

User Motion Prediction in Large Virtual

Environments

Jaroslav Přibyl

Department of Computer Graphics, FIT
Brno University of Technology

Božetěchova 2
 612 66, Brno, Czech Republic

pribyl@fit.vutbr.cz

 Pavel Zemčík

Department of Computer Graphics, FIT
Brno University of Technology

Božetěchova 2
612 66, Brno, Czech Republic

zemcik@fit.vutbr.cz

ABSTRACT
Motion prediction of various objects is important for work of many people. We have to distinguish between near

and distant time prediction queries. The trajectory of an object represented by mathematical functions can be

used for near time prediction. These formulas are often called motion functions and they use recent movements to

predict future locations of the objects. It is impossible to use simple mathematical formulas to evaluate distant

time queries, because the movement trajectory between current and distant future time can alter widely.

Trajectory pattern of an object is suitable prediction method to take into account for both near and distant time

queries. Consequently, data mining methods can mine trajectory patterns from historic movements and these

patterns can be used to predict the future objects movement. The best contemporary methods exploit combination

of trajectory pattern method and motion function. This means that in case no trajectory pattern is found, the

motion function is used to determine object near location. Using the trajectory pattern prediction principle a new

approach to optimize communication between client and server in large virtual environments is introduced. Both

short time and long time prediction queries are used to minimize the overall amount of downloaded data from

network server and to obtain the probably requested parts of the scene in advance.

Keywords
Motion prediction, large virtual environment, user profile, trajectory pattern, movement history

1. INTRODUCTION
User (or object) motion prediction in large virtual

environments will be described in this paper. The

large virtual environment can be a terrain model or a

model of a building. Whole scene is stored in a

network database. The client application transmits to

the server information about recent movements of

object and its current position. The server predicts the

future object position and sends necessary data (e.g.

geometry, textures and other application dependent

data) to the client application. The near time query

prediction is sufficient (e.g. rendering optimization,

data preprocessing, etc.) in many cases, but a need of

long time prediction (e.g. mobile networks, deliver

network services, traffic information etc.) is

sometimes necessary to uncover the future location of

the object.

Current location and current movement of the object

are needed to perform a short time prediction. Several

techniques were invented to predict near time

location of the object. These methods work fine for

near time prediction queries but fail when they’ll be

used to predict location far away from the current

position of the object.

Motion functions can be used to predict the near

locations. These functions describe motion of an

object by simple mathematical formulas. They can

predict trajectory of the object reasonably well for

near time locations. The motion function cannot be

used to predict locations far away from the current

object position because the motion of object might be

affected by various circumstances (terrain obstacles,

road networks, regular traffic jams, etc.). Let us

consider an example (see Figure 1.). Some linear

motion functions [Tao03a, Pat04, Jen04, Sal00 and

Tao03b] can be used to predict the future object

location during several consequent days. The

prediction may fail e.g. on Friday in our example. To

avoid this, nonlinear functions can be used [Tao04a].

They can capture the regular path of the object on

Friday, but they may fail too (e.g. predict the “wrong

place” in our example). Instead of the motion

function, the movement pattern principle can be used

to predict future location of the object accurately.

WSCG 2009 Full papers proceedings 73 ISBN 978-80-86943-93-0

Figure 1. User go from home to work each week.

Trajectory pattern can be used to examine that on

Friday the user goes to work with some probability

and during other week days with another probability

[Yav05, Yan06].

The main interest of the above mentioned technical

articles is to discover trajectory patterns. They

assume that the prediction can be easily done through

the discovered trajectory patterns. But they don’t take

into account that the prediction query result can

consist of many of patterns. The total amount of

discovered patterns grows with every new object in

the virtual environment. Therefore we need a method

to organize the large amount of trajectory patterns

and an efficient data structure to answer the

predictive queries fast and accurately. Only several

technical articles address the problem of large

amount of discovered patterns [Jeu08]. Some of them

address the problem partially [Mam04] and they

develop pattern indexing techniques. Very few works

[Jeu08] solve the case when no pattern is found. They

use trajectory patterns to answer the predictive query

and in case when no pattern is found call motion

function to predict future location of the object.

