
GPU-Based Adaptive-Subdivision for View-Dependent
Rendering

Gilad Bauman
Ben-Gurion University

Beer-Sheva, Israel
baumang@cs.bgu.ac.il

Yotam Livny
Ben-Gurion University

Beer-Sheva, Israel
livnyy@cs.bgu.ac.il

Jihad El-Sana
Ben-Gurion University

Beer-Sheva, Israel
el-sana@cs.bgu.ac.il

Abstract

In this paper, we present a novel view-dependent rendering approach for large polygonal models. In an offline stage, the input
model is simplified to reach a light coarse representation. Each simplified face is then assigned a displacement map, which
resembles the geometry of the corresponding patch on the input model. At runtime, the coarse representation is transmitted to
the graphics hardware at each frame. Within the graphics hardware, the GPU subdivides each face with respect to the view-
parameters, and adds fine details using the assigned displacement map.Initial results show that our implementation achieves
quality images at high frame rates.

Keywords: GPU Processing, Subdivision Surfaces, Level-of-detail.

1 INTRODUCTION

Interactive rendering of large polygonal models is vital
for various visualization and virtual environments ap-
plications. The drive for fine details and the availability
of technologies that simplify the design and acquisition
of graphics models have lead to the generation of large
models that exceed the interactive rendering capabili-
ties of contemporary graphics hardware. In addition,
some of these applications apply complex animation
effects to these models. These further reduce the ren-
dering frame rates. Level-of-detail rendering schemes
were suggested to bridge the gap between models’ com-
plexities and rendering capabilities.

View-dependent rendering approaches enable the
coexistence of different resolutions over the various
regions of a level-of-detail representation, based on
view-parameters. Early view-dependent rendering
algorithms rely on the CPU to extract an appropriate
level-of-detail representation. However, the CPU is
often incapable of extracting and transmitting the ge-
ometry of large datasets within the duration of a single
frame. In addition, these algorithms use hierarchies of
geometry, which are constructed offline. As a result,
they cannot support runtime deformations or animation
effects on the processed model, without additional
expensive update or reconstruction of the hierarchy.
To accelerate the selection of level-of-detail repre-
sentations, cluster-based view-dependent algorithms
were introduced. They overcome CPU incapabilities
by representing models using clusters or patches. In

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

such a scheme, the CPU extracts representations for
large models by switching between large amounts of
geometry, using a small set of operations. However,
the separation into patches often limits local adaptivity,
and therefore, cluster-based approaches may require
more triangles than earlier approaches to maintain the
same image quality. Current cluster-based approaches
use hierarchies of simplified patches, which prevent
efficient runtime deformations or animations.

In this paper, we present a novel view-dependent
level-of-detail rendering algorithm that does not use
geometric hierarchies and enables runtime deforma-
tion. In addition, the memory requirements of the sug-
gested algorithm are low with respect to previous view-
dependent rendering algorithms. In an offline stage, the
input model is simplified to reach a light coarse repre-
sentation, which is used to guide the sampling of the
original model. The sampling values are stored in dis-
placement maps, which are assigned to the faces of
the coarse representation. At runtime, the coarse rep-
resentation is transmitted to the graphics hardware at
each frame. Within the graphics hardware, the GPU
adaptively refines each face with respect to its orien-
tation and the assigned displacement map to generate
a view-dependent representation. Deforming or apply-
ing animation effects to large 3D models involves ex-
pensive computations that usually cannot be completed
within the duration of a single frame. For that reason,
such computations are usually applied to the skeleton
or the coarse representation of 3D models. In our ap-
proach, the CPU can deform the geometry of the coarse
representation before transmitting it to the GPU. In
such a manner, our algorithm provides interactive view-
dependent rendering of animated large models.

