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ABSTRACT

Here we propose a method for medial voxel extraction from large volumetric models based on an out-of-core framework. The

method improves upon geodesic-based approaches to enable the handling of large objects. First, distance fields are constructed

from input volumes using an out-of-core algorithm. Second, medial voxels are extracted from these distance fields through

multi-phase evaluation processes. Trivial medial or non-medial voxels are evaluated by the low-cost pseudo-geodesic distance

method first, and the more expensive geodesic distance computation is run last. Using this strategy allows most of the voxels

to be extracted in the low-cost process. This paper outlines a number of results regarding the extraction of medial voxels from

large volumetric models. Our method also works in parallel, and we demonstrate that computation time becomes even shorter

in multi-core environments.
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1 INTRODUCTION

This paper outlines a method of creating medial voxels

from large CT images. A medial voxel is a volumet-

ric representation of medial surfaces or a set of voxels

across the centerline of a volume model.

Our work is motivated by the application of the tech-

nique to digital engineering [18]. Industrial companies

have recently started to utilize scanning technologies

such as X-ray CT scanners and range scanners to cre-

ate CAE or CAM models, which are used to accelerate

the engineering process. For instance, we can achieve

FEM simulation for real objects and feed the informa-

tion back to CAD models.

A primary issue to be resolved is the creation of mesh

models using scanned volumetric data from thin-plate

objects. We can obtain meshes from solid objects using

contouring algorithms [11, 8]. However, these meshes

are not good for thin-plate objects because they create

closed surfaces and it is hard to create FEM models

from them. Instead, it is better to use medial surfaces

because it is easy to create FEMmeshes from such open

structures.
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Although medial surface extraction from polygonal

models has been well documented [1, 4, 21], this cannot

be used for volumetric models, and applying polygon-

based models to isosurfaces created using the Marching

Cubes algorithm [11] remains difficult. This is because

polygon-based methods are noise-sensitive. Scanned

CT images often involve noise, and the medial sur-

faces of such models become noisy or include many

branches. In addition, the number of polygons of iso-

surfaces is usually large. This is why we choose a volu-

metric approach or compute medial surfaces from me-

dial voxels of volumetric models. In this study, we fo-

cus on how to extract medial voxels from large volu-

metric models.

Medial voxels have a clear mathematical definition

[15], and there are several methods of computing me-

dial surfaces based on this definition. However, such

definition-based methods create many branches for noisy

volumetric models. Some voxel-based methods [16, 5,

19] are suitable for our purposes because the surfaces

of engineering objects must be smooth or branchless.

Such techniques evaluate each voxel using the geodesic

distance of its nearest boundary points on boundary sur-

faces. However, these approaches are not designed for

large models. Recent progress in scanning technology

enables us to obtain high-resolution CT images, and in-

dustrial companies need high-resolution models to en-

able simulation with high accuracy. Since the size of

volume models escalates the cubic order of the resolu-

tion, it is difficult for hardware devices to keep up with

the memory usage required.
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We propose a method for medial voxel extraction

from large volumetric models based on an out-of-core

framework. The method improves upon geodesic-based

approaches to enable the handling of large objects.

Given an input model, we first compute distance fields

from the input model using an out-of-core version of

the distance transform algorithm [13]. Next, we clas-

sify input volumes into medial voxels through multi-

phase evaluation starting with low-cost tasks. Basically,

each phase evaluates whether the geodesic distance be-

tween the two nearest boundary points is longer than

a threshold. First, we introduce pseudo-geodesic dis-

tance, which is a lower bound of the geodesic distance.

This can be computed from the difference vector to the

nearest boundary points, and is completely local. In the

latter phases, we use Dijkstra’s algorithm to compute

the correct geodesic distance with high cost. Then, we

propose a method for computing tight bounding boxes

to enable correct judgment of geodesic distance in small

spaces.

The main contribution of our work lies in the design

of medial surface extraction algorithms for large vol-

umetric models. For instance, PGD-based evaluation

is a completely local operation, and bounding box es-

timation reduces the computational costs as much as

possible. These improvements directly affect perfor-

mance for large objects. In particular, the out-of-core

data structure used in the distance transform algorithm

offers a range of benefits. First, very large-sized input

models can be handled using a hard disk drive. Second,

the method works in parallel; indeed, we have imple-

mented it using multi-thread technology to allow faster

results in multi-core environments.

2 RELATEDWORK

Medial surfaces are the centerline surfaces of models

(Figure 1 shows a simple example). The left image

shows a medial surface (a set of center points in con-

tact with two or more boundary points called nearest

boundary points (NBPs)). Medial voxels are volumet-

ric representations of medial surfaces (right).

