point the prediction key can be selected as an 

input of the trajectory pattern tree. The trajectory 

pattern tree returns all the trajectories (sequences of 

dense regions) satisfying a condition Intersect(pk, q), 

where pk is the trajectory pattern from a node of the 

tree and q is the input predictive key. The depth first 

search method is used to find all the intersecting 

trajectory patterns. We have to select one trajectory 

pattern with the highest confidence from returned set 

of candidates. 

3.1.7 Premise similarity 
The trajectory pattern search process gives us number 

of trajectory patterns. We have to select a trajectory 

pattern with highest confidence. A method for 

measure premise similarity is introduced now. 

Let us consider the result from trajectory pattern tree 

is trajectory patterns described by dense regions {1, 

2, 3, 4} and {1, 2, 3, 5}. The corresponding trajectory 

patterns are 0100000111 and 1000000111 (values 

from Table 4.) and the prediction key is 1100000011 

(from previous example). The current object position 

is 2

2R . The more set bits close to the current object 

position exist, the more important the dense region is. 

A weight function assigns a weight to each set bit in 

the premise key based on its position in the premise 

key. For example, the weighted function can be linear 

as follows: 

∑
=

=
)(

1

rkSize

j

i

j

i
ω , 

where rk is the premise key of trajectory pattern. The 

linear function result is (1/6, 1/3, 1/2, 0, 0) for both 

trajectory patterns and (1/3, 2/3, 0, 0, 0) for the 

prediction key. We compare the premise key rk of the 

trajectory pattern pk with the premise key rkq of the 

prediction key q. The premise similarity is computed 

as follows: 

∑
=

=
)&(

1

rkqrkSize

i

irS ω   )10( ≤≤ rS  

The sum is performed over all set bits in premise key 

rk which is also set in premise key rkq. For our 

example the premise similarity between rk and rkq 

equals 
rS = 1/6 + 1/3 = 1/2. 

The earlier work [Jeu08] defines two algorithms to 

search the most probable regions. The first one is 

forward query processing algorithm which is used for 

near location prediction. We have to take into 

account the confidence of the association rules. Thus 

we merge the premise similarity and the confidence 

together: 

Sp(pk, q) = Sr x c (0 <=  Sr <= 1), 

where pk is trajectory pattern key discovered by the 

apriori algorithm, q is prediction key and c is 

confidence for the trajectory pattern key. This 

equation can be applied to all the candidates from the 

trajectory pattern search result set. The candidate 

with the highest Sp will be selected. For our example 

the Sp for both trajectory patterns key is as follows: 

Sp(00111, 00011) = 1/2 x 0.5 = 1/4 

The second algorithm to search most probable 

location is backward query processing. This 

algorithm is used to process distant time queries. The 

algorithm is different from the forward query 

processing, because the recent movements aren’t as 

important as in the short time prediction. This 

algorithm operates only with intersection between 

two premise keys and no weights are used. For the 

consequence key the algorithm works with time 

relaxation length. In our case this parameter stands 

for number of dense regions close to the prediction 

length. 

4. USER PROFILES AND 

TRAJECTORY PATTERNS 
We propose a concept of user profile to optimize the 

process of finding trajectory patterns in large virtual 

environment in order to improve the efficiency of the 

above presented trajectory pattern concept. 

Definition 8: The user profile is a data structure 

containing information about each unique user. The 

content of the user profile is highly application-

dependent. Every user profile contains unique user 
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ID, trajectory pattern tree and application dependent 

information. 

The information from user profile can be used to 

perform accurately prediction in a shorter time with 

significant less memory consumption. All movement 

history represented by trajectory patterns can be 

categorized into several groups (e.g. student or 

teacher groups etc.). 

In order to achieve the minimal memory consumption 

of the prediction system, we can create and store one 

single trajectory pattern tree for each single group. 

The prediction might be more accurate because the 

probabilities of the association rules are not affected 

by other users with significantly different interests. 

