GPU-Based Adaptive-Subdivision for View-Dependent

Rendering
Gilad Bauman Yotam Livny Jihad El-Sana
Ben-Gurion University Ben-Gurion University Ben-Gurion University
Beer-Sheva, Israel Beer-Sheva, Israel Beer-Sheva, Israel
baumang@cs.bgu.ac.il livnyy@cs.bgu.ac.il el-sana@cs.bgu.ac.il
Abstract

In this paper, we present a novel view-dependent rendering agipfor large polygonal models. In an offline stage, the input
model is simplified to reach a light coarse representation. Each simplifeedi$ then assigned a displacement map, which
resembles the geometry of the corresponding patch on the input madeintine, the coarse representation is transmitted to
the graphics hardware at each frame. Within the graphics hardwar§RkJ subdivides each face with respect to the view-
parameters, and adds fine details using the assigned displacemerinitialresults show that our implementation achieves
quality images at high frame rates.

Keywords: GPU Processing, Subdivision Surfaces, Level-of-detail.

1 INTRODUCTION such a scheme, the CPU extracts representations for

Interactive rendering of large polygonal models is vitalarge models_by switching between Ia_rge amounts of
geometry, using a small set of operations. However,

for various visualization and virtual environments ap-th ration int tch ften limits local adaptivit
plications. The drive for fine details and the availability € separationinto patches otte s local adaptivity,
nd therefore, cluster-based approaches may require

of technologies that simplify the design and acquisitior . : 7
9 plify g d ore triangles than earlier approaches to maintain the

of graphics models have lead to the generation of lar . lity, C ¢ cluster-based h
models that exceed the interactive rendering capabi pame image guality. turrent cluster-based approaches

ties of contemporary graphics hardware. In addition.>¢ .hierarchies of simplified patches, .WhiCh prevent
some of these applications apply complex animatioﬁ'ﬁ'uen_t runtime deformations or ammatl.ons.

effects to these models. These further reduce the rep-" this paper, we .present a novel view-dependent
dering frame rates. Level-of-detail rendering schem gvel-of-detail rendering algorithm that does not use
were suggested to bridge the gap between models’ cofgometric hl_erarchles and enable_zs runtime deforma-
plexities and rendering capabilities. tion. In addition, the memory requirements of the sug-

View-dependent rendering approaches enable t sted algorithm are low w_ith respect to pr.evious view-
coexistence of different resolutions over the variou ependent rgndgnng glgorlthms. n an offline stage, the
regions of a level-of-detail representation, based ot’i‘p“t model is simplified to reach a light coarse repre-

view-parameters. Early view-dependent renderingentatlon, which is used to guide the sampling of the

algorithms rely on the CPU to extract an appropriat riginal model. The sgmpling VaIL.JeS are stored in dis-
level-of-detail representation. However, the CPU j$lacement maps, which are assigned to the faces of

often incapable of extracting and transmitting the get_he coarse representation. At runtime, the coarse rep-

ometry of large datasets within the duration of a singléesin;at'on 'Svt\;fr’tlﬂ.s mt|rt]ted to thhe grr]apglcs ha:gwaerlepst
frame. In addition, these algorithms use hierarchies ch Trame. WIithin the graphics hardware, the &
geometry, which are constructed offline. As a resultf,’“j_apt'vely refines _each fa_ce with respect to its orien-
they cannot support runtime deformations or animatioﬁit'_On and the assigned dlspla_lcement map to generate
effects on the processed model, without additiondt view-dependent representation. Deforming or apply-

expensive update or reconstruction of the hierarchy¥ ammanon etff(t:,:cts t:)hla:rge 3|"3 modelst tl)nvolves Ie)t(-d
To accelerate the selection of level-of-detail repre ensivé computations that usually cannot be compiete

sentations, cluster-based view-dependent algorithrr\{gthIn the duration of a single frame. For that reason,

were introduced. They overcome CPU incapabilitie§UCh computations are usually applied to the skeleton