In this paper we present a new approach to predict

object motion in large virtual environment. To the

best of our knowledge no one has solved the object

motion prediction in context of 3D virtual

environment. We use the prediction for optimize the

rendering process and the data flow between client

application and network server.

2. RELATED WORK
In this section we introduce state of the art of object

motion prediction methods. Generally the object

motion prediction methods can be categorized into

two main classes.

Motion function based prediction
Motion functions result from vector representation of

object motion, position and direction. Motion

functions can be categorized into linear and nonlinear

types. Linear models [Sal00, Tao03b] assume only

linear movement of an object. Moreover, nonlinear

models assume nonlinear movement [Tao03c].

At time t0, the object location equals l0 and velocity

equals v0. Object future location can be predicted for

the linear model at time tf through this following

equation:

)()(000 ttvltl ff −×+= ,

where l and v are 3-dimensional vectors.

The nonlinear prediction methods are generally more

accurate in comparison with the linear methods.

Today most accurate prediction mathematical method

is recursive motion function (RMF) [Tao03c]. Object

location l at time t is defined as follows:

∑ = −⋅=
f

t itit lcl
1

,

where ci is a constant matrix and f is the minimum

number of the most recent timestamps which are

needed to compute the elements of all ci. The RMF

method can be used only for near future prediction.

The prediction accuracy can drop severely if we

would like to know where the object is located in

some distant time. Generally the motion functions

predict wrong locations when movement of the object

contains sudden changes in its direction or velocities.

It is due to the motion function is strongly dependent

on current previous locations.

Pattern based prediction
A lot of methods solve a pattern based prediction

problem. One of them is neural network pattern based

prediction. The classical back propagation network

joined with a self organizing feature map (SOFM)

can be used.

Further useful method is discrete Markov model

[Rab89]. Some works derive Markov transition

probabilities from one or multiple cells to another.

Association rules can be used to predict future

locations of an object as well. Work [Yav05,

Tao04b] address spatio-temporal association rules of

the form),(),,(21 trctr ji → , with confidence c, where

ri and rj are regions at time t1 a t2 respectively (t2 >

t1). In other words an object in location ri at time t1 is

likely appear in location rj at time t2 with probability

c. Study [Yan06] mine sequential patterns from

object trajectories.

All above mentioned techniques can discover large

amounts of patterns and amounts of patterns

discovered as a result of a predictive query can be

large as well. Only [Jeu08] method organizes the

discovered patterns and can quickly answer to the

predictive query.

No previous article solves the case if large amount of

objects in virtual environment store and use their own

motion history. Otherwise no study describes an

opportunity to use the pattern based prediction

techniques in computer graphics especially in

distributed 3D virtual environment. The main

WSCG 2009 Full papers proceedings 74 ISBN 978-80-86943-93-0

purpose of this paper is to optimize the rendering

process and communication between client and

network server.

3. PREDICTION MODEL FOR LARGE

VIRTUAL ENVIRONMENT
The proposed approach is intended for large

distributed virtual environments. The prediction

system is formed as a part of a server including

representation of all models. The client applications

request data from the server and render the scene.

The virtual environment is divided into a regular grid.

This approach was chosen for several reasons. The

first reason is that the virtual environment consists of

large amount of textures. In order to save free

memory, the quad tree data structure was employed

to handle texture level of detail. Furthermore fast

rendering, distributed character of the scene and

prediction related to distributed parts of the virtual

environment were good reasons for involving the

regular grid. Each cell of the grid represent one

distributed piece of the scene and has to be managed

in the network server. There can be a large amount of

cells to be managed on the server. Each cell of the

grid can be a possible object location on his path

through the virtual environment. Therefore the

prediction granularity should be one cell.