Our approach transfers most of the computationally
intensive operations into the GPU for interactive view-
dependent rendering of large models while enabling

WSCG 2009 Full papers proceedings 203 ISBN 978-80-86943-93-0

(a) (b) (c)
Figure 1: Screenshots of the Asian Dragon model (a) the control-mesh, (b) the sampling error, and (c) the shaded
model

fine-grained changes on the generated representation.
The coarse representation partitions an input model
into disjoint patches in an error-guided manner. These
patches are compactly encoded using displacement
maps. Our approach manages to eliminate the need
for geometric hierarchies, which are used to guide
the selection of the level-of-detail representations
in view-dependent rendering approaches. It also
dramatically reduces the CPU processing load and the
CPU-GPU communication load by processing a coarse
representation within the CPU and refining it within the
GPU. Eliminating the use of geometric hierarchies and
extracting the level-of-detail within the GPU enables
the CPU to dynamically modify the processed model
in real-time.

2 RELATED WORK
Traditional view-dependent schemes rely on hierar-
chies that encode the geometry of the original model
in multiple levels of detail. At runtime the CPU
traverses the hierarchy and extracts a level of detail
representation based on view-parameters [7,14,20,22].

To improve the selection of the level-of-detail rep-
resentations, cluster-based view-dependent algorithms
were introduced [9, 15]. In these approaches the CPU
extracts representations for large models by switching
between large amounts of geometry, using a small set
of operations. However, simplifying the patches inde-
pendently imposes severe difficulties in stitching adja-
cent patches or clusters seamlessly. To overcome these
difficulties, several approaches introduce dependencies
among patches [6, 26] or introduce sliver/degenerated
triangles [1, 25]. Transmitting the extracted level-of-
detail representation to the graphics hardware at each
frame reduces the rendering rates and forms a severe
bottleneck. Several algorithms utilize caching schemes,
such as Vertex Buffer Object (VBO), to upload geom-
etry into the video memory in realtime [6, 26] while
others use geometry streaming between the CPU and
GPU [5,23,24].

Current graphics hardware include GPUs that can al-
ter vertices, geometry, and fragments properties in a
parallel manner, which influenced the development of
view-dependent algorithms. Early GPU-based view-
dependent rendering algorithms were designed for ter-

rain visualization [2, 3, 19]. Terrain algorithms usually
cache the geometry within the video memory, and uti-
lize temporal coherence to improve performance and
reduce CPU-GPU communication [1, 4]. In later al-
gorithms, the programmable GPU was used to refine
coarse terrain tessellations using a predetermined tem-
plate of geometry [12,17] or to add fine details [8,11].

GPU-based algorithms for 3D models have lately
been presented. One of the starting points for GPU
based displacement mapping is the work of [21].
Several past algorithms cache the hierarchy within the
video memory and use the multi-pass procedures to
extract a view-dependent representation [13]. Others
extract a coarse view-dependent representation of the
model within the CPU and transmit it to the GPU for
refinement [16] or adaptively refine a mesh of a frame
to generate the mesh of the next one, in an incremental
fashion using the GPU [18].

3 OUR APPROACH
In this section we describe a GPU-based algorithm for
view-dependent level-of-detail rendering that does not
store multiresolution hierarchies of geometry. Instead,
it relies on GPU capabilities to adaptively refine various
regions of the model with respect to view-parameters.
Our algorithm is divided into offline preprocessing and
runtime rendering.

The preprocessing stage starts by creating a simpli-
fied representation of the input model, which will be
called thecontrol-meshand its faces will be denoted
thecontrol-faces. The control-mesh is used to recover
the original input model at runtime. The faces of the
control-mesh are subdivided according to a predefined
pattern that guides the sampling of the original model.
The mesh results from subdividing the control-mesh
will be called therefined-meshand we will refer to its
vertices as therefined-vertices. We will also refer to
the sampling of the original mesh as thesampled-mesh
and its vertices as thesampled-vertices. The sampling
of each face of the control-mesh is stored as a displace-
ment map (see Figure 2).