- ; the coarse representation of 3D models. In our ap-
by representing models using clusters or patches.
y rep g g P proach, the CPU can deform the geometry of the coarse

representation before transmitting it to the GPU. In

Permission to make digital or hard copies of all or part of thisgych a manner, our algorithm provides interactive view-
work for personal or classroom use is granted without feeigeal

that copies are not made or distributed for profit or commefciadependent rendering of animated large models.
advantage and that copies bear this notice and the fuliasitan the Our approach transfers most of the computationally

first page. To copy otherwise, or republish, to post on sergeto
redistribute to lists, requires prior specific permissiod/ana fee. Intensive operations into the GPU for Interactive view-
dependent rendering of large models while enabling

WSCG 2009 Full papers proceedings 203 ISBN 978-80-86943-93-0

(a) (b) (©)
Figure 1: Screenshots of the Asian Dragon model (a) the aemtesh, (b) the sampling error, and (c) the shaded
model

fine-grained changes on the generated representatioain visualization [2, 3, 19]. Terrain algorithms usually
The coarse representation partitions an input modekche the geometry within the video memory, and uti-
into disjoint patches in an error-guided manner. Thesé&e temporal coherence to improve performance and
patches are compactly encoded using displacememtduce CPU-GPU communication [1, 4]. In later al-
maps. Our approach manages to eliminate the negdrithms, the programmable GPU was used to refine
for geometric hierarchies, which are used to guideoarse terrain tessellations using a predetermined tem-
the selection of the level-of-detail representationglate of geometry [12,17] or to add fine details [8, 11].
in view-dependent rendering approaches. It also GPU-based algorithms for 3D models have lately
dramatically reduces the CPU processing load and theen presented. One of the starting points for GPU
CPU-GPU communication load by processing a coardeased displacement mapping is the work of [21].
representation within the CPU and refining it within theSeveral past algorithms cache the hierarchy within the
GPU. Eliminating the use of geometric hierarchies andideo memory and use the multi-pass procedures to
extracting the level-of-detail within the GPU enablesxtract a view-dependent representation [13]. Others
the CPU to dynamically modify the processed modeéxtract a coarse view-dependent representation of the

in real-time. model within the CPU and transmit it to the GPU for
refinement [16] or adaptively refine a mesh of a frame
2 RELATED WORK to generate the mesh of the next one, in an incremental

Traditional view-dependent schemes rely on hieraf@shion using the GPU [18].
chies that encode the geometry of the original mod
in multiple levels of detail. At runtime the CPU%L OUR APPROACH
traverses the hierarchy and extracts a level of detdih this section we describe a GPU-based algorithm for
representation based on view-parameters [7, 14, 20, 22]ew-dependent level-of-detail rendering that does not
To improve the selection of the level-of-detail rep-store multiresolution hierarchies of geometry. Instead,
resentations, cluster-based view-dependent algorithritselies on GPU capabilities to adaptively refine various
were introduced [9, 15]. In these approaches the CPtg¢gions of the model with respect to view-parameters.
extracts representations for large models by switchin@ur algorithm is divided into offline preprocessing and
between large amounts of geometry, using a small saintime rendering.
of operations. However, simplifying the patches inde- The preprocessing stage starts by creating a simpli-
pendently imposes severe difficulties in stitching adjafied representation of the input model, which will be
cent patches or clusters seamlessly. To overcome thessled thecontrol-meshand its faces will be denoted
difficulties, several approaches introduce dependencide control-faces The control-mesh is used to recover
among patches [6, 26] or introduce sliver/degeneratetie original input model at runtime. The faces of the
triangles [1, 25]. Transmitting the extracted level-of-control-mesh are subdivided according to a predefined
detail representation to the graphics hardware at eaphattern that guides the sampling of the original model.
frame reduces the rendering rates and forms a severe mesh results from subdividing the control-mesh
bottleneck. Several algorithms utilize caching schemesiill be called therefined-meskand we will refer to its
such as Vertex Buffer Object (VBO), to upload geom~ertices as theefined-vertices We will also refer to
etry into the video memory in realtime [6, 26] while the sampling of the original mesh as templed-mesh
others use geometry streaming between the CPU aadd its vertices as theampled-verticesThe sampling
GPU [5,23,24]. of each face of the control-mesh is stored as a displace-
Current graphics hardware include GPUs that can atnent map (see Figure 2).
ter vertices, geometry, and fragments properties in a A polyline p is calledx-monotonéf it has one value
parallel manner, which influenced the development of(x) for eachx, e.g, p(x) is a function ofx (see Fig-
view-dependent algorithms. Early GPU-based viewdre 3a). Similarly, we define a polyling to be X-
dependent rendering algorithms were designed for temonotonein the interval[a,b] along the x-axis if the

WSCG 2009 Full papers proceedings 204 ISBN 978-80-86943-93-0

algorithm executes only valid edge-collapses, ordered
by their quadric errors. It proceeds until it reaches a
predetermined target polygon count, or until no valid

collapses remain.

