
 Hardware Pipeline for Rendering Clouds of
Circular Points

Adam Herout

Faculty of Information Technology
Brno University of Technology

Božet�chova 2
 612 00 Brno, Czech Republic

herout@fit.vutbr.cz

Pavel Zem�ík
Faculty of Information Technology

Brno University of Technology
Božet�chova 2

 612 00 Brno, Czech Republic

zemcik@fit.vutbr.cz
ABSTRACT

This paper presents an algorithm for image rendering using FPGA (Field-Programmable Gate Arrays). The image
is rendered by an FPGA chip coupled with a DSP (Digital Signal Processor) on an experimental board. The
graphical data is 3D point-clouds – sets of particles that are from the geometrical point of view oriented ellipses
in 3D space. Such scene representation seems to be more suitable for potentially many purposes than the most
commonly used triangle meshes. The actual experimental implementation which verifies the concept and shows
promising results is described.

Keywords
point clouds, rendering, FPGA, hardware acceleration

1. INTRODUCTION
The developers of graphics applications can rely on
the presence of accelerated graphics engines in the
computers. However, it is quite unfortunate from the
point of view of choice of graphics and imaging
algorithms that the function of the graphics
accelerators is usually quite strictly limited to
rendering of planar triangles/polygons and limited
choice of shading and texture algorithms and it is
usually impossible to use them for implementation of
any other algorithms. At the same time, the real
research of such high-performance graphics
subsystems is being done by the manufacturers and
by only a limited number of affiliated institutions,
such as research laboratories and universities.

A reasonable way forward was offered by the
recent development of Field Programmable Gate
Arrays (FPGAs). Current technological progress
allows implementation of even very complex devices
in the programmable logic devices and achieving

good results even with architectures and algorithms
that are not supported by the traditional computer
graphics manufacturers.

This paper presents a hardware architecture for
real-time high quality rendering of point-based
graphical scenes [Gro02, Pfi00, Zwi01]. By a particle
we mean a surface element (also referred to as surfel
or point, element) defined by x,y,z coordinates,
nx,ny,nz normal, size, and color. The design is based
on an FPGA chip, hosted on a multi-purpose board
featuring the FPGA chip, DSP (Digital Signal
Processor), DRAM and SRAM memory. Common
graphical accelerators (designed to efficiently render
polygon-based entities) are unsuitable for this
purpose since they do not offer any good way of
transferring simple point/particle data. Transfer of
triangle vertex data is effective enough (rasterization
algorithms are far more time consuming than the
transfer itself) but the process of rendering points
using this common hardware faces the bottleneck of
data stream bandwidth [Gro02]. Some manufacturers
of the graphics hardware are accepting the above
mentioned trend and are already experimenting with
the particles and programmable logic [Mit03].

Probably the most feasible geometrical
representation of the scene element (particle) is an
oriented circle whose projection is an ellipsis. The
rendering algorithm can be subdivided into several
principal parts:

1. Projection of the particles’ positions into 2D
screen space and Z co-ordinate and computation

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG 2005 conference proceedings ISBN 80-903100-7-9
WSCG’2005, January 31-February 4, 2005
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

of the corresponding particles’ projected normal
and radius. This is merely 3D projection that is
implemented using a transformation matrix
multiplication (see e.g. [Wat93]).

2. Evaluation of the particles’ color (lightness)
based on the projected normal vector, local
lighting model (material), and the light sources’
and observer’s parameters. This task is
implemented through a precalculated color
(lightness) table indexed by the quantized normal
vector.

3. Rendering of the particles into the image frame
buffer (one-by-one with visibility solved using
depth-buffer). This task is done through
specialized circuits programmed into the FPGA
and is described in more details below.

In the proposed approach, parts 1 and 2 are
performed through the host processor (DSP) while
the part 3 which is the actual rendering is performed
through programmable hardware in the FPGA and
supported by the host DSP only in terms of data flow
organized through the host processor’s DMA (direct
memory access) channels.

The particle rendering engine being described is
the “simplistic” implementation of the proposed
rendering architecture. It should be seen rather as a
“proof of concept” than as the full-scale
implementation. For this reason, maximum possible
rendering subtasks were left on the host DSP
processor. (However, they can eventually be moved
into the FPGA.)