A polyline p is calledx-monotoneif it has one value
p(x) for eachx, e.g, p(x) is a function ofx (see Fig-
ure 3a). Similarly, we define a polylineq to be x̃-
monotonein the interval[a,b] along the x-axis if the

WSCG 2009 Full papers proceedings 204 ISBN 978-80-86943-93-0

Figure 2: From left to right: the control-mesh, the
refined-mesh, and the sampled-mesh

normalNx at the pointx ∈ [a,b] intersects the polyine
q at one point, whereNx is determined by interpolating
the two normals ata andb (as in Phong Shading, see
Figure 3b and 3c). InR2 we define a polygonal surface
s as x̃y-monotonewith respect to the trianglet if the
normal at any pointv∈ t, computed using the normals
at the vertices oft, intersects the surfaces once. The
intersection of the normals at the boundary of a triangle
t, with a polygonal surface spans a surface patchPt , and
defines a correspondence betweent andPt , i.e., the tri-
anglet corresponds to the patchPt and vice versa (see
Figure 4). A triangular meshM is x̃y-monotonewith
respect to another mesĥM if every patchPt in M is x̃y-
monotonewith respect to its corresponding trianglet in
̂M.

(a) (b) (c)
Figure 3: (a) anx-monotonepolyline, (b) an x̃-
monotonepolyline, and (c) a non-̃x-monotonepolyline

The control-mesh and the displacement maps as-
signed to its faces are used to recover the original
mesh, which is possible only if the original mesh is
x̃y-monotonewith respect to the control-mesh.

Figure 4: The trianglet and its corresponding patchPt

To generate a control-meshMc from an input mesh
M, our algorithm uses the edge-collapse simplification
operator with the quadric error metric [10]. It avoids
collapsing edges that may violate thẽxy-monotone
property. For that purpose, our algorithm maintains
a normal-cone for each vertexv, which encodes
the normals of its adjacent triangles, as well as the
normals of the triangles which collapsed onto it in
past iterations. An edge-collapse is defined asvalid if
it does not result in a normal-cone (for any affected
vertex) that exceeds a half-sphere. The simplification

algorithm executes only valid edge-collapses, ordered
by their quadric errors. It proceeds until it reaches a
predetermined target polygon count, or until no valid
collapses remain.

3.1 Mesh Sampling
Our algorithm uses the control-mesh to sample the orig-
inal model’s surface. A predetermined triangular grid,
which will be called thesampling-pattern, is used to
guide the sampling process for each control-face. A
ray is shot through each refined-vertexv along its inter-
polated normalNv and the intersection pointvx of the
ray with the original model surface is computed. The
distance betweenv andvx defines the elevation value,
which is stored in the displacement map assigned to the
processed face (see Section 3.2).

The sampling-pattern is a uniform subdivision of an
equilateral triangle in which the number of vertices
along each of the triangle edges is equal. We shall
refer to the number of vertices along an edge of the
sampling-pattern as thedegreeof the sampling-pattern.
A sampling-pattern of degreek hask(k+1)/2 vertices
and(k−1)2 triangles.

Figure 5: The sampling pattern (k = 9)

In the sampling phase the sampling-pattern is
mapped to match the processed control-face. The three
corner vertices of the sampling-pattern are assigned
the coordinates(1,0,0), (0,1,0), and (0,0,1), and
the coordinates of the remaining vertices are deter-
mined accordingly in a uniform fashion. Mapping the
vertices of the sampling-pattern onto a control-face
f is performed using Equation 1a, wherewx, wy, wz

are the coordinates of the pattern’s vertexw, andv0,
v1, v2 are the vertices off (see Figure 5). Similarly,
the interpolated normals at the mapped vertices are
calculated using Equation 1b.

T(w) = wx∗v0 +wy∗v1 +wz∗v2 (1a)

N(w) = wx∗n0 +wy∗n1 +wz∗n2 (1b)

The control-mesh usually provides a good approxi-
mation of the original mesh. As a result, the sampling
process can simply be implemented by computing the
normal-surface intersectionvx, as the sample valuevs.
However, sometimes the control-mesh fails to correctly
resemble the original surface. In such cases the naïve

WSCG 2009 Full papers proceedings 205 ISBN 978-80-86943-93-0

intersection-based sampling is insufficient. To improve
the sampling quality, we consider the neighborhood of
the intersection point in calculating the sample value.
Let v0,...,v7 be the adjacent vertices ofv on a control-
face f and r0,...,r7 be the rays shot from these ver-
tices along their interpolated normals. The intersection
points of r0,...,r7 with M will be denotedvx

0,...,vx
7, re-

spectively. The intersection pointsvx
0, . . . ,v

x
7 define a

rectangular patch, which is used to determine the sam-
pling valuevs. We define theneighborhoodof v as the
surface whose center isvx, and bounded byvx

0,...,vx
7 (see

Figure 6a).