Figure 1: An example of medial surfaces(left) and me-

dial voxels(right)

Studies on medial voxel extraction come from me-

dial axis extraction in 2D. An example of such a survey

is found in [9]. The possible methods can be classi-

fied into the thinning-based approach and the distance-

based approach.

The thinning-based approach removes voxels so that

topology is preserved. Sequential thinning algorithms

[2, 6, 7] remove voxels step by step; since each step

removes only one voxel, the object’s topology is kept.

However, this approach often generates bumpy surfaces

because thinning algorithms check only local topology

information and it is difficult to obtain smooth sur-

faces. On the other hand, the parallel thinning approach

[10, 20, 12] removes many voxels or boundary voxels

at the same time, generating relatively smooth surfaces.

However, the topology management is difficult in some

cases.

The distance-field-based approach resolves these is-

sues. Prohaska and Hege proposed geodesic-based me-

dial voxel evaluation [16] (Figure 2 shows a 2D exam-

ple of this). For each voxel v, two neighboring points vi
and v j and their corresponding NBPs N(vi) and N(v j)
are picked. It is considered that a voxel tends to be me-

dial if the geodesic distance between N(vi) and N(v j)
is longer (because the NBPs of medial voxels are lo-

cated on opposite surfaces), while the distance for non-

medial voxels is shorter. This technique computes me-

dial voxels using these criteria. Since geodesics rep-

resent global information, this method is robust for

noise, and hardly any unnecessary branches are gener-

ated. However, two neighboring voxels are specified for

evaluation, meaning that the thickness may change ac-

cording to the surface direction. While this is sufficient

for visualization purposes, it is not good for surface re-

construction. Fujimori et al. extended the above algo-
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Figure 2: Geodesic-based medial voxel classification.

rithm in [5] to improve surface precision. Their method

defines cells between neighboring voxels and finds the

NBPs of these cells. Since such cells cover the voxel

completely, the method is robust for direction, and the

thickness is always one.

An alternative technique is the polygon-based ap-

proach, which obtains surface polygons of input vol-

umes by contouring, and computes medial surfaces

from these polygons. An example of this is the direct

computation from polygons proposed in [1, 3, 17, 21].

However, surface polygons created from CT images

have many and ill-shaped triangles, thus creating com-

plex results. In addition, the quality of the medial sur-
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Figure 3: An overview of our algorithm.

face affects that of the surface polygons, and many

branches are also generated.

3 MEDIAL VOXEL EXTRACTION

FOR LARGE VOLUMES

3.1 Overview

Our method is inspired by the geodesic-based medial

voxel extraction method proposed in [16, 5, 19]. A cell

is evaluated as a medial voxel if the geodesic distance

of the NBPs at that point is longer than the thresh-

old, as shown in Figure 2. We suppose the input vol-

ume model is too large to fit into the memory. Figure

3 shows an overview of this algorithm. Input in this

method involves a binarized volumetric model usually

obtained by CT scanners in our research. The tech-

nique consists of two phases, the first of which is a

distance field computation from binary images. Here,

we compute not only distance values but also vector

fields defined by the difference vector to the NBPs.

The second phase involves medial voxel classification

from distance fields. The main concept of this phase

is to apply multi-phase evaluation with the aim of re-

ducing memory usage. All voxels are first evaluated

by pseudo-geodesic distance (PGD) a process in which

trivial medial and non-medial voxels can be classified.

Next, the remaining voxels are evaluated through a cor-

rect geodesic-based method equivalent to Dijkstra’s al-

gorithm with high cost. Then, we introduce a method

of creating bounding boxes to reduce the computational

costs of correct geodesic length computation as much as

possible.

Notation

In this paper, italics represent scalar values, and bold

text indicates vector values. For instance, v denotes a

coordinate in volumetric space, and d(v) denotes the
distance field value at v. d(v) denotes the distance
vector or the difference vector to the nearest boundary

point N(v) or d(v) = N(v)−v.

3.2 Computing distance fields

Distance fields are first generated from binarized input

models. We use out-of-core distance transforms [13]

(an out-of-core framework for distance field computa-

tion) to compute these distance fields. This method de-

composes an input model into sub-blocked clusters and

applies distance transforms for each cluster. Inconsis-

tency in distances between clusters can be resolved by

inter-cluster propagation, and the propagated clusters

are subjected to distance transform again. The advan-

tages of this method include its ability to compute large

and exact distance fields with lowmemory usage and its

capacity to work in parallel. In our implementation, we

compute the difference vector to the nearest boundary

point to enable easy identification of NBPs.

3.3 Multi-phase medial voxel classifica-

tion algorithm

Once the difference vector fields have been obtained,

medial voxels are extracted from them.

Our strategy takes a multi-phase evaluation approach.

In the first phase, obviously medial and non-medial

voxels are evaluated using a rough but low-cost process.

