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ABSTRACT 

This paper presents an algorithm for image rendering using FPGA (Field-Programmable Gate Arrays). The image 
is rendered by an FPGA chip coupled with a DSP (Digital Signal Processor) on an experimental board. The 
graphical data is 3D point-clouds – sets of particles that are from the geometrical point of view oriented ellipses 
in 3D space. Such scene representation seems to be more suitable for potentially many purposes than the most 
commonly used triangle meshes. The actual experimental implementation which verifies the concept and shows 
promising results is described. 
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1. INTRODUCTION 
The developers of graphics applications can rely on 
the presence of accelerated graphics engines in the 
computers. However, it is quite unfortunate from the 
point of view of choice of graphics and imaging 
algorithms that the function of the graphics 
accelerators is usually quite strictly limited to 
rendering of planar triangles/polygons and limited 
choice of shading and texture algorithms and it is 
usually impossible to use them for implementation of 
any other algorithms. At the same time, the real 
research of such high-performance graphics 
subsystems is being done by the manufacturers and 
by only a limited number of affiliated institutions, 
such as research laboratories and universities. 

A reasonable way forward was offered by the 
recent development of Field Programmable Gate 
Arrays (FPGAs). Current technological progress 
allows implementation of even very complex devices 
in the programmable logic devices and achieving  
 

good results even with architectures and algorithms 
that are not supported by the traditional computer 
graphics manufacturers. 

This paper presents a hardware architecture for 
real-time high quality rendering of point-based 
graphical scenes [Gro02, Pfi00, Zwi01]. By a particle 
we mean a surface element (also referred to as surfel 
or point, element) defined by x,y,z coordinates, 
nx,ny,nz normal, size, and color. The design is based 
on an FPGA chip, hosted on a multi-purpose board 
featuring the FPGA chip, DSP (Digital Signal 
Processor), DRAM and SRAM memory. Common 
graphical accelerators (designed to efficiently render 
polygon-based entities) are unsuitable for this 
purpose since they do not offer any good way of 
transferring simple point/particle data. Transfer of 
triangle vertex data is effective enough (rasterization 
algorithms are far more time consuming than the 
transfer itself) but the process of rendering points 
using this common hardware faces the bottleneck of 
data stream bandwidth [Gro02]. Some manufacturers 
of the graphics hardware are accepting the above 
mentioned trend and are already experimenting with 
the particles and programmable logic [Mit03]. 

Probably the most feasible geometrical 
representation of the scene element (particle) is an 
oriented circle whose projection is an ellipsis. The 
rendering algorithm can be subdivided into several 
principal parts: 

1. Projection of the particles’ positions into 2D 
screen space and Z co-ordinate and computation 
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of the corresponding particles’ projected normal 
and radius. This is merely 3D projection that is 
implemented using a transformation matrix 
multiplication (see e.g. [Wat93]). 

2. Evaluation of the particles’ color (lightness) 
based on the projected normal vector, local 
lighting model (material), and the light sources’ 
and observer’s parameters. This task is 
implemented through a precalculated color 
(lightness) table indexed by the quantized normal 
vector. 

3. Rendering of the particles into the image frame 
buffer (one-by-one with visibility solved using 
depth-buffer). This task is done through 
specialized circuits programmed into the FPGA 
and is described in more details below. 

In the proposed approach, parts 1 and 2 are 
performed through the host processor (DSP) while 
the part 3 which is the actual rendering is performed 
through programmable hardware in the FPGA and 
supported by the host DSP only in terms of data flow 
organized through the host processor’s DMA (direct 
memory access) channels. 

The particle rendering engine being described is 
the “simplistic” implementation of the proposed 
rendering architecture. It should be seen rather as a 
“proof of concept” than as the full-scale 
implementation. For this reason, maximum possible 
rendering subtasks were left on the host DSP 
processor. (However, they can eventually be moved 
into the FPGA.)  

The block diagram of the rendering engine is 
shown in Figure 1. It is based on the above 
constraints and uses the Texas Instruments C6711 
DSP [TMS01] as the host processor that handles the 
particles and performs the above rendering subtasks. 
The DSP then transfers the particle data into the 
Xilinx Virtex E-300 FPGA [Vir01] through DMA 
block memory transfer. The particle data comprises 
the coordinates, encoded shape (described below), 
and color information. 