\/‘ TS \ 7 /1 .
/ |] /‘VK\ RS WERSRERSRWNEAEL 3.1 M esh Sampllng
Figure 2: From left to right: the control-mesh, the
refined-mesh, and the sampled-mesh

Our algorithm uses the control-mesh to sample the orig-
inal model’s surface. A predetermined triangular grid,
which will be called thesampling-patternis used to
guide the sampling process for each control-face. A
ray is shot through each refined-vertealong its inter-
polated normaN, and the intersection point of the

ray with the original model surface is computed. The
distance betweenm andV* defines the elevation value,
which is stored in the displacement map assigned to the
grocessed face (see Section 3.2).

The sampling-pattern is a uniform subdivision of an
equilateral triangle in which the number of vertices
along each of the triangle edges is equal. We shall
refer to the number of vertices along an edge of the
sampling-pattern as thiegreeof the sampling-pattern.

A sampling-pattern of degrdehask(k+ 1)/2 vertices
and(k— 1)? triangles.

normal Ny at the pointx € [a,b] intersects the polyine
g at one point, wherél, is determined by interpolating
the two normals ah andb (as in Phong Shading, see
Figure 3b and 3c). IiR? we define a polygonal surface
s as Xy-monotonewith respect to the triangle if the
normal at any poinv € t, computed using the normals
at the vertices of, intersects the surfaceonce. The
intersection of the normals at the boundary of a triang|
t, with a polygonal surface spans a surface p&chnd
defines a correspondence betweamdPR, i.e., the tri-
anglet corresponds to the patdh and vice versa (see
Figure 4). A triangular mesM is Xy-monotonewith
respect to another mesh if every patchR in M is Xy-
monotonewith respect to its corresponding trianglie

M.

. Sampling Pattern
Vs

Y 7(1,0,0) jv(tw,ly

T(w)

L &
| @) (©) j | ——id
Figure 3: (a) anx-monotonepolyline, (b) an x- ﬁ@;g?‘;é:ga.
. ~ . N AVASS °
monotoneolyline, and (c) a ho-monotoneolyline % Gontol Face Refined Face

The control-mesh and the displacement maps as- Figure 5: The sampling patterk 9)

signed to its faces are used to recover the original In the sampling phase the sampling-pattern is
mesh, which is possible only if the original mesh ismapped to match the processed control-face. The three
Xy-monotonewith respect to the control-mesh. corner vertices of the sampling-pattern are assigned
the coordinates1,0,0), (0,1,0), and (0,0,1), and
the coordinates of the remaining vertices are deter-
mined accordingly in a uniform fashion. Mapping the
vertices of the sampling-pattern onto a control-face
f is performed using Equation la, whesg, wy, w;,

are the coordinates of the pattern’s vertgxand vp,

vy, V2 are the vertices of (see Figure 5). Similarly,
the interpolated normals at the mapped vertices are
calculated using Equation 1b.

Figure 4: The trianglé and its corresponding patéh

To generate a control-me$i° from an input mesh
M, our algorithm uses the edge-collapse simplification
operator with the quadric error metric [10]. It avoids T(W) = Wy Vo + Wy % Vi + Wy % Vo (1a)
collapsing edges that may violate th§-monotone N(W) = Wy % Mg + Wy * Ng + Wy % Ny (1b)
property. For that purpose, our algorithm maintains
a normal-cone for each vertex, which encodes The control-mesh usually provides a good approxi-
the normals of its adjacent triangles, as well as theation of the original mesh. As a result, the sampling
normals of the triangles which collapsed onto it inprocess can simply be implemented by computing the
past iterations. An edge-collapse is defined/aled if normal-surface intersectiorf, as the sample valué.
it does not result in a normal-cone (for any affecteddowever, sometimes the control-mesh fails to correctly
vertex) that exceeds a half-sphere. The simplificatioresemble the original surface. In such cases the naive