In the second phase, the remaining voxels are evalu-

ated using a correct but expensive method. Angle-based
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evaluation [4] belongs to the first case, while the correct

geodesic-based method [16, 5, 19] would belong to the

latter case. In this paper, we introduce pseudo-geodesic

distance – a combination of the above two methods – to

accelerate evaluation.

In this method, we evaluate dual cells of voxels (Fig-

ure 4 shows a 2D example) as the number of neighbor-

ing voxels can be reduced from 26 to 8. For each dual

voxel p, we find the voxel pair (vi,v j) for which the
angle of d(vi) and d(v j) is the largest. Then, we need
to check only the four cases located at the diagonal po-

sitions. This is because the angle between the distance

vectors of diagonal voxels must be larger if medial sur-

faces exist. When the voxel pair (vi,v j) is found, we
can obtain the nearest boundary points N(vi) and N(v j)
and apply the processes outlined below for evaluation.

dual voxel primal voxel

Figure 4: Dual voxels (2D). Extension to 3D is straight-

forward.

Threshold ε

Here we derive a threshold ε from the user-given thick-

ness τ . If a voxel is a medial voxel, its NBPs are usually

located on opposite surfaces. The minimum geodesic

distance of NBPs ε is then a half circle length as fol-

lows (Eq. 1):

ε =
πτ

2
. (1)

Trivial non-medial voxel elimination

If two NBPs are 26-neighbors to each other, it is clear

that the voxel is not a medial voxel (Figure 5), so such

voxels must be eliminated first. Since we use vector

distance transforms to manage the difference vectors,

NBPs can be obtained from the point and distance vec-

tors of neighboring voxels.

Figure 5: 26-neighbor NBPs imply that the voxel is a

non-medial voxel.

Pseudo-geodesic distance

Pseudo-geodesic distance (PGD) is a simplified version

of geodesic distance without Dijkstra’s algorithm(Figure

6). Given a point v and its NBPs, PGD g̃(v) is defined
as follows (Eq. 2):

g̃(v) = d(v)θ , (2)

where θ denotes the angle between d(vi) and d(v j).
Note that this can be computed only for neighboring

voxels, making it a local operation.

correct geodesic distance

pseudo geodesic distance

Figure 6: Pseudo-geodesic distance.

PGD can be used for medial voxel evaluation instead

of CGD. If PGD is larger than a certain threshold ε , the

voxel is considered medial because it represents a lower

bound of CGD. A brief proof can be derived from the

definition of distance fields or there is no point q on

the correct geodesic path betweenN(vi) andN(v j) such
that ||v−q||< d(v). If CGD is shorter than PGD, point
q must exist on the inside of the arc. This is why CGDs

are always longer than PGDs.

Optimal bounding box estimation for computing cor-

rect geodesic distance

Some voxels are not classified into medial or non-

medial voxels by the PGD-based evaluation outlined in

the previous subsection; conventional correct geodesic

evaluation algorithms are applied to the remaining vox-

els. Note that correct geodesic paths are not required

here. We simply need to know whether the geodesic

distance is longer than the threshold. Here, we intro-

duce a tight bounding box to detect any geodesic paths

shorter than the threshold ε . The basic idea is to esti-

mate the region of the points at which the geodesic path

q can exist. Suppose we know point v, its distance d

and the two NBPs N(vi) and N(v j); in this case, we can
specify the region as follows:

• q can exist within an ellipsoid or ||N(vi) − q||+
||N(v j)−q|| < ε .

• q never exists on the inside of a sphere with center

point v and radius d(v) or ||v−q|| > d(v).

By compositing these criteria, we can obtain the region

where the path point q exists. A tight bounding box is

then formed, as shown in Figure 7 (a). However, the

computation of the bounding box shown in Figure 7 (a)
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is not simple, and we use a simple bounding box of a

bounding sphere for an ellipsoid with center point c =
1
2
(N(vi)+N(v j)) and a radius of ε

2
as an alternative (as

shown in Figure 7 (b)). Note that the bounding box of

the ellipsoid (in light blue) is also simple, and a tighter

bounding box can be obtained.

The region where
boundary voxels must not exist

The region where
boundary voxels may exist

q

v

N(v
j
)

d(v)

(a) Optimal box

Bounding sphere of an ellipsoid

N(v
i
)

N(v
j
)

c

(b) Simplified box

Figure 7: Estimation of bounding boxes for correct

geodesic distance computation.

Once the bounding box is obtained, Dijkstra’s algo-

rithm is run from one NBP (the source point) to the

other NBP (the target point), and evaluation is per-

formed as follows:

• If the propagation reaches the target point, v is eval-

uated as a non-medial voxel if the distance is shorter

than ε , otherwise it is a medial voxel.

• If propagation is stopped before reaching the target

point, v is evaluated as a medial voxel.