The trajectory pattern of an object is represented by

sequence {(l0, l1, ..., li, ..., ln-1)}, where li denotes object

location l0 at time i. Location coordinates are [x, y, ...,

d]
dR∈ , where d is used dimension. Object

trajectory pattern can be discovered from its

historical movement [Mam04]. A given period T is

defined by a number of timestamps such that a

trajectory pattern may reappear. An object trajectory

can be decomposed into







T

n sub-trajectories. The

period T is data dependent. To identify all locations

with the same time offset the term group is used. In

other words each group Gt represents all locations

visited by object at time offset t. Consequently, the

groups are clustered to dense clusters Rt. We call Rt a

frequent region at time t. The
j

tR symbol is used to

distinguish between frequent regions with the same

time offset. It represents j-th frequent region at time

offset t.

These definitions can be adapted to our model of

virtual environment. We need to predict the future

cells which will be necessary to be downloaded from

network server in near and far future. For our virtual

environment, the time period T is a sequence of

visited cells during one client session. A group G

corresponds to frequent region R. At this point the

dense cell and the dense region terms have to be

defined.

Definition 1: Dense cell c is a cell with more than

one pass through of an object along the movement

history of the object in virtual environment.

Definition 2: The size of a dense cell Size(c) is

defined by amount of visitors of the cell c along the

movement history of an object in virtual environment.

Definition 3: Dense region is a group of adjacent

dense cells with the same dense cell size. All dense

cells associated with dense region m

jR have the same

dense cell size j. The variable m is dense cell

identifier and >∈< nm ,1 , where n is number of

discovered dense regions.

Let us consider an example. Each red and green cell

is a dense cell in Figure 2. The green groups are

dense regions at level 2 and the red groups of cells

are dense regions at level 3. Overall we have five

dense regions counted from left to right and from

bottom to top in this example. The bottom-leftmost

red region is dense region 1

3R and the top-rightmost

dense region is marked as
5

2R .

Figure 2. Virtual environment is divided into

regular grid. The colored groups of cells are dense

regions.

A density based clustering algorithm DBSCAN

[Est96] was adapted to obtain dense regions. We

modify the algorithm to work as follows. For every

dense cell c from dense region R a dense cell q from

dense region R exists, so that dense cell c is inside the

Eps-neighborhood of dense cell q and NEps(q)

contains at least minPts dense cells.

Definition 4: The Eps-neighborhood of a dense cell c

marked as NEps(c) is defined by:

)}()(|{)(qsizecsizeDqN cEps =∈= ,

where D is input set of dense cells.

We have introduced a method to obtain dense regions

R from a sequence of object locations. Dense regions

allow us to describe object motion by trajectory

pattern and to predict next movement of the object.

WSCG 2009 Full papers proceedings 75 ISBN 978-80-86943-93-0

Trajectory pattern concept
The concept of a trajectory pattern was defined in

earlier work [Jeu08]. Now our modification of the

trajectory pattern concept is proposed.

Definition 5: The trajectory pattern P is an

association rule of form n

j

confm

jjj RRRR →∧∧∧ ...21 . The

form m

jjj RRR ∧∧∧ ...21 is sequence of dense regions

visited by object. We call this sequence a premise.

The form m

jR is a dense region called a consequence

and this dense region might be visited by the object

with probability conf. The term conf stands for

confidence.

Thanks to current visited dense regions we are able to

predict the object future location (dense region). The

prediction is done by a prediction query. The

prediction query is defined by number of dense

regions which will be predicted. Two types of

prediction queries are defined.

Definition 6: The distant time prediction query is a

spatio-temporal query satisfying the condition that the

number of predicted dense regions is greater than d,

where d is user defined threshold.

The boundary between distant time query and non-

distant time query is strictly application-dependent.

Trajectory pattern retrieval
The trajectory pattern discovery process can be

divided into two parts. First of all we have to detect

the dense regions. This task can be completed by

modified DBSCAN algorithm which was described

previously. The second task in trajectory pattern

discovery process is to extract trajectory patterns (it

corresponds to association rules) from input dense

regions. The apriori algorithm [Agr94] can be used to

extract association rules from user movement history

described by sequences of dense regions.