The block diagram of the rendering engine is
shown in Figure 1. It is based on the above
constraints and uses the Texas Instruments C6711
DSP [TMS01] as the host processor that handles the
particles and performs the above rendering subtasks.
The DSP then transfers the particle data into the
Xilinx Virtex E-300 FPGA [Vir01] through DMA
block memory transfer. The particle data comprises
the coordinates, encoded shape (described below),
and color information.

2. RENDERING ALGORITHM
As each particle generally affects large number of
pixels, it is desirable to have the frame and depth
buffers distributed in several memory banks that can
be accessed in parallel in order to parallelize the
rendering process. To achieve efficient parallelization
of rendering, it must be ensured that the particles
affect minimum possible number of words in the
memory banks and at the same time that the affected
words are as uniformly as possible distributed in all
memory banks. The constraints in the FPGA led us to
the decision to use 8 memory banks with 8 bits for

color and 8 bits for the depth value (with the possible
extension to 32 bits for four 8-bit pixels).

Figure 1. Rendering engine block diagram
Our research [Her04, Zem03] performed up till

now resulted in the following concept of “striping”.
The basic idea of this algorithm is to let the FPGA
handle one horizontal stripe (a portion of the frame-
buffer covering several subsequent scan-lines) and
render particles coming from the particle source into
it. The particle source ensures particles come in a
predefined order – with increasing y (i.e. vertical)
coordinate. The stripe is then moving vertically
across the frame-buffer by one line, rendering all
particles and covering the whole frame-buffer area.
Each move-down of the stripe consists of two steps:
a) flushing the top-most line to the global frame-
buffer, and b) re-using it as a fresh bottom line for the
next stripe position. To avoid delays caused by
flushing of the finished lines, more color-buffer lines
are allocated, allowing the rendering to proceed
continually – see Figure 2.

Figure 2. The striping algorithm
The presumption of the particles being sorted

into groups by one coordinate and in a particular
order is not too restrictive. The particles can be
sorted into this form easily, provided the system
contains a memory buffer large enough to store all
the particles in the scene. Such memory does not
necessarily have to provide high-bandwidth random
access, and it does not need to be connected to the
FPGA closely as each of the particles is needed by

��������		

�����	���
	

�����	������	���
	�����	��	������	������	

�����������	���
	�����	��
���	

�������	

�����	

����������	

�������	
������	

����	
����
���	
��������	

 �
����!��	

"����	
������	

#����		
������	

#�
���	
�����
�	

�������	 ��������	��
��� 	

the FPGA during the rendering only once and in a
defined order. This memory can contain particle lists
for each line of the frame buffer and sort incoming
particles into them (see Figure 3). The process of
sending the particles into the rasterizing FPGA will
be started after receiving all particles of the scene.

Figure 3. Sorting particles by their y-coordinate
Incorporating these mechanisms together with a

rasterization pipeline rasterizing the shapes of the

particles (ellipses) may result in an architectural
design similar to the one shown in Figure 5, based on
a “particle writing machine” in Figure 4.

Figure 4. Particle writing machine
utilizing the striping

The particle writing machine embodies the
following operations:

operation arguments description
write-particle x, d,

color, shape
Writes particle of given properties (d=depth, shape – encoded into a
small number of bits by a suitable algorithm).
Note that the y coordinate is determined by the state of the writing
machine – the number of calls to the new-line operation.

new-line Disposes the “oldest” line of the stripe, starts flushing into the frame-
buffer, and activates the next free spare color-buffer line.

start-at-line y Starts a new frame, skips y first lines without particles (filled with
background color).
This operation may well exist without the argument, only starting a new
frame – it would be then followed by appropriate number of subsequent
calls to new-line.

Table 1. Basic operations of the particle writing machine

Figure 5. Over-all rasterizer design, consisting of a particle source incorporating the
rasterization process, of the particle memory sorting particles by their y-coordinate

and the striping writer

$		

�	

��	

�	

��	

$	��� �� �����

�������	

�����	

"��� �	
������	

�������	� �����	

"�%�	

�����������	&	
'(��	�(

�������	

�����	

"����	
������	

�������	� �����	

(������	� ������	

��������	
�����

	

������������	

�	�����	

����	�������	

)	

*	

�������*	

������	

�������	
+,	�,	����- 	

 ��������	
#�����	

*.	

/.	

0.	