WSCG 2009 Full papers proceedings 205 ISBN 978-80-86943-93-0

intersection-based sampling is insufficient. To improveach frame, the CPU transmits the control-mesh to the
the sampling quality, we consider the neighborhood o&PU, which recursively subdivides the faces that ex-
the intersection point in calculating the sample valueceed a certain screen-space projection error. Finally,
Let vo,...v7 be the adjacent vertices sfon a control- the GPU elevates each of the refined-vertices according
face f andry,...r7 be the rays shot from these ver-to the displacement-maps assigned to the faces of the
tices along their interpolated normals. The intersectiomput control-mesh.

points ofro,...r7 with M will be denotedvy,...V5, re- The CPU transmits the faces of the control-mesh to
spectively. The intersection point,..., V5 define a the GPU, which computes the screen space projection
rectangular patch, which is used to determine the sarfor each face. Leffp be the projection of the facé
pling valuev®. We define thexeighborhoodf v as the and lete, be the projection of the edge which is the
surface whose centerv$, and bounded byj,...\% (see longest edge of ,. The length ofey, |ep|, is compared
Figure 6a). against a predetermined screen space toleranck

lep| > T, the facef is subdivided into two new faces,

/4 / fa and fp, by inserting a new vertex, in the middle
[0.0625)/0175 |fl0p2 of edgee. The two facesf, and fy,, are then sent back
5] % o_? to the beginning of the adaptive subdivision process. If
lep] < T thenf is fine enough, and is sent to the next
“@4\125 ‘\"F}\’* rendering stage. Note that the generated vertices are
a subset of the refined-vertices. The edde usually
() (b) shared with another facg, which will be subdivided
Figure 6: The sampling scheme (a) the neighborhoodt the middle ofe by the time the subdivision process
(b) the piecewise interpolation is complete. Therefore, by the end of the subdivision

process each two adjacent faces have the same vertices
along the common edge (see Figure 7), i.e., the final
triangulation is crackless.

The sampling point®, can be computed by interpo-
lating the triangles within the neighborhoodwdf One
could bilinearly interpolate the centroids of these trian
gles weighted by the size of each triangle and its Eu-

clidean distance fronv*. However, it is not easy to &

distribute the triangle weight into the two factors i.e., ’

the triangle size and its distances fretn For that rea- AA

son, we uniformly subdivide the rectangular patch into

roughly equal cells and perform a piecewise interpola- @) (b) ()

tion. Each cell is assigned an elevation value, whickigure 7: Various stages of the subdivision (faint lines
is computed by averaging the elevation of the trianglegepict the current step of the subdivision) (a) a subdi-
that intersect it. Since the cells are roughly the samesion of a single face, (b) a mid-process triangulation,
size, we only need to consider their distance from thand (c) the final triangulation

intersection point* when interpolating their elevation i L) o
values (see Figure 6b). Note that large triangles may This subd|V|S|on_s_cheme results in a semi-uniform
fall in more than one cell, and computed separately forcréen space subdivision of the control-mesh. The GPU
each of these cells. The interpolation of all the cellsg€nerates a view-dependent adaptive subdivision of the
values produces the elevationwof control-mesh, while enabling fine-grained changes that

)) depend on view-parameters. In such a manner, the
3.2 Generating the Displacement Maps mesh structure is refined at every frame to adapt to

Our algorithm assigns a single displacement map fdpst the right level of detail necessary for visual real-
every face in the control-mesh. After the samplindSm. Therefore, this approach manages to provide bet-
pattern has been mapped onto a control-fdcea ter local adaptivity than existing cluster-based render-
new displacement-map; is created forf such that ing schemes.
each vertexv of the subdivided face has an asso- Performing face subdivision using the screen space
ciated elevation value ifDs. The elevation values projection of edges does not take into account the cur-
are generated by sampling the original mesh andature of the model nor the sampling error. One could
the sampling-errorA¢ of a facef are determined as argue that the curvature is encoded within the control-
maxep, (Mines (|[v—ul|)), where P; is the corre- mesh since small faces correspond to high curvature
sponding patch in the original mesh (see Figure 1). and large faces correspond to low curvature. Neverthe-
. . Lo less, the local curvature of a control-face, as well as the
3.3 Runtime Adaptive Subdivision sampling error, are encoded in its displacement maps
The runtime stage is executed almost entirely on thand it is important to take them into account. In our
GPU, with the CPU acting only as an interface. Atapproach, the edges guide the face subdivision in order