Apriori algorithm
We briefly describe the apriori algorithm used to

obtain the association rules from dense regions.

Inputs of the apriori algorithm are sequences of dense

regions. This set of sequences represents movement

history of the object. Outputs of the apriori algorithm

are sets of association rules with various length and

probabilities.

3.1.1 Obtain frequent 1-patterns
We can obtain frequent 1-patterns from dense regions

discovered by DBSCAN algorithm. Each frequent 1-

pattern corresponds to one dense region Rj.

3.1.2 Obtain frequent k-patterns
The time period T is a sequence of visited dense cells

during one client session.

Trajectory ID Sequence of visited cells

TID1 1, 2, 10, 11, 19, 27, 28, 36, 44,

45, 53, 61, 62

TID2 1, 2, 3, 11, 12, 20, 28, 36, 44,

52, 53, 61, 62

TID3 1, 2, 3, 4, 12, 13, 21, 22, 30,

38, 46, 53, 54, 58, 59, 60, 61

Table 1. Database of visited grid cells.

The TIDx identifiers represent sequence of visited

dense cells during one client session. The colored

blocks represent the dense regions. The numbers in

the table correspond to dense region identifiers.

Candidate item set can be generated from input dense

regions. Please follow the work [Agr94] because of

candidate item set definition. For each candidate item

set the trajectory ID has to be kept together with the

candidates. This defines the TID modification of the

apriori algorithm.

The apriori algorithm has also three input parameters.

The first parameter is set of frequent 1-patterns,

second parameter is the trajectory database

represented by sequences of dense regions and the

last parameter is candidate item set. The key idea of

the apriori algorithm it to generate candidate item set

of length k from candidate item sets of length k-1.

Outputs of the apriori algorithm are sets of frequent

k-patterns with property parameter called a support.

We can compute probability for each association rule

using the support property. The Table 2. shows

discovered k-patterns for data from Table 1.

k Discovered sets of k-patterns

1 {1}, {2}, {3}, {4}, {5}

2 {{1,2}, {1,3}, {1,4}, {1,5}}, {{2,3}, {2,4},

{2,5}}, {{3,4}, {3,5}}, {{4,5}}

3 {{1,2,3}, {1,2,4}, {1,2,5}}, {{1,3,4},

{1,3,5}},{{1,4,5}}, {{2,3,4}, {2,3,5}},

{{2,4,5}}, {{3,4,5}}

4 {{1,2,3,4},{1,2,3,5}}, {{1,3,4,5}},{{2,3,4,5}}

5 {{1,2,3,4,5}}

Table 2. The discovered sets of k-patterns. Each

subset corresponds to one association rule.

For example, the first association rule from 3-pattern

set is 3

2

2

2

1

3 RRR → . The corresponding support for

each association rule is defined in the next table.

k Probabilities discovered for association rules

1 {0.23}, {0.23}, {0.15}, {0.23}, {0.15}

2 {{0.30}, {0.20}, {0.30}, {0.20}}, {{0.29},

{0.42}, {0.29}}, {{0.5}, {0.5}}, {{1.0}}

3 {{0.29}, {0.42}, {0.29}},{ {0.5}, {0.5}},

WSCG 2009 Full papers proceedings 76 ISBN 978-80-86943-93-0

{{1.0}}, {{0.5}, {0.5}}, {{1.0}}, {{1.0}}

4 {{0.5},{0.5}},{{1.0}},{{1.0}}

5 {1.0}

Table 3. Each association rules has defined a

support property obtained from the apriori

algorithm. The probabilities are computed from

the support properties.

For our example, the first association rule from the 3-

pattern set is 3

2

29.0
2

2

1

3 RRR → .

At this point the association rules and corresponding

probabilities are known. These rules can be used to

predict the object future location. If overall amount of

the trajectory patterns grows, then the prediction

process gradually becomes inefficient. This is why

the principle of trajectory pattern tree [Jeu08] has to

be adapted. Now, the main ideas of the trajectory

pattern tree have to be briefly pointed out.