2. RENDERING ALGORITHM 
As each particle generally affects large number of 
pixels, it is desirable to have the frame and depth 
buffers distributed in several memory banks that can 
be accessed in parallel in order to parallelize the 
rendering process. To achieve efficient parallelization 
of rendering, it must be ensured that the particles 
affect minimum possible number of words in the 
memory banks and at the same time that the affected 
words are as uniformly as possible distributed in all 
memory banks. The constraints in the FPGA led us to 
the decision to use 8 memory banks with 8 bits for 

color and 8 bits for the depth value (with the possible 
extension to 32 bits for four 8-bit pixels). 

 

 

Figure 1. Rendering engine block diagram 
Our research [Her04, Zem03] performed up till 

now resulted in the following concept of “striping”. 
The basic idea of this algorithm is to let the FPGA 
handle one horizontal stripe (a portion of the frame-
buffer covering several subsequent scan-lines) and 
render particles coming from the particle source into 
it. The particle source ensures particles come in a 
predefined order – with increasing y (i.e. vertical) 
coordinate. The stripe is then moving vertically 
across the frame-buffer by one line, rendering all 
particles and covering the whole frame-buffer area. 
Each move-down of the stripe consists of two steps: 
a) flushing the top-most line to the global frame-
buffer, and b) re-using it as a fresh bottom line for the 
next stripe position. To avoid delays caused by 
flushing of the finished lines, more color-buffer lines 
are allocated, allowing the rendering to proceed 
continually – see Figure 2. 

 

Figure 2. The striping algorithm 
The presumption of the particles being sorted 

into groups by one coordinate and in a particular 
order is not too restrictive. The particles can be 
sorted into this form easily, provided the system 
contains a memory buffer large enough to store all 
the particles in the scene. Such memory does not 
necessarily have to provide high-bandwidth random 
access, and it does not need to be connected to the 
FPGA closely as each of the particles is needed by 
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the FPGA during the rendering only once and in a 
defined order. This memory can contain particle lists 
for each line of the frame buffer and sort incoming 
particles into them (see Figure 3). The process of 
sending the particles into the rasterizing FPGA will 
be started after receiving all particles of the scene. 

 

Figure 3. Sorting particles by their y-coordinate 
Incorporating these mechanisms together with a 

rasterization pipeline rasterizing the shapes of the 

particles (ellipses) may result in an architectural 
design similar to the one shown in Figure 5, based on 
a “particle writing machine” in Figure 4. 

 

Figure 4. Particle writing machine  
utilizing the striping 

The particle writing machine embodies the 
following operations: 

operation arguments description 
write-particle x, d, 

color, shape 
Writes particle of given properties (d=depth, shape – encoded into a 
small number of bits by a suitable algorithm). 
Note that the y coordinate is determined by the state of the writing 
machine – the number of calls to the new-line operation. 

new-line  Disposes the “oldest” line of the stripe, starts flushing into the frame-
buffer, and activates the next free spare color-buffer line. 

start-at-line y Starts a new frame, skips y first lines without particles (filled with 
background color). 
This operation may well exist without the argument, only starting a new 
frame – it would be then followed by appropriate number of subsequent 
calls to new-line. 

Table 1. Basic operations of the particle writing machine 

 
Figure 5. Over-all rasterizer design, consisting of a particle source incorporating the 
rasterization process, of the particle memory sorting particles by their y-coordinate 

and the striping writer 
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3. EXPERIMENTAL HARDWARE 
IMPLEMENTATION 

For the hardware implementation, FPGA Xilinx 
Virtex E 300 has been used. In the future, Virtex II is 
planned to be used instead. Hardware design 
programmed in the FPGA consists of particle 
reader/writer, pixel reader/writer, frame and depth 
buffers and the viewing engine. FPGA input 
frequency is 100 MHz, but for the major part of the 
design, 50 MHz is used. Accessing time to the SRAM 
(used as a video-RAM) is 15 ns. This memory and 
ADV 478 chip (D/A converter and palette memory) 
are placed outside the FPGA. There is also 16 MB 
SDRAM placed at the board used by the DSP. This 
SDRAM runs at 100 MHz. 

The Display Refresh Subsystem takes care 
about correct viewing of an image placed in the 
SRAM and its writing into this memory.  

Every pixel clock period, data are read from the 
memory (address is the counter automatically 
incremented every pixel clock cycle). Meanwhile, 
shared data bus is put to the third state at the side of 
FPGA, so that data from the memory could be read 
by the ADV 478 chip. Pclk rising edge ensures the 
data on this bus to be converted to analog format 
suitable for a TV or a monitor. 

 

 Figure 6. Experimental implementation 
block scheme 

Between every two pixels read for the TV out, it 
is possible to place one read or write cycle from/to 
SRAM. Such cycle is used for reading the image to 
the DSP and writing pixels into the RAM. The 
writing requests come from two sources – pixel writer 
(pixels written directly from the DSP) and frame 
buffer of the particle writer. 