WSCG 2009 Full papers proceedings 206 ISBN 978-80-86943-93-0

to avoid T-junctions. For this reason, the curvature andontrol-mesh. The visibility-check and the GPU-based
error of a face are encoded in its edges. subdivision procedures run within the geometry pro-
Let f5 and f, be the two faces that share the edge cessors, while the elevation procedure is performed by
and lethy and h, be the maximum elevation value in the vertex processors. The GPU-based adaptive sub-
the displacement maps assignedficand f,, respec- division is implemented by using th&ream-outcon-
tively. Thegeometric curvaturé\ of the edgeeis de- trol, which allows the CPU to terminate the graphics
fined asmaxha, hp) + maxA,,4p), whereA; andA, pipeline and emit into a VBO the triangles resulting
are the sampling error df, and f,,, respectively. When from one subdivision pass. The GPU performs a recur-
a facef is subdivided into two triangles, the values forsive subdivision on the processed triangles by switching
the created edges are computed by averaging the prelietween two VBOs for each pass.
ous edges’ values (see Figure 8). A triangle is denotedine-enoughif it passes the
adaptive subdivision test, i.e., it complies with the re-
quired screen-space precision and does not need any
further subdivision. Transmitting all the control-faces
to the GPU using a single VBO and executing the subdi-
vision test uniformly, usually forces many fine-enough
Figure 8: Computing the generated edges errors triangles to go through the subdivision phase and waste
ﬁxpensive processing cycles. To avoid this waste, we
add a rendering pass, after each subdivision, which
passes all the fine-enough triangles from the VBO on

A,

During the subdivision process, the product of scree
space projection of the longest edge, and the geo-
metric curvatureles| x A, is compared ta to guide J2
the subdivision process. In such a manner, we consid{ec}the ngxt step of the pipeline. .
the local geometry and the sampling error of each face The size of Iarge models often exceeds the capacity
while generating its adaptive subdivision. of the available video memory. To support large mod-

At the final stage of the rendering process, the GP@"S' we have _|mplementec_1 an External Video Memory
displaced each vertex, according to its assigned ele- ranager, which uses a single 2D cached texture as a
vation value, based on the relative locationvah the video memory buffer [16].

face f. Note that the vertices generated by the adaptiv;

subdivision are subset of the refined-vertice$ of § RESULTS

C We have tested our implementation using various
3.4 Optimizations datasets of different sizes. This section reports exper-
Fetching the elevation of a vertex from the imental results, obtained using an Intel Core 2 Duo
displacement-map without considering its adjaprocessor, 2GB of memory, and an NVIDIA GeForce
cent elevation values, may result in missing detail8800 GTX with 768MB.

in the generated image. To prevent such cases, we]

have constructed a MipMap hierarchy for evernyd.l Preprocessing

displacement-map. Our algprithm fe_tches the elevatiofjie have used sampling-patterns of degrees 17 and 33
of a vertexv from the MipMap hierarchy of the thatinclude 256 and 1024 triangles, respectively. To re-
appropriate displacement-map. In such a scheme, tQgyer the original models using approximately the same
adjacent elevation values of a vertex are taken intg mper of triangles, the generated control-meshes are

account in a view-dependent manner. 0.4% and 01% the size of the original models, respec-
To improve GPU utilization, a rendering step that "etively.

moves invisible surfaces in the mesh is performed be-

fore applying the GPU-based subdivision step. Since)
the surface generated for each control-fdces rela- Model Memory MB) Time
tively close tof, the visibility check off is used as Dataset Size | Original | Sampled

the visibility check of its generated surface. The check (faces)| Model | Model | (min)
process, however, takes into account the difference be-

tween f and its generated surface by actually check- A dragon| 7.2M 230 70 39
ing the visibility of the bounding volume of’s sur- Lucy 28.1M 1112 158 156
face, fV.The bounding voluméV of f is the triangular- David 56.2M 2113 317 311

volume received when elevatinigusing the minimum

and maximum elevation values storeddn.
The results of the offline preprocessing phase are pre-

4 IMPLEMENTATION DETAILS sented in Table 1, which depicts the model size, the

In our implementation, we have used the edge-collapseemory requirements of the original model, and the
operation with quadric error metric [10] to generate thesampled model (the control-mesh and its displacement