(a) (b)
Figure 6: The sampling scheme (a) the neighborhood,
(b) the piecewise interpolation

The sampling pointvs, can be computed by interpo-
lating the triangles within the neighborhood ofvx. One
could bilinearly interpolate the centroids of these trian-
gles weighted by the size of each triangle and its Eu-
clidean distance fromvx. However, it is not easy to
distribute the triangle weight into the two factors i.e.,
the triangle size and its distances fromvx. For that rea-
son, we uniformly subdivide the rectangular patch into
roughly equal cells and perform a piecewise interpola-
tion. Each cell is assigned an elevation value, which
is computed by averaging the elevation of the triangles
that intersect it. Since the cells are roughly the same
size, we only need to consider their distance from the
intersection pointvx when interpolating their elevation
values (see Figure 6b). Note that large triangles may
fall in more than one cell, and computed separately for
each of these cells. The interpolation of all the cells’
values produces the elevation ofv.

3.2 Generating the Displacement Maps
Our algorithm assigns a single displacement map for
every face in the control-mesh. After the sampling
pattern has been mapped onto a control-facef , a
new displacement-mapD f is created forf such that
each vertexv of the subdivided face has an asso-
ciated elevation value inD f . The elevation values
are generated by sampling the original mesh and
the sampling-error∆ f of a face f are determined as
maxv∈Pf (minu∈ f (‖v−u‖)), where Pf is the corre-
sponding patch in the original mesh (see Figure 1).

3.3 Runtime Adaptive Subdivision
The runtime stage is executed almost entirely on the
GPU, with the CPU acting only as an interface. At

each frame, the CPU transmits the control-mesh to the
GPU, which recursively subdivides the faces that ex-
ceed a certain screen-space projection error. Finally,
the GPU elevates each of the refined-vertices according
to the displacement-maps assigned to the faces of the
input control-mesh.

The CPU transmits the faces of the control-mesh to
the GPU, which computes the screen space projection
for each face. Letfp be the projection of the facef
and letep be the projection of the edgee, which is the
longest edge offp. The length ofep, |ep|, is compared
against a predetermined screen space toleranceτ. If
|ep| > τ, the facef is subdivided into two new faces,
fa and fb, by inserting a new vertexvm in the middle
of edgee. The two faces,fa and fb, are then sent back
to the beginning of the adaptive subdivision process. If
|ep| ≤ τ then f is fine enough, and is sent to the next
rendering stage. Note that the generated vertices are
a subset of the refined-vertices. The edgee is usually
shared with another faceg, which will be subdivided
at the middle ofe by the time the subdivision process
is complete. Therefore, by the end of the subdivision
process each two adjacent faces have the same vertices
along the common edge (see Figure 7), i.e., the final
triangulation is crackless.

(a) (b) (c)
Figure 7: Various stages of the subdivision (faint lines
depict the current step of the subdivision) (a) a subdi-
vision of a single face, (b) a mid-process triangulation,
and (c) the final triangulation

This subdivision scheme results in a semi-uniform
screen space subdivision of the control-mesh. The GPU
generates a view-dependent adaptive subdivision of the
control-mesh, while enabling fine-grained changes that
depend on view-parameters. In such a manner, the
mesh structure is refined at every frame to adapt to
just the right level of detail necessary for visual real-
ism. Therefore, this approach manages to provide bet-
ter local adaptivity than existing cluster-based render-
ing schemes.

Performing face subdivision using the screen space
projection of edges does not take into account the cur-
vature of the model nor the sampling error. One could
argue that the curvature is encoded within the control-
mesh since small faces correspond to high curvature
and large faces correspond to low curvature. Neverthe-
less, the local curvature of a control-face, as well as the
sampling error, are encoded in its displacement maps
and it is important to take them into account. In our
approach, the edges guide the face subdivision in order

WSCG 2009 Full papers proceedings 206 ISBN 978-80-86943-93-0

to avoid T-junctions. For this reason, the curvature and
error of a face are encoded in its edges.