Trajectory pattern tree
The trajectory pattern tree is a variant of signature

tree [Mam03] which is dynamically balanced tree

designed for signature bitmaps.

The key difference between the signature tree and the

trajectory pattern tree is how the construction

algorithm of the trees encodes signatures. The

trajectory pattern tree encodes a trajectory pattern

into a pattern key. The pattern key is designed to

efficiently process the prediction query using

trajectory pattern tree. The pattern key consists of

two parts. The first part is a premise key and the

second part is a consequence key. The premise part

of the pattern key covers current trajectory pattern of

an actual object and the consequence part of the

pattern key covers destination dense region.

3.1.3 Premise key
Each dense region n

jR has its own dense region id

which is defined by n. We encode each dense region

id using a hash function
1

2
−n
. The bit length of each

premise key is equal to the number of dense regions.

The premise key of a trajectory pattern includes

several dense regions. We use a bitwise operation OR

for all current visited dense regions. Every set bit in

the premise key represents actual dense region.

3.1.4 Consequence key
The consequence key is constructed as follows. We

collect all destinations dense regions from all

association rules and assign them an identifier with

the same hash function which was used for premise

key. The length of the consequence key is equal to

the number of destination dense regions. The premise

and consequence keys can be generated from

association rules from Table 2. If we join the premise

and consequence keys together then we get a pattern

key.

3.1.5 Pattern key
The pattern key represents a trajectory pattern, which

is encoded using premise and consequence keys.

Pattern Pattern key

{1,2,3,4} 01000 00111

{1,2,3,5} 10000 00111

{1,3,4,5} 10000 01101

{2,3,4,5} 10000 01110

Table 4 Pattern keys created from 4-patterns

association rules from Table 2. Numbers in

column Pattern correspond to dense region

identifiers.

Similarly to the existing approach [Jeu08], we place

the consequence key before the premise key. Some

generated pattern keys are shown in Table 4. where

the red part of the formula is consequence key and

the green part is premise key. The premise key is

constructed using bitwise operation OR for the first

three items of each association rule. The last item in

each association rule is destination dense region.

According to [Jeu08] we define some operations over

pattern keys, where pk is pattern key, ck is

consequence key and rk is premise key:

Union(pk1, pk2,..., pkn): the function return a new

pattern key formed as pk1|pk2|...|pkn, where the

operator | is bitwise OR.

Size(pk): the function return the number of set bits in

pk.

Contain(pk1, pk2): the function return true when

pk1&pk2 = pk2.

Difference(pk1, pk2): the function return

Size(pk1⊕ (pk1&pk2)).

Intersect(pk1, pk2): let ck1(ck2) denote the

consequence key and rk1(rk2) denote the premise key

of pk1(pk2). If Size(ck1&ck2) > 0 and Size(rk1&rk2) >

0 then return true else return false.

3.1.6 Search in trajectory pattern tree
We have to create a predictive key to search future

locations of an object in trajectory pattern tree. The

predictive pattern key has specific format in our case

of virtual environment.

The predictive key is composed from premise and

consequence keys as well as the pattern key. The

premise key is composed from recent movement of

the object. Further the consequence key is composed

from dense regions which might we visited in future.

The distance of such regions from current object

location is less or equal than prediction length.

WSCG 2009 Full papers proceedings 77 ISBN 978-80-86943-93-0

Definition 7: The prediction length of a predictive

key is number of dense regions between current

object location and future object location.

Let us consider an example. The currently visited

dense regions are identified by sequence 1

3R
2

2R . The

prediction length is e.g. two. Now we construct a

prediction key for this example. We have two current

dense regions 1

3R
2

2R and we have to predict two dense

regions ahead. We can use pattern keys from Table 4.