Table 1: Preprocessing time, and memory requirement

WSCG 2009 Full papers proceedings 207 ISBN 978-80-86943-93-0

maps). Theaime column reports the offline preprocess-5.2 Runtime Performance

ing time, which includes the simplification, sampling,;, yhe reported runtime experiments, we have used a
and MipMap generation. sampling-pattern of degree 33. These results were com-

The displacement map-based representation redugqsted by averaging the performance over a period of 30
the model size by approximately 70%. This is a reseconds of interactive rendering_

sult of storing a #yteelevation value instead of three
4dbytevalues &, y, andz) for each vertex and without

? : Dataset | T € Proc. | Rendered| fps
mesh connectivity. The displacement maps of each face
are sampled from a relatively close surface (the origi- A- dragon| 2 | 2.13 | 45K 18K 220
nal surface). Therefore, further reduction in the mem- Lucy 2| 210 475K 19K 220
ory size is achieved by usinggtedisplacement maps David 2| 208 975k 39K 154
instead of #yte displacement maps. However, using ' '
2bytedisplacement maps may compromise the quality A- dragon| 1 | 1.22 | 150K 60K 154
of the recovered model (see Table 3). Lucy 1| 111 190K 76K 81.4
The quality of the sampled-mesh is computed by es- 4 11 1181 200K 80K 81.4

timating the difference between its surface and that of

the original model. We define the average geometric Table 4: Runtime performance

distanced as (3 yem Minuems(||v—u|))/ M|, whereM Table 4 presents the runtime performance of our al-
andMS are the original model and sampled mesh, regorithm. Thet ande columns present the subdivision
spectively. threshold and the resulted screen-space error of the ex-

tracted geometry, respectively. Theocessednd the
renderedcolumns present the number of the triangles

Dataset ‘ Intersection‘ Interpolation processed by the GPU and the triangles actually ren-

A. dragon 0.010 0.009 dered. Thefps column reports the number of frames
generated per second.

Lucy-/ 0.024 0.022 Itis clear that is relatively close ta, which implies

David 0.017 0.013 thatt can be used to control the screen-space error. The

Table 2: The quality of the sampling techniques frame ratesfps) are determined by the number of the
processed triangles, which is dictatedAs a result,
Table 2 reports the quality of the sampled-meshes usimilar t values lead to similar frame rates, regardless
ing the two sampling techniquesersectiorandinter- of the size of the original model. Refinirgcontrol-
polation Both techniques give small sampling errorsfaces to generate a model withriangles requires pro-
however, the interpolation based sampling provides begessing at least2- 2k triangles. However, some trian-
ter quality than the intersection based sampling. gles usually require finer subdivisions, which forces all
the triangles to be reprocessed by the geometric proces-
sor. For that reason, the column of processed triangles
shows a higher factor,.2 (on average). In addition,
4bytes | 2bytes| 4bytes| 2bytes view-frustum and back-face culling are applied to the
A.dragon| 0.004 | 0.004 | 0.009 | 0.010 control-mesh and manage to remove up to 95% of the
invisible control-faces.

Dataset Degree 17 Degree 33

Lucy 0.009 | 0.010 | 0.022 | 0.022 Our geometric error distribution scheme (see Sec-

David 0.005 | 0.006 | 0.013 | 0.013 tion 3.3) does not capture all possible cases. To evaluate
Table 3: The effects of the sampling pattern degrees amdlir error distribution scheme, we have experimentally
elevation values’ format on the model quality measured the bias between the actual geometric errors

and those computed using our scheme. Figure 9 shows
Table 3 reports the quality of the sampled-meshes dlse measured bias using akbériangles control-mesh

a function of the degree of sampling-pattern and thef the David model. The first column shows that our
depth of the displacement maps. In these experimergsror distribution scheme matches the actual errors for
the total number of triangles after refinement is simiabout 32% of the faces; and about 2% have a bias of
lar to those of the original one, i.e., the larger the patd.5, i.e., the geometric error bias of the resulting trian-
tern degree the coarser the control-mesh. Using smallgles is three times more than the error bias of the other
patterns generates better approximations of the inptriangles.
model. Itis easy to conclude that a sampling-pattern of Figure 10 presents the Asian Dragon model rendered
degree 17 andBitedisplacement depth provides betterwith and without using MipMaps (see Section 3.4). The
quality than a sampling-pattern of degree 33 ahytd zoom-in window shows that using Mipmaps provides
displacement depth. smoother images. Figure 11 presents screenshots for