Let fa and fb be the two faces that share the edgee
and letha andhb be the maximum elevation value in
the displacement maps assigned tofa and fb, respec-
tively. Thegeometric curvature∆e of the edgee is de-
fined asmax(ha,hb) + max(∆a,∆b), where∆a and ∆b

are the sampling error offa and fb, respectively. When
a facef is subdivided into two triangles, the values for
the created edges are computed by averaging the previ-
ous edges’ values (see Figure 8).

Figure 8: Computing the generated edges errors

During the subdivision process, the product of screen
space projection of the longest edge,ef , and the geo-
metric curvature,|ef | ×∆e, is compared toτ to guide
the subdivision process. In such a manner, we consider
the local geometry and the sampling error of each face,
while generating its adaptive subdivision.

At the final stage of the rendering process, the GPU
displaced each vertex,v, according to its assigned ele-
vation value, based on the relative location ofv in the
face f . Note that the vertices generated by the adaptive
subdivision are subset of the refined-vertices off .

3.4 Optimizations
Fetching the elevation of a vertexv from the
displacement-map without considering its adja-
cent elevation values, may result in missing details
in the generated image. To prevent such cases, we
have constructed a MipMap hierarchy for every
displacement-map. Our algorithm fetches the elevation
of a vertex v from the MipMap hierarchy of the
appropriate displacement-map. In such a scheme, the
adjacent elevation values of a vertex are taken into
account in a view-dependent manner.

To improve GPU utilization, a rendering step that re-
moves invisible surfaces in the mesh is performed be-
fore applying the GPU-based subdivision step. Since
the surface generated for each control-facef is rela-
tively close to f , the visibility check of f is used as
the visibility check of its generated surface. The check
process, however, takes into account the difference be-
tween f and its generated surface by actually check-
ing the visibility of the bounding volume off ’s sur-
face, f v.The bounding volumef v of f is the triangular-
volume received when elevatingf using the minimum
and maximum elevation values stored inD f .

4 IMPLEMENTATION DETAILS
In our implementation, we have used the edge-collapse
operation with quadric error metric [10] to generate the

control-mesh. The visibility-check and the GPU-based
subdivision procedures run within the geometry pro-
cessors, while the elevation procedure is performed by
the vertex processors. The GPU-based adaptive sub-
division is implemented by using thestream-outcon-
trol, which allows the CPU to terminate the graphics
pipeline and emit into a VBO the triangles resulting
from one subdivision pass. The GPU performs a recur-
sive subdivision on the processed triangles by switching
between two VBOs for each pass.

A triangle is denotedfine-enoughif it passes the
adaptive subdivision test, i.e., it complies with the re-
quired screen-space precision and does not need any
further subdivision. Transmitting all the control-faces
to the GPU using a single VBO and executing the subdi-
vision test uniformly, usually forces many fine-enough
triangles to go through the subdivision phase and waste
expensive processing cycles. To avoid this waste, we
add a rendering pass, after each subdivision, which
passes all the fine-enough triangles from the VBO on
to the next step of the pipeline.

The size of large models often exceeds the capacity
of the available video memory. To support large mod-
els, we have implemented an External Video Memory
Manager, which uses a single 2D cached texture as a
video memory buffer [16].

5 RESULTS
We have tested our implementation using various
datasets of different sizes. This section reports exper-
imental results, obtained using an Intel Core 2 Duo
processor, 2GB of memory, and an NVIDIA GeForce
8800 GTX with 768MB.

5.1 Preprocessing
We have used sampling-patterns of degrees 17 and 33
that include 256 and 1024 triangles, respectively. To re-
cover the original models using approximately the same
number of triangles, the generated control-meshes are
0.4% and 0.1% the size of the original models, respec-
tively.

Model Memory (MB) Time

Dataset Size Original Sampled

(faces) Model Model (min)

A. dragon 7.2M 230 70 39

Lucy 28.1M 1112 158 156

David 56.2M 2113 317 311
Table 1: Preprocessing time, and memory requirement

The results of the offline preprocessing phase are pre-
sented in Table 1, which depicts the model size, the
memory requirements of the original model, and the
sampled model (the control-mesh and its displacement

WSCG 2009 Full papers proceedings 207 ISBN 978-80-86943-93-0

maps). Thetimecolumn reports the offline preprocess-
ing time, which includes the simplification, sampling,
and MipMap generation.