The bitwise operation OR is applied onto result of

functions
0
2 and

1
2 for dense regions id 1

3R and
2

2R .

The result of the operation OR is premise key 00011.

The consequence key can be computed from the

pattern key Table 4. First of all we select the pattern

keys starting with sequence of dense regions 1

3R
2

2R .

This fits in with two first pattern keys from the Table

4. Second we perform OR between consequence keys

from the first two pattern keys from Table 4. As a

result we get the consequence key 11000. If we put

the consequence and premise key together then the

prediction key is 1100000011.

At this point the prediction key can be selected as an

input of the trajectory pattern tree. The trajectory

pattern tree returns all the trajectories (sequences of

dense regions) satisfying a condition Intersect(pk, q),

where pk is the trajectory pattern from a node of the

tree and q is the input predictive key. The depth first

search method is used to find all the intersecting

trajectory patterns. We have to select one trajectory

pattern with the highest confidence from returned set

of candidates.

3.1.7 Premise similarity
The trajectory pattern search process gives us number

of trajectory patterns. We have to select a trajectory

pattern with highest confidence. A method for

measure premise similarity is introduced now.

Let us consider the result from trajectory pattern tree

is trajectory patterns described by dense regions {1,

2, 3, 4} and {1, 2, 3, 5}. The corresponding trajectory

patterns are 0100000111 and 1000000111 (values

from Table 4.) and the prediction key is 1100000011

(from previous example). The current object position

is 2

2R . The more set bits close to the current object

position exist, the more important the dense region is.

A weight function assigns a weight to each set bit in

the premise key based on its position in the premise

key. For example, the weighted function can be linear

as follows:

∑
=

=
)(

1

rkSize

j

i

j

i
ω ,

where rk is the premise key of trajectory pattern. The

linear function result is (1/6, 1/3, 1/2, 0, 0) for both

trajectory patterns and (1/3, 2/3, 0, 0, 0) for the

prediction key. We compare the premise key rk of the

trajectory pattern pk with the premise key rkq of the

prediction key q. The premise similarity is computed

as follows:

∑
=

=
)&(

1

rkqrkSize

i

irS ω)10(≤≤ rS

The sum is performed over all set bits in premise key

rk which is also set in premise key rkq. For our

example the premise similarity between rk and rkq

equals
rS = 1/6 + 1/3 = 1/2.

The earlier work [Jeu08] defines two algorithms to

search the most probable regions. The first one is

forward query processing algorithm which is used for

near location prediction. We have to take into

account the confidence of the association rules. Thus

we merge the premise similarity and the confidence

together:

Sp(pk, q) = Sr x c (0 <= Sr <= 1),

where pk is trajectory pattern key discovered by the

apriori algorithm, q is prediction key and c is

confidence for the trajectory pattern key. This

equation can be applied to all the candidates from the

trajectory pattern search result set. The candidate

with the highest Sp will be selected. For our example

the Sp for both trajectory patterns key is as follows:

Sp(00111, 00011) = 1/2 x 0.5 = 1/4

The second algorithm to search most probable

location is backward query processing. This

algorithm is used to process distant time queries. The

algorithm is different from the forward query

processing, because the recent movements aren’t as

important as in the short time prediction. This

algorithm operates only with intersection between

two premise keys and no weights are used. For the

consequence key the algorithm works with time

relaxation length. In our case this parameter stands

for number of dense regions close to the prediction

length.

4. USER PROFILES AND

TRAJECTORY PATTERNS
We propose a concept of user profile to optimize the

process of finding trajectory patterns in large virtual

environment in order to improve the efficiency of the

above presented trajectory pattern concept.

Definition 8: The user profile is a data structure

containing information about each unique user. The

content of the user profile is highly application-

dependent. Every user profile contains unique user

WSCG 2009 Full papers proceedings 78 ISBN 978-80-86943-93-0

ID, trajectory pattern tree and application dependent

information.

The information from user profile can be used to

perform accurately prediction in a shorter time with

significant less memory consumption. All movement

history represented by trajectory patterns can be

categorized into several groups (e.g. student or

teacher groups etc.).