3. EXPERIMENTAL HARDWARE
IMPLEMENTATION

For the hardware implementation, FPGA Xilinx
Virtex E 300 has been used. In the future, Virtex II is
planned to be used instead. Hardware design
programmed in the FPGA consists of particle
reader/writer, pixel reader/writer, frame and depth
buffers and the viewing engine. FPGA input
frequency is 100 MHz, but for the major part of the
design, 50 MHz is used. Accessing time to the SRAM
(used as a video-RAM) is 15 ns. This memory and
ADV 478 chip (D/A converter and palette memory)
are placed outside the FPGA. There is also 16 MB
SDRAM placed at the board used by the DSP. This
SDRAM runs at 100 MHz.

The Display Refresh Subsystem takes care
about correct viewing of an image placed in the
SRAM and its writing into this memory.

Every pixel clock period, data are read from the
memory (address is the counter automatically
incremented every pixel clock cycle). Meanwhile,
shared data bus is put to the third state at the side of
FPGA, so that data from the memory could be read
by the ADV 478 chip. Pclk rising edge ensures the
data on this bus to be converted to analog format
suitable for a TV or a monitor.

 Figure 6. Experimental implementation
block scheme

Between every two pixels read for the TV out, it
is possible to place one read or write cycle from/to
SRAM. Such cycle is used for reading the image to
the DSP and writing pixels into the RAM. The
writing requests come from two sources – pixel writer
(pixels written directly from the DSP) and frame
buffer of the particle writer.

SRAM is organized as a two-bank video RAM in
order to implement double-buffering: while writing
an image to one bank, the second bank is being
shown on the screen and vice versa.

An extension to the striping particle writer
concept as presented in section 2 is the Pixel
Reader/Writer unit, which allows accessing the

SRAM frame-buffer directly from the DSP. It simply
gets data and address from the DSP and writes to the
SRAM through the viewing engine. This operation
may be used for writing additional information to the
screen. It is also possible to read the data from the
memory, and e.g. store the image in the DSP
controlled memory for future use. However, this
means of access to the frame-buffer is meant
primarily for debugging and testing purposes, it is not
very fast, since any request through this port waits to
be synchronized with monitor refresh and the particle
writer.

Functional description of the Particle Writer
unit is described in the theoretical part of this article.
Hardware implementation consists of few state
machines using two groups of block RAMs – one for
the frame buffer and one for the depth-buffer.

Figure 7. Particle Writer
When a particle description is sent from the

DSP, it is processed by the register decoder. Base
horizontal coordination is set to its position, and two
counters are running to define the exact position of
the current processed pixel. One counter runs from
zero to maximum and displays the upper part of the
particle. Second counter runs from maximum to zero
and displays the lower mirrored part. Writing engines
start writing reacting to the start write signal. While
processing, data are read from the depth-buffer, and
writing engines decide whether to write (both to the
frame and the depth-buffer) or not by comparing the
actual depth with the depth from the depth-buffer.
Reading from the depth-buffer must start some cycles
before the writing process due to the memory read
latency.

When the special code word is written by the
DSP, writing is moved to the next line and flushing of
the processed line is started – data from the Block-
RAM are written to the SRAM through the viewing
engine.

4. ACHIEVED RESULTS
The proposed algorithm was fully implemented on an
experimental setup shown below in Figure 8, that
uses the Camea DX6 board [Cam03]. Current
maximal number of particles rendered by the FPGA
is 5 million per second. This number comes out from

�������	

 ���
���	
#������	

 ����
�	
�������	

#��	
����.	

�����

���	�

#���������	 ���������	

���
�

�����

����	

����	

����,	
����	

����	1����	
����.	����	

"�
����	
"�2	

��
���	

��
�
.	

����	��
�	

�� ���	
����	

*3	���
	
�����������	

*3	���
	
������������	

��+�	
 �����4	
(�����	

#��	
����.	

#��	
����

�������	
(�����	

� �2	

 #	
(

���� �#5	678	

95	
��� �
���,	

�
���

���

����

����,	

����,	
����

"�%�	

#�
���	
 ����
�	
���
�
.	

the clock period which is 20 ns, and the number of
cycles required for showing one particle. One column
of a particle is written in one period, and two periods
are required for pre-reading the depth-buffer data.
Totally 10 periods are 200 ns per particle.

Of course, possibilities exist to improve the
performance. Using more advanced FPGA chip (for
example Virtex II) would lead into higher possible
frequency (we assume at least 100 MHz). Another

possibility is to parallelize writing to the memory by
setting the width of the data bus to the Block-RAMs
from 8 bits to 32 bits. Extra logic for treating this
situation would be needed, but speed-up ratio would
be up to four. We could also avoid the depth-buffer
reading latency by pipelining. Finally, we could show
one particle in 2 clock cycles (10 ns), which means
speedup up to 10 times from the current state to 50
million particles per second, still using standard off-
the-shelf components.