The displacement map-based representation reduces
the model size by approximately 70%. This is a re-
sult of storing a 4byteelevation value instead of three
4bytevalues (x, y, andz) for each vertex and without
mesh connectivity. The displacement maps of each face
are sampled from a relatively close surface (the origi-
nal surface). Therefore, further reduction in the mem-
ory size is achieved by using 2bytedisplacement maps
instead of 4byte displacement maps. However, using
2bytedisplacement maps may compromise the quality
of the recovered model (see Table 3).

The quality of the sampled-mesh is computed by es-
timating the difference between its surface and that of
the original model. We define the average geometric
distanced as(∑v∈M minu∈Ms(‖v−u‖))/ |M|, whereM
andMs are the original model and sampled mesh, re-
spectively.

Dataset Intersection Interpolation

A. dragon 0.010 0.009

Lucy 0.024 0.022

David 0.017 0.013
Table 2: The quality of the sampling techniques

Table 2 reports the quality of the sampled-meshes us-
ing the two sampling techniques,intersectionandinter-
polation. Both techniques give small sampling errors,
however, the interpolation based sampling provides bet-
ter quality than the intersection based sampling.

Dataset Degree 17 Degree 33

4bytes 2bytes 4bytes 2bytes

A. dragon 0.004 0.004 0.009 0.010

Lucy 0.009 0.010 0.022 0.022

David 0.005 0.006 0.013 0.013
Table 3: The effects of the sampling pattern degrees and
elevation values’ format on the model quality

Table 3 reports the quality of the sampled-meshes as
a function of the degree of sampling-pattern and the
depth of the displacement maps. In these experiments
the total number of triangles after refinement is simi-
lar to those of the original one, i.e., the larger the pat-
tern degree the coarser the control-mesh. Using smaller
patterns generates better approximations of the input
model. It is easy to conclude that a sampling-pattern of
degree 17 and 2bytedisplacement depth provides better
quality than a sampling-pattern of degree 33 and 4byte
displacement depth.

5.2 Runtime Performance
In the reported runtime experiments, we have used a
sampling-pattern of degree 33. These results were com-
puted by averaging the performance over a period of 30
seconds of interactive rendering.

Dataset τ ε Proc. Rendered f ps

A. dragon 2 2.13 45K 18K 220

Lucy 2 2.10 47.5K 19K 220

David 2 2.08 97.5K 39K 154

A. dragon 1 1.22 150K 60K 154

Lucy 1 1.11 190K 76K 81.4

David 1 1.18 200K 80K 81.4
Table 4: Runtime performance

Table 4 presents the runtime performance of our al-
gorithm. Theτ andε columns present the subdivision
threshold and the resulted screen-space error of the ex-
tracted geometry, respectively. Theprocessedand the
renderedcolumns present the number of the triangles
processed by the GPU and the triangles actually ren-
dered. Thefps column reports the number of frames
generated per second.

It is clear thatε is relatively close toτ, which implies
thatτ can be used to control the screen-space error. The
frame rates (fps) are determined by the number of the
processed triangles, which is dictated byτ. As a result,
similar τ values lead to similar frame rates, regardless
of the size of the original model. Refiningk control-
faces to generate a model withn triangles requires pro-
cessing at least 2n−2k triangles. However, some trian-
gles usually require finer subdivisions, which forces all
the triangles to be reprocessed by the geometric proces-
sor. For that reason, the column of processed triangles
shows a higher factor, 2.5 (on average). In addition,
view-frustum and back-face culling are applied to the
control-mesh and manage to remove up to 95% of the
invisible control-faces.

Our geometric error distribution scheme (see Sec-
tion 3.3) does not capture all possible cases. To evaluate
our error distribution scheme, we have experimentally
measured the bias between the actual geometric errors
and those computed using our scheme. Figure 9 shows
the measured bias using a 56K-triangles control-mesh
of the David model. The first column shows that our
error distribution scheme matches the actual errors for
about 32% of the faces; and about 2% have a bias of
0.5, i.e., the geometric error bias of the resulting trian-
gles is three times more than the error bias of the other
triangles.