In order to achieve the minimal memory consumption

of the prediction system, we can create and store one

single trajectory pattern tree for each single group.

The prediction might be more accurate because the

probabilities of the association rules are not affected

by other users with significantly different interests.

Let us consider an example of two groups with

different count of trajectories. The first group of users

has significantly more number of trajectory patterns

than the second group. The prediction categorized

into second groups is considerably affected by

trajectory patterns from the first group without giving

any reason.

Further we propose a new approach to solve the case

when no pattern is found. If we didn’t found any

trajectory pattern for object categorized into some of

defined groups, we join two similar groups together.

Then we perform the search query again. If there are

no groups which can be merged together, the

algorithm uses a recursive motion function to predict

the next object location.

5. RESULTS
No study known to the authors investigates user

motion prediction in large distributed virtual

environment. Some papers describe process of

preloading data to cache memory. This process can

accelerate rendering. The earlier work [Chm98]

proposes hot regions which affect motion vector of

given object. Further work [Var02] uses two view

frustums to preload data to cache memory. No work

solves the case when the prediction of distant location

is needed for optimization the download process.

The prediction can optimize the amount of

downloaded data and speed up the process of setting

up appropriate level of detail for given object.

For testing purposes we have a terrain scene with

relatively small number of cells and we use a

synthetic pattern generator to generate dense regions.

The prediction mechanism is used to download

textures from network server. Each texture is

represented by several files with different resolution.

These resolution files are used for texture level of

detail purposes.

The two different approaches to download textures

from network server were compared. The first

Figure 3 Virtual environment with 16x33 cells (3D

triangle model represents large part of

Switzerland).

method download textures included in view frustum

of a given object. Level of detail metric for this

approach is defined as distance between object and

each cell of the grid. If all textures from current view

frustum are downloaded then the system cannot

exactly decides which texture at which level of detail

should be downloaded further.

In such case the prediction method can be utilized

successfully. We have examined that the prediction

accuracy for our synthetic set of trajectory patterns

depends on the parameters of the DBSCAN algorithm

Eps and minPts. We use Eps=4 and minPts=1. The

number of generated trajectory patterns by our

synthetic generator is 256 and the number of dense

regions discovered by our DBSCAN algorithm is

147. We limit the size of each dense region to five

cells because of scaling up the prediction process.

Table 5. show comparison of downloaded textures at

different level of detail between the pattern and

between the view frustum prediction models.

The number of downloaded textures depends on the

object’s behavior in the virtual environment. If the

user goes faster then the prediction is more useful for

lower resolution. It is because the higher resolutions

won’t be downloaded at time because the scene

changes significantly (se Figure 4.).

 Number of downloaded textures

Texture

resolution
256 512 1024 2048 4096

with

prediction
276 79 40 19 9

view

frustum
394 147 63 29 17

Table 5. Table show number of downloaded

textures during the virtual scene walkthrough.

If the user often stops, then the prediction is useful

for higher resolution. Let us consider an example.

The user stays on the same place for a while and he

gets the full resolution of the visible part of scene.

The download process can continue to the nearest not

yet available predicted textures.

WSCG 2009 Full papers proceedings 79 ISBN 978-80-86943-93-0

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5

Texture level of detail

N
u
m
b
e
r
o
f
d
o
w
n
lo
a
d
e
d
 t
e
x
tu
re
s

Prediction

View frustum

Figure 4 Graph representing the fast walk

through the virtual environment. The prediction is

most useful for lower resolutions.

6. CONCLUSION
We adapt method for user motion prediction in large

virtual environments. We demonstrate that the

prediction is meaningful and can increase efficiency

of texture selection to download. This is the very

contribution of this paper as well as this paper make

an attempt to use prediction in 3D virtual

environment. The system, however, can still be

improved. The further work will be concentrated to

improve the process of mining association rules and

to examine other method of motion prediction and

their adaption to network virtual environments.