Let us consider an example of two groups with 

different count of trajectories. The first group of users 

has significantly more number of trajectory patterns 

than the second group. The prediction categorized 

into second groups is considerably affected by 

trajectory patterns from the first group without giving 

any reason. 

Further we propose a new approach to solve the case 

when no pattern is found. If we didn’t found any 

trajectory pattern for object categorized into some of 

defined groups, we join two similar groups together. 

Then we perform the search query again. If there are 

no groups which can be merged together, the 

algorithm uses a recursive motion function to predict 

the next object location. 

5. RESULTS 
No study known to the authors investigates user 

motion prediction in large distributed virtual 

environment. Some papers describe process of 

preloading data to cache memory. This process can 

accelerate rendering. The earlier work [Chm98] 

proposes hot regions which affect motion vector of 

given object. Further work [Var02] uses two view 

frustums to preload data to cache memory. No work 

solves the case when the prediction of distant location 

is needed for optimization the download process. 

The prediction can optimize the amount of 

downloaded data and speed up the process of setting 

up appropriate level of detail for given object.  

For testing purposes we have a terrain scene with 

relatively small number of cells and we use a 

synthetic pattern generator to generate dense regions. 

The prediction mechanism is used to download 

textures from network server. Each texture is 

represented by several files with different resolution. 

These resolution files are used for texture level of 

detail purposes. 

The two different approaches to download textures 

from network server were compared. The first 

 

Figure 3 Virtual environment with 16x33 cells (3D 

triangle model represents large part of 

Switzerland). 

method download textures included in view frustum 

of a given object. Level of detail metric for this 

approach is defined as distance between object and 

each cell of the grid. If all textures from current view 

frustum are downloaded then the system cannot 

exactly decides which texture at which level of detail 

should be downloaded further. 

In such case the prediction method can be utilized 

successfully. We have examined that the prediction 

accuracy for our synthetic set of trajectory patterns 

depends on the parameters of the DBSCAN algorithm 

Eps and minPts. We use Eps=4 and minPts=1.  The 

number of generated trajectory patterns by our 

synthetic generator is 256 and the number of dense 

regions discovered by our DBSCAN algorithm is 

147. We limit the size of each dense region to five 

cells because of scaling up the prediction process. 

Table 5. show comparison of downloaded textures at 

different level of detail between the pattern and 

between the view frustum prediction models. 

The number of downloaded textures depends on the 

object’s behavior in the virtual environment. If the 

user goes faster then the prediction is more useful for 

lower resolution. It is because the higher resolutions 

won’t be downloaded at time because the scene 

changes significantly (se Figure 4.). 

 Number of downloaded textures 

Texture 

resolution 
256 512 1024 2048 4096 

with 

prediction 
276 79 40 19 9 

view 

frustum 
394 147 63 29 17 

Table 5. Table show number of downloaded 

textures during the virtual scene walkthrough. 

If the user often stops, then the prediction is useful 

for higher resolution. Let us consider an example. 

The user stays on the same place for a while and he 

gets the full resolution of the visible part of scene. 

The download process can continue to the nearest not 

yet available predicted textures. 

WSCG 2009 Full papers proceedings 79 ISBN 978-80-86943-93-0



0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Texture level of detail

N
u
m
b
e
r 
o
f 
d
o
w
n
lo
a
d
e
d
 t
e
x
tu
re
s

Prediction

View  frustum

 

Figure 4 Graph representing the fast walk 

through the virtual environment. The prediction is 

most useful for lower resolutions. 

6. CONCLUSION 
We adapt method for user motion prediction in large 

virtual environments. We demonstrate that the 

prediction is meaningful and can increase efficiency 

of texture selection to download. This is the very 

contribution of this paper as well as this paper make 

an attempt to use prediction in 3D virtual 

environment. The system, however, can still be 

improved. The further work will be concentrated to 

improve the process of mining association rules and 

to examine other method of motion prediction and 

their adaption to network virtual environments. 

Furthermore we have to propose an algorithm closely 

connecting motion function principle with trajectory 

pattern selection. Further work will be focused on 

out-of-core rendering algorithms. 
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