Figure 10 presents the Asian Dragon model rendered
with and without using MipMaps (see Section 3.4). The
zoom-in window shows that using Mipmaps provides
smoother images. Figure 11 presents screenshots for

WSCG 2009 Full papers proceedings 208 ISBN 978-80-86943-93-0

Figure 9: The distribution of the error on the generated
faces when subdividing the control-mesh of the David
model.

(a) (b)
Figure 10: Close-up on the Asian Dragon model (a)
the result without MipMaps and (b) the result with
MipMaps

the David model atτ = 1. Figure 11c shows that the er-
ror in different regions of the generated representations
increases in the same rate as the sizes of the subdivi-
sion triangles (the green and the red colors represent
minimum and maximum errors, respectively).

(a) (b) (c)
Figure 11: Screenshots of the David model (a) the gen-
erated image, (b) the wireframe representation from a
different viewpoint, and (c) the geometric error

5.3 Animated Models
Our algorithm supports interactive view-dependent
rendering of large 3D models with animation affects,
which are applied to the vertices of the control-mesh,
using the CPU, at each frame. The deformed repre-
sentation is transmitted to the GPU, which generates
the view-dependent representation. We found that

the GPU’s performance remains unchanged when
deforming the model within the CPU. Since computing
the animation transformation is performed by the CPU,
it is important to avoid generating a control-mesh that
exceeds the CPU capabilities.

5.4 Comparison With Other Algorithms
We compared our algorithm to recent view-dependent
cluster-based approaches.

The Quick-VDR [26] and TetraPuzzles [6] algo-
rithms require 1.5n MB and 2n MB, respectively, to
represent the multiresolution hierarchies of a model of
sizen MB. Our algorithm requires 0.3n MB to store the
same model. Eliminating the use of multiresolution hi-
erarchies enables the support of large datasets without
using external memory.

Most cluster-based algorithms do not support local
adaptivity for the extracted geometry. Our algorithm
uses a GPU-based subdivision to adapt the generated
triangulation to the view-parameters. At 2pixelserror
our algorithm requires only 80% of the triangles re-
quired for cluster-based algorithms.

Cluster-based approaches render approximately
280M triangles per second. Our algorithm manages
to process only 88M triangles per second (176M with
culling algorithms).

6 CONCLUSIONS AND FUTURE
WORK

We have presented a GPU-based view-dependent
rendering algorithm. The control-mesh, which is
a simplified representation of the input model, is
an error-guided subdivision of the input model into
disjoint patches. The geometry of these patches is
encoded into displacement maps. At runtime a view-
dependent level-of-detail representation is generated
using a GPU-based adaptive subdivision. Such a
scheme minimizes the load on the CPU and makes
it available for other general purpose computations.
Our approach eliminates the need for multiresolution
hierarchies of geometry and enables real-time defor-
mation on large geometric models. Our algorithm
encodes the geometric errors within the edges of the
control-mesh, which generates manifold meshes and
stitches the refined faces seamlessly, without adding
extra dependencies or sliver polygons.

We observe three possibilities for future work. First,
displacement maps which are currently stored as raw
images consume significant portions of the video mem-
ory. Developing a GPU-based compression scheme for
textures could save expensive video memory. Second,
in our current method, the animation is applied to the
control-mesh, rather than the original mesh, which re-
sults in poor accuracy. It may be useful to develop an
"animation aware" simplification approach that gener-
ates a control-mesh that takes the input animation into

WSCG 2009 Full papers proceedings 209 ISBN 978-80-86943-93-0

account. Third, our current algorithm generates the
view-dependent level-of-detail representation from the
control-mesh at each frame. It is interesting to utilize
temporal coherence among consecutive frames.

REFERENCES

[1] A. Asirvatham and H. Hoppe.Terrain rendering using GPU-
based geometry clipmaps., chapter 2, pages 27–45. Addison-
Wesley Professional, 2005.

[2] X. Bao, R. Pajarola, and M. Shafae. SMART: An efficient tech-
nique for massive terrain visualization from out-of-core. In Pro-
ceedings of Vision, Modeling and Visualization ’04, pages 413–
420, 2004.