Furthermore we have to propose an algorithm closely

connecting motion function principle with trajectory

pattern selection. Further work will be focused on

out-of-core rendering algorithms.

7. ACKNOWLEDGEMENTS
This work has is supported by the Ministry of

Education, Youth and Sports of the Czech Republic

under the research program LC-06008 (Center for

Computer Graphics), and by the research project

Security-Oriented Research in Information

Technology, MSM0021630528.

Special thanks also go to CadWork Informatik AG

and CadWork development team in Brno for

professional support of this project.

8. REFERENCES
[Agr94] Agrawal, R. and Srikant, R. Fast algorithms

for imnining association rules, in VLDB, pp. 487-

499, 1994.

[Est96] Ester, M., Kriegel, H.-P., Sander, J. and Xu,

X. A density-based algorithm for discovering clusters

in large spatial databases with noise, in SIGKDD, pp.

226-231, 1996.

[Chm98] Chim, J., Green, M., Lau, R. W. H. Leong,

H. and Si, A. On caching and prefetching of virtual

objects in distributed virtual environments, ACM

Multimedia, pp.171–180, 1998

 [Jen04] Jensen, C. S., Lin, D. and Ooi, B. C. Query

and update efficient b+-tree based indexing of

moving objects. in VLDB, pp. 768-779, 2004.

[Jeu08] Jeung, H., Liu, Q., Shen, H. T., Zhou, X. A

hybrid prediction model for moving objects, in ICDE,

pp. 236-245, 2008.

[Mam03] Mamoulis, N., Cheung, D. W and Lian, W.

Similarity search in sets and categorical data using

the signature tree, in ICDE, pp. 75-86, 2003.

[Mam04] Mamoulis, N., Cao, H., Kollios, G.,

Hadjieleftheriou, M., Tao, Y. and Cheung, D. W.

Mining, indexing, and querying historical

spatiotemporal data, in SIGKDD, pp. 236-245, 2004.

[Pat04] Patel, J. M., Chen Y, and Chakka, V. P.

Stripes: an efficient index for predicted trajectories,

in SIGMOD, pp. 635-646, 2004.

[Rab89] Rabiner, L. A tutorial on hidden Markov

models and selected applications in speech

recognition, Proceedings of the IEEE, vol. 77, pp.

257-286, 1989.

[Sal00] Saltenis, S., Jensen, C. S., Leutenegger, S. T.

and Lopez, M. A. Indexing the positions of

continuously moving objects, in SIGMOD, pp. 331-

342, 2000.

[Tao03a] Tao Y. and Papadias, D. Spatial queries in

dynamic environments, TODS, vol. 28, no. 2, pp.

101-139, 2003.

[Tao03b] Tao, Y., Papadias, D. and Sun, J. The

TPR*-Tree: An optimized spatiotemporal access

method for predictive queries. in VLDB, pp. 790-

801, 2003.

[Tao04a] Tao, Y., Faloutsos, C., Papadias, D. and

Liu, B. Prediction and indexing of moving objects

with unknown motion patterns, in SIGMOD, pp. 611-

622, 2004.

[Tao04b] Tao, Y, Kollios, G., Considine, J., Li, F.

and Papadias, D. Spatio-temporal aggregation using

sketches, in ICDE, p. 214, 2004.

[Var02] Varadhan, G. and Manocha, D. Out-of-core

rendering of massive geometric environments,

IEEE Computer Society, pp. 69-76, 2002.

[Yan06] Yang, J. and Hu, M. Trajpattern: Mining

sequential patterns from imprecise trajectories of

mobile objects. in EDBT, pp. 664-681, 2006.

[Yav05] Yavas, G., Katsaros, D., Ulusoy, 0. and

Manolopoulos, Y. A data mining approach for

location prediction in mobile environments, Data &

Knowledge Engineering, vol. 54, no. 2, pp. 121-146,

2005.

WSCG 2009 Full papers proceedings 80 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	B43-full