4 RESULTS AND DISCUSSION

We implemented the above algorithm on a Win32 ex-

ecutable. Figure 8 shows the experimental results for

large CT images of engineering objects. (a) shows

input voxels, and (b) shows extracted medial voxels.

White voxels represent those extracted through pseudo-

geodesic distance-based evaluation, while voxels in red

are those extracted using correct geodesic distance-

based evaluation. (c) shows the intersection of medial

voxels, with medial voxels in red and non-medial vox-

els in white. We can see that it is possible to compute

medial voxels from large scanned models.

Since the pseudo-geodesic distance guarantees the

lower bound of the correct geodesic distance, a set

of medial voxels obtained by this pseudo metric be-

comes a subset of medial voxels obtained by the correct

geodesic distance. In addition, it is clear that voxels

with NBPs that are in contact with each other are not

medial voxels. Thus, the results are the same as those

of the correct geodesic-based method.

The choice of a threshold ε or a thickness τ affects

quality. The algorithm becomes noise-sensitive with

small values of ε , but the computation time is faster be-

cause the bounding boxes become smaller. On the other

hand, the algorithm becomes noise-robust for large val-

ues of ε , but computation is slower. In addition, the

boundaries of surfaces will be shrunk.

Table 1 shows a number of related statistics. Most of

the computation time required is used for medial voxel

classification, and the time taken depends on the thick-

ness. However, the classification process is independent

of other voxels. Indeed, we developed this prototype for

a multi-core environment. We confirmed that the speed

of the two-thread mode is 1.5 times faster than that of

a single thread. However, the result for many threads is

somewhat slow (1.8 times faster for four-thread, twice

faster for eight-thread), which can be attributed to par-

allelization for each cluster. This means that the speed

depends on the computation time of the cluster, which

is why the speed is not as fast as we had expected.

It should be noted that about 60% of foreground vox-

els are judged at the pseudo-based evaluation stage.

This means that most voxels are locally processed, in-

dicating that our pseudo-metric contributes to cost re-

duction.

Our method has a number of limitations. First, cur-

rent implementation allows the user to specify only one

threshold or the thickness of thin plates. If CT im-

ages involve two or more thickness values, the quality

may deteriorate. For instance, a threshold that is too

small will result in branches(Figure 9(a)), and values

that are too large will create shrinkage of medial sur-

faces(Figure 9(b)). Distance fields will be used to esti-

mate thickness, as this allows adaptive specification of

a good threshold so that branches and shrinkage do not

appear. The other issue is the input data used; the sup-

position of input models as binary images means that

some grayscale information is lost.

5 CONCLUSION

We have introduced a medial voxel extraction algorithm

for large objects using a multi-phase evaluation strat-

egy. Each voxel is first classified by pseudo-geodesic

distance evaluation, which works locally and enables

the identification of trivial medial and non-medial vox-

els. The remaining voxels are classified using the con-

ventional geodesic evaluation algorithm. We also intro-

duced a method of constructing tight bounding boxes

to evaluate correct geodesic length at low cost, and ap-

plied the technique to several examples to show that

large medial voxels can be computed. In addition, the

method works in parallel, and faster results in multi-

core environments were confirmed.

In future work, we plan to develop a method to

automatically reconstruct CAX models of thin-plate

large engineering objects. To this end, we aim to de-

velop medial surface reconstruction from medial vox-

els. Since our algorithm still involves the formation of

small branches, we would like to remove these in the

surface reconstruction phase. For instance, weighted
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(a) input

(b) Medial voxels (Red: medial voxels obtained by correct geodesic distance evaluation. White: medial voxels obtained by

pseudo-geodesic distance evaluation)

(c) Intersection (Red: medial voxels)

Figure 8: Experimental results for crushed side-frame (left) and cylinder-head (right) CT images

Resolution Parameters Time (min.) Persentage (%)

Name (#clusters) τ Pseudo DF Medial Sum Pseudo Correct

Transmission cover 1,500 x 1,500 x 668 3 y 11.56 37.71 49.28 70.38 29.62

(10 x 10 x 7)

Crushed side frame 708 x 965 x 325 3 y 2.50 18.43 20.92 66.95 33.05

(7x9x3) 3 n 2.48 53.80 56.28 N/A 100.00

2 y 2.49 9.42 11.91 73.07 26.93

Table 1: Time comparison with different numbers of threads (measured on an Intel Xeon 3.16 GHz *2). DF :

distance field computation time. Medial : Medial voxel evaluation time.



Medial voxel

(a) small ε

Non-medial voxel

(b) large ε

Figure 9: Choice of ε makes (a) branches or (b) shrink-

age of medial surfaces.

Delaunay triangulation for polygonization of point sets

[14] may be suitable for this purpose.
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