WSCG 2009 Full papers proceedings 208 ISBN 978-80-86943-93-0

] the GPU's performance remains unchanged when

30 4 deforming the model within the CPU. Since computing
25 1 the animation transformation is performed by the CPU,
i::] it is important to avoid generating a control-mesh that

10 | || :(exceeds the CPU capabilities.
0 I P 5.4 Comparison With Other Algorithms

0 IU.W IU.2I[].3 04 05 06 07 08 09 1 . i
Geometric error distribution We compared our algorithm to recent view-dependent
Figure 9: The distribution of the error on the generate§USter-based approaches.

faces when subdividing the control-mesh of the David, 1€ Quick-VDR [26] and TetraPuzzles [6] algo-
model. rithms require 15n MB and 21 MB, respectively, to

represent the multiresolution hierarchies of a model of
sizen MB. Our algorithm requires.Gn MBto store the
same model. Eliminating the use of multiresolution hi-
erarchies enables the support of large datasets without
using external memory.

Most cluster-based algorithms do not support local
adaptivity for the extracted geometry. Our algorithm
uses a GPU-based subdivision to adapt the generated
triangulation to the view-parameters. Apielserror
@) () our algorithm requires only 80% of the triangles re-

uired for cluster-based algorithms.
Cluster-based approaches render approximately
280M triangles per second. Our algorithm manages
to process only triangles per second (1¥bwith

.) culling algorithms).
the David model at = 1. Figure 11c shows that the er-

ror in different regions of the generated representatior§ CONCLUSIONS AND FUTURE
increases in the same rate as the sizes of the subdivi- \WQORK

sion triangles (the green and the red colors repres
minimum and maximum errors, respectively).

Faces (%)

Figure 10: Close-up on the Asian Dragon model (ag1
the result without MipMaps and (b) the result with
MipMaps

e\?\}e have presented a GPU-based view-dependent
rendering algorithm. The control-mesh, which is
a simplified representation of the input model, is
an error-guided subdivision of the input model into
disjoint patches. The geometry of these patches is
encoded into displacement maps. At runtime a view-
dependent level-of-detail representation is generated
using a GPU-based adaptive subdivision. Such a
scheme minimizes the load on the CPU and makes
it available for other general purpose computations.
Our approach eliminates the need for multiresolution
hierarchies of geometry and enables real-time defor-
mation on large geometric models. Our algorithm
encodes the geometric errors within the edges of the
(@) (b) ©) control-mesh, which generates manifold meshes and

Figure 11: Screenshots of the David model (a) the ge|§_’[itches the refined faces seamlessly, without adding

erated image, (b) the wireframe representation from & d%pendenhmes or SI'\,’slr,F_JOIy]?O?S' B
different viewpoint, and (c) the geometric error We observe three possibilities for future work. First,

displacement maps which are currently stored as raw
. images consume significant portions of the video mem-
53 Animated Models ory. Developing a GPU-based compression scheme for
Our algorithm supports interactive view-dependentextures could save expensive video memory. Second,
rendering of large 3D models with animation affectsjn our current method, the animation is applied to the
which are applied to the vertices of the control-mesh;ontrol-mesh, rather than the original mesh, which re-
using the CPU, at each frame. The deformed represults in poor accuracy. It may be useful to develop an
sentation is transmitted to the GPU, which generatéanimation aware" simplification approach that gener-
the view-dependent representation. We found thattes a control-mesh that takes the input animation into

WSCG 2009 Full papers proceedings 209 ISBN 978-80-86943-93-0

account.

view-dependent level-of-detail representation from the
control-mesh at each frame. It is interesting to utilize

temporal coherence among consecutive frames.

REFERENCES

(1]

(2]

E]
4

(5]

6]

(7]

(8]

El

[10]

(11]

[12]

(23]
[14]
[15]

[16]

(17]

(18]

[19]

WSCG 2009 Full papers proceedings

A. Asirvatham and H. HoppeTerrain rendering using GPU-
based geometry clipmapshapter 2, pages 27-45. Addison-
Wesley Professional, 2005.