SRAM is organized as a two-bank video RAM in 
order to implement double-buffering: while writing 
an image to one bank, the second bank is being 
shown on the screen and vice versa. 

An extension to the striping particle writer 
concept as presented in section 2 is the Pixel 
Reader/Writer unit, which allows accessing the 

SRAM frame-buffer directly from the DSP. It simply 
gets data and address from the DSP and writes to the 
SRAM through the viewing engine. This operation 
may be used for writing additional information to the 
screen. It is also possible to read the data from the 
memory, and e.g. store the image in the DSP 
controlled memory for future use. However, this 
means of access to the frame-buffer is meant 
primarily for debugging and testing purposes, it is not 
very fast, since any request through this port waits to 
be synchronized with monitor refresh and the particle 
writer. 

Functional description of the Particle Writer 
unit is described in the theoretical part of this article. 
Hardware implementation consists of few state 
machines using two groups of block RAMs – one for 
the frame buffer and one for the depth-buffer. 

 

Figure 7. Particle Writer 
When a particle description is sent from the 

DSP, it is processed by the register decoder. Base 
horizontal coordination is set to its position, and two 
counters are running to define the exact position of 
the current processed pixel. One counter runs from 
zero to maximum and displays the upper part of the 
particle. Second counter runs from maximum to zero 
and displays the lower mirrored part. Writing engines 
start writing reacting to the start write signal. While 
processing, data are read from the depth-buffer, and 
writing engines decide whether to write (both to the 
frame and the depth-buffer) or not by comparing the 
actual depth with the depth from the depth-buffer. 
Reading from the depth-buffer must start some cycles 
before the writing process due to the memory read 
latency. 

When the special code word is written by the 
DSP, writing is moved to the next line and flushing of 
the processed line is started – data from the Block-
RAM are written to the SRAM through the viewing 
engine. 

4. ACHIEVED RESULTS 
The proposed algorithm was fully implemented on an 
experimental setup shown below in Figure 8, that 
uses the Camea DX6 board [Cam03]. Current 
maximal number of particles rendered by the FPGA 
is 5 million per second. This number comes out from 
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the clock period which is 20 ns, and the number of 
cycles required for showing one particle. One column 
of a particle is written in one period, and two periods 
are required for pre-reading the depth-buffer data. 
Totally 10 periods are 200 ns per particle. 

Of course, possibilities exist to improve the 
performance. Using more advanced FPGA chip (for 
example Virtex II) would lead into higher possible 
frequency (we assume at least 100 MHz). Another 

possibility is to parallelize writing to the memory by 
setting the width of the data bus to the Block-RAMs 
from 8 bits to 32 bits. Extra logic for treating this 
situation would be needed, but speed-up ratio would 
be up to four. We could also avoid the depth-buffer 
reading latency by pipelining. Finally, we could show 
one particle in 2 clock cycles (10 ns), which means 
speedup up to 10 times from the current state to 50 
million particles per second, still using standard off-
the-shelf components. 

 

Figure 8. Experimental setup displaying a medical data set 

5. CONCLUSION 
In this paper, a rendering system based on 

Xilinx Virtex E-300 FPGA and Texas Instruments 
C6711 DSP was described. The system implements 
a modern 3D point-cloud rendering algorithm and is 
fully functional. 3D point cloud graphics seems to 
be a concept of close future for visualization and 
realistic rendering, partially replacing the most 
common approach at the moment – triangle meshes.  

The proposed rasterization algorithm solves the 
rendering task including the visibility issues 
between the particles inside the FPGA in order to 
achieve high performance. A part of the projection 
phase is left to the host task being performed by the 
DSP. While this solution leaves space for further 
hardware acceleration, it was chosen as the best 
possible approach to test the concept. 

Hardware implementation in the FPGA 
contains control subsystems treating read and write 
cycles of the video-RAM, pixel writer and the 
particle writer. The particle writer unit consists of 
eight pixel writers that write the data to the internal 
Block RAMs, the flushing unit that transfers the 
image to the video SRAM, and of the DSP bus 
interface. 

Current speed of particle drawing is 5 million 
per second. Changes that could increase this number 
up to 50 million still using currently available 
general purpose components are proposed. 
However, this implementation is considered to be 
rather a proof-of-concept than a final graphics 
acceleration solution. The Virtex II Pro Xilinx 
FPGA that is to come should allow further 
optimizations and may be ground for a graphical 
hardware challenging graphics equipment of 
desktop computers. 
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