Figure 8. Experimental setup displaying a medical data set

5. CONCLUSION
In this paper, a rendering system based on

Xilinx Virtex E-300 FPGA and Texas Instruments
C6711 DSP was described. The system implements
a modern 3D point-cloud rendering algorithm and is
fully functional. 3D point cloud graphics seems to
be a concept of close future for visualization and
realistic rendering, partially replacing the most
common approach at the moment – triangle meshes.

The proposed rasterization algorithm solves the
rendering task including the visibility issues
between the particles inside the FPGA in order to
achieve high performance. A part of the projection
phase is left to the host task being performed by the
DSP. While this solution leaves space for further
hardware acceleration, it was chosen as the best
possible approach to test the concept.

Hardware implementation in the FPGA
contains control subsystems treating read and write
cycles of the video-RAM, pixel writer and the
particle writer. The particle writer unit consists of
eight pixel writers that write the data to the internal
Block RAMs, the flushing unit that transfers the
image to the video SRAM, and of the DSP bus
interface.

Current speed of particle drawing is 5 million
per second. Changes that could increase this number
up to 50 million still using currently available
general purpose components are proposed.
However, this implementation is considered to be
rather a proof-of-concept than a final graphics
acceleration solution. The Virtex II Pro Xilinx
FPGA that is to come should allow further
optimizations and may be ground for a graphical
hardware challenging graphics equipment of
desktop computers.

6. ACKNOWLEDGMENTS
This work was partly supported by the “Rapid
prototyping tools for development of HW-
accelerated embedded image- and video-processing
applications”, GA AV�R, T400750408 grant.

7. REFERENCES
[Cam03] “DSP Accelerator Boards”, CAMEA,

Ltd., (available at
http://www.camea.cz/products/accelerators.cz.htm)

[Her04] Herout, A, Zemcik, P: Animated Particle
Rendering in DSP and FPGA. In: SCCG 2004
Proceedings, Bratislava, SK, 2004, pp 237-242,
ISBN 80-223-1918-X

[Gro02] Gross, M: “Point Based Computer
Graphics”, Spring Conference of Computer
Graphics 2002, Budmerice, Slovakia, 2002

[Mit03] Mitsubishi Electric Research Laboratories:
“SURFELS - Surface Elements as Rendering
Primitives, (available at
http://www.merl.com/projects/surfels/)

[Pfi00] Pfister, H, Zwicker, M, van Baar, J, Gross,
M: Surfels: Surface Elements as Rendering
Primitives. Proceedings of SIGGRAPH 2000,
pp 335-342

[Ree83] Reeves, WT: “Particle Systems – A
Technique for Modeling a Class of Fuzzy

Objects”, ACM Transactions on Graphics, Vol.
2, No. 2, April 1983

[Rus01] Rusinkiewicz, S: “QSplat: A
Multiresolution Point Rendering System for
Large Meshes”, Proceedings of SIGGRAPH
2001, USA, 2001

[TMS01] TMS3B0C6711, TMS320C6711B
Floating point Digital Signal Processors, Texas
Instru-ments, SPRS088B, September 2001,
USA, 2001, (available at http://www.ti.com)

[Vir01] VirtexTM 2.5V Field Programmable Gate
Arrays, Xilinx, DS003-1 (v2.5), April 2, 2001,
USA, 2001, (available at http://www.xilinx.com)

[Wat93] Watt A.: 3D Computer Graphics, Addison-
Wesley, Wokingham, UK, 1993

[Zem02] Zemcik, P: “Hardware Acceleration of
Graphics and Imaging Algorithms Using
FPGAs”, SCCG 2002, Budmerice, Slovakia,
2002

[Zem03] Zemcik, P, Tisnovsky, P, Herout, A:
“Particle Rendering Pipeline”, SCCG2003, Bud-
merice, Slovakia, 2003

[Zwi01] Zwicker, M, Pfister, H, van Baar, J, Gross,
M: “Surface Splatting” In: Proceedings of
SIGGRAPH 2001, ACM SIGGRAPH, Los
Angeles 2001

	IPC_2005.pdf
	IPC_2005.pdf

	!WSCG_2005_FULL_stamped.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	!WSCG_2005_FULL.pdf
	E53-full.pdf
	E53-full.pdf

	J83-full.pdf