X. Bao, R. Pajarola, and M. Shafae. SMART: An efficienttec
nique for massive terrain visualization from out-of-corePfo-
ceedings of Vision, Modeling and Visualization,péges 413—
420, 2004.

J. Bolz and P. Schréder. Evaluation of subdivision stefaon
programmable graphics hardwaubmitted2005.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Pbiug

and R. Scopigno. BDAM — batched dynamic adaptive meshes
for high performance terrain visualizatioBomputer Graphics
Forum, 22(3):505-514, 2003.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Pbiug

and R. Scopigno. P-BDAM - planet-sized batched dynamic
adaptive meshes. IRroceedings of Visualization '03ages
147-155, 2003.

P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Pbiw; and
R. Scopigno. Adaptive TetraPuzzles — efficient out-of-ame-
struction and visualization of gigantic polygonal moded€M
Transactions on Graphi¢c23(3):796-803, 2004.

L. De Floriani, P. Magillo, and E. Puppo. Efficient implemen
tation of multi-triangulations. IfProceedings of Visualization

'98, pages 43-50, 1998.

W. Donnelly. Per-Pixel Displacement Mapping with Distance
Functions pages 123-136. Addison-Wesley, 2005.

C. Erikson and D. Manocha. Hierarchical levels of defail
fast display of large static and dynamic environmentsPrio-
ceedings of symposium on Interactive 3D graphics j8dges
111-120, 2001.

M. Garland and P.S. Heckbert. Surface simplificatiomgsi
guadric error metrics. IRroceedings of SIGGRAPH '9pages
209-216, 1997.

G. Gerasimov, F. Fernando, and S. Green. Shader model 3.0
using vertex texturedNvidia White Paper2004.

L. Hwa, M. Duchaineau, and K. Joy. Real-time optimal adap-
tation for planetary geometry and texture: 4-8 tile hierash
IEEE Transactions on Visualization and Computer Graphics
11(4):355-368, 2005.

J. Ji, E. Wu, S. Li, and X. Liu. Dynamic lod on gpu. @om-
puter Graphics International '05pages 108-114, 2005.

J. Kim and S. Lee. Truly selective refinement of prognessi
meshes. IiGraphics Interface '01lpages 101-110, 2001.

A. Lee, H. Moreton, and H. Hoppe. Displaced subdivissoin-
faces. InProceedings of SIGGRAPH '0pages 8594, 2000.

Y. Livny, G. Bauman, and J. EI-Sana. Displacement patches
for gpu-oriented view-dependent rendering.Piroceedings of
GRAPP '08 pages 181 — 190, 2008.

Y. Livny, N. Sokolovsky, T. Grinshpoun, and J. El-Sana
gpu persistent grid mapping for terrain renderirithe Visual
Computer 24(2):139-153, 2008.

Haik Lorenz and Jurgen Dollner. Dynamic mesh refinement on
gpu using geometry shaders. Rroceedings of WSCG 2008
2008.

F. Losasso and H. Hoppe. Geometry clipmaps: terrain rende
ing using nested regular griddCM Transactions on Graphics
23(3):769-776, 2004.

210

[22]
[23]
[24]
[25]

(26]

Third, our current algorithm generates thgo] D. Luebke and C. Erikson. View-dependent simplificatéar-

bitrary polygonal environments. Rroceedings of SIGGRAPH
'97, pages 199-207, 1997.

21] Kevin Moule and Michael D. Mccool. Efficient bounded ada

tive tessellation of displacement maps. graphics interf@62 2
In In Graphics Interfacepages 171-180, 2002.

R. Pajarola. Fastmesh: efficient view-dependent meshing
Proceedings of Pacific Graphics '0pages 22-30, 2001.

A. Pomeranz. ROAM using triangle clusters (RUSTIC). Mas
ter's thesis, UNIVERSITY OF CALIFORNIA, 2000.

J. Schneider and R. Westermann. GPU-friendly highitual
terrain renderingWSCG 14(1-3):49-56, 2006.

T. Ulrich. Rendering massive terrains using chunkeellef
detail control. InProceedings of SIGGRAPH '02002.

S. E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-
vdr: Interactive view-dependent rendering of massive models
In Proceedings of Visualization 'Qf¢ages 131-138, 2004.

ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	E17-full