[3] J. Bolz and P. Schröder. Evaluation of subdivision surfaces on
programmable graphics hardware.Submitted, 2005.

[4] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. BDAM – batched dynamic adaptive meshes
for high performance terrain visualization.Computer Graphics
Forum, 22(3):505–514, 2003.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. P-BDAM – planet-sized batched dynamic
adaptive meshes. InProceedings of Visualization ’03, pages
147–155, 2003.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Adaptive TetraPuzzles – efficient out-of-corecon-
struction and visualization of gigantic polygonal models.ACM
Transactions on Graphics, 23(3):796–803, 2004.

[7] L. De Floriani, P. Magillo, and E. Puppo. Efficient implemen-
tation of multi-triangulations. InProceedings of Visualization
’98, pages 43–50, 1998.

[8] W. Donnelly. Per-Pixel Displacement Mapping with Distance
Functions, pages 123–136. Addison-Wesley, 2005.

[9] C. Erikson and D. Manocha. Hierarchical levels of detailfor
fast display of large static and dynamic environments. InPro-
ceedings of symposium on Interactive 3D graphics ’01, pages
111–120, 2001.

[10] M. Garland and P.S. Heckbert. Surface simplification using
quadric error metrics. InProceedings of SIGGRAPH ’97, pages
209–216, 1997.

[11] G. Gerasimov, F. Fernando, and S. Green. Shader model 3.0
using vertex textures.Nvidia White Paper, 2004.

[12] L. Hwa, M. Duchaineau, and K. Joy. Real-time optimal adap-
tation for planetary geometry and texture: 4-8 tile hierarchies.
IEEE Transactions on Visualization and Computer Graphics,
11(4):355–368, 2005.

[13] J. Ji, E. Wu, S. Li, and X. Liu. Dynamic lod on gpu. InCom-
puter Graphics International ’05, pages 108–114, 2005.

[14] J. Kim and S. Lee. Truly selective refinement of progressive
meshes. InGraphics Interface ’01, pages 101–110, 2001.

[15] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivisionsur-
faces. InProceedings of SIGGRAPH ’00, pages 85–94, 2000.

[16] Y. Livny, G. Bauman, and J. El-Sana. Displacement patches
for gpu-oriented view-dependent rendering. InProceedings of
GRAPP ’08, pages 181 – 190, 2008.

[17] Y. Livny, N. Sokolovsky, T. Grinshpoun, and J. El-Sana.A
gpu persistent grid mapping for terrain rendering.The Visual
Computer, 24(2):139–153, 2008.

[18] Haik Lorenz and Jurgen Dollner. Dynamic mesh refinement on
gpu using geometry shaders. InProceedings of WSCG 2008,
2008.

[19] F. Losasso and H. Hoppe. Geometry clipmaps: terrain render-
ing using nested regular grids.ACM Transactions on Graphics,
23(3):769–776, 2004.

[20] D. Luebke and C. Erikson. View-dependent simplificationof ar-
bitrary polygonal environments. InProceedings of SIGGRAPH
’97, pages 199–207, 1997.

[21] Kevin Moule and Michael D. Mccool. Efficient bounded adap-
tive tessellation of displacement maps. graphics interface 2002.
In In Graphics Interface, pages 171–180, 2002.

[22] R. Pajarola. Fastmesh: efficient view-dependent meshing. In
Proceedings of Pacific Graphics ’01, pages 22–30, 2001.

[23] A. Pomeranz. ROAM using triangle clusters (RUSTiC). Mas-
ter’s thesis, UNIVERSITY OF CALIFORNIA, 2000.

[24] J. Schneider and R. Westermann. GPU-friendly high-quality
terrain rendering.WSCG, 14(1-3):49–56, 2006.

[25] T. Ulrich. Rendering massive terrains using chunked level of
detail control. InProceedings of SIGGRAPH ’02, 2002.

[26] S. E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-
vdr: Interactive view-dependent rendering of massive models.
In Proceedings of Visualization ’04, pages 131–138, 2004.

WSCG 2009 Full papers proceedings 210 ISBN 978-80-86943-93-0

	!_WSCG2009_FULL_final_NUMBERED.pdf
	E17-full

