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ABSTRACT

Visibility computation is a classical problem in computer graphics. A wide variety of algorithms provides solutions
with a different accuracy. However, the four dimensional nature of the 3D visibility has prevented for a long time
from leading to exact from-polygon visibility algorithms. Recently, the two first tractable solutions were presented
by Nirenstein, then Bittner. Their works give the opportunity to design exact visibility tools for applications that
require a high level of accuracy. This paper presents an approach that takes advantage of both Nirenstein and
Bittner methods. On the one hand, it relies on an optimisation of Nirenstein’s algorithm that increases the visibility
information coherence and the computation robustness. On the other hand, it provides an exact visibility data
structure as Bittner does, but also suited for non-oriented polygon-to-polygon visibility queries.
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1. INTRODUCTION
Visibility computation is a recurring problem in com-
puter graphics applications. A wide variety of algo-
rithms exists in the literature but they provide a dif-
ferent accuracy. This has led to a general algorithm
classification :

• Aggressive : the visibility is underestimated.
• Conservative : the visibility is overestimated.
• Approximate : both aggressive and conservative.
• Exact : the visibility is exactly computed.

Solutions for these first three categories are usually
fast. Most of them are designed in a context of visi-
bility culling [Coh03a]. In contrast, exact algorithms
require a significant computational effort, especially
for from-polygon or from-region visibility. This prob-
lem has been considered for a long time as intractable
due to the four dimensional nature of the visibility in
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Previous works attempt to compute a global and exact
visibility information, as Pellegrini [Pel93a] or Durand
[Dur02a] with the 3D visibility complex. But these
solutions are not practicable.
The first tractable algorithm was recently published by
Nirenstein [Nir02a]. It allows an exact computation
of the visibility from a polygon. At the same time,
Bittner[Bit02c] proposed another solution.
The exact visibility is not necessary for most applica-
tion. However, it has potential to improve high quality
rendering of complex scenes or realistic lighting ef-
fects. The works of Nirenstein and Bittner give the
opportunity to design efficient visibility tools encoding
an exact information.
This paper presents an exact visibility algorithm that
takes advantage of both Nirenstein and Bittner meth-
ods. It relies on Nirenstein algorithm but provides
in output a structured visibility information as Bittner
does. Moreover, it presents an optimisation of Niren-
stein algorithm that improves the visibility informa-
tion coherence. As a consequence, it gets a noticeable
property : By reducing the visibility result complexity,
the number of performed operations decreases, improv-
ing the robustness.
The second section explains the mathematical under-
lying and the general approach used by Nirenstein and
Bittner for exact visibility computation. The third one
gives an overview of the two existing algorithms and
underlines their differences. From this short study, the
section four presents our approach emphasising our



optimisation that provides a coherent visibility infor-
mation and improves robustness. At last, results are
given in the section five.

2. BACKGROUND
The two solutions proposed by Nirenstein and Bittner
both rely on the same approach. They solve the visibil-
ity problem between polygons by performing CSG op-
erations on polytopes (convex “volume”) in the Plücker
space. This section begins with a presentation of the
Plücker space where operates the solution. Next, it
gives an overview of the approach allowing exact visi-
bility computation from 3D polygons.

Plücker Space
The Plücker space [Som59a] is a five dimensional pro-
jective space P

5. It provides an elegant parametri-
sation for dealing with directed lines in R

3. Each
line l passing through the point (px, py, pz) and
next through (qx, qy, qz) is defined in P

5 by πl =

(π0, π1, π2, π3, π4, π5), with :

π0 = qx − px π3 = qzpy − qypz

π1 = qy − py π4 = qxpz − qzpx

π2 = qz − pz π3 = qypx − qxpy

Notice that (π0, π1, π2) is the direction of l and
(π3, π4, π5) encodes its location.
Next, let us consider the dual mapping within P

5 :
Each π ∈ P

5 can be associated with a dual hyperplane
hπ defined by :

hπ = {x ∈ P
5

| π3x0 + π4x1 + π5x2

+π0x3 + π1x4 + π2x5 = 0}
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Given two lines l1 and l2 and their Plücker mapping
πl1 and πl2 , a crucial property is : l1 and l2 are incident

if and only if πl1 lies on the dual hyperplane of πl2

(and vice versa). If hπl1
(πl2 ) 6= 0, the sign of hπl1

(πl2)

determines the relative orientation of l1 and l2 as
illustrated on figure 1.

At last, each line in R
3 maps to a point in P

5 but each
point in P

5 does not map to a line in R
3. The mapping

of all real lines in P
5 forms a four-dimensional quadric

surface called the jlk m1npo�qsrQt@upv1qsrsw�x@r�y4z�npq .
Exact From Polygon Visibility Principle

2.2.1 Lines stabbing polygons
Previous definitions are useful to characterise the set
of lines stabbing convex polygons. In the Plücker
space, these lines are a connected subset of points on
the hypersurface. For computational convenience, it is
easier to deal with a polyhedral representation of this
subset by using the dual hyperplane mapping of each
polygon edges. The intersection of this polyhedral
structure with the Plücker hypersurface gives exactly
the set of lines stabbing each polygons. Such an
approach was already used by Teller [Tel92a] for
computing the anti-penumbra of an area light source
through a sequence of polygons.

Figure 2 illustrates a two triangles case since we are
in a context of polygon to polygon visibility. More
generally, if A and B are two polygons with n and m

edges e1, ..., en+m consistently oriented, all the lines l

passing through A then B satisfy :

∀ i ∈ [1..n + m], hπei
(πl) ≥ 0

This system of inequations is the hyperplane repre-

e1

e2

e3

e4

e5
e6

l

hπe6
(πl) ≥ 0hπe5

(πl) ≥ 0hπe4
(πl) ≥ 0

hπe3
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(πl) ≥ 0
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sentation of an unbounded polyhedron in the Plücker
Space. Both Nirenstein and Bittner add constraints to
obtain a closed polyhedron : a polytope. Of course
these additional constraints do not affect the intersec-
tion of the polyhedron with the Plücker hypersurface.
The polytope representation allows to limit computa-
tions to the zone of the Plücker hypersurface.



2.2.2 Occluders removal
Let PAB be the polytope that represents the set of lines
stabbing A and B. Figure 3 gives a 2D illustration
of the process that removes from PAB the set of lines
blocked by an occluder. This has to be applied to each
occluder. The remaining parts of PAB intersecting the
hypersurface are exactly the set of lines that stabs A

and B without stabbing any occluders. If no such a
part remains, A and B are not visible.
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3. EXISTING ALGORITHMS
Nirenstein and Bittner methods both rely on the ap-
proach explained in the previous section. However
these two algorithms were not designed for providing
the same visibility information. Moreover, they have
noticeable differences between their CSG operations
on polytopes.
Exact visibility requires a consequent computational
effort, using non trivial n-dimensional geometric algo-
rithms. An effective implementation of the process has
to be carefully considered.
In this section, a short overview of each algorithm is
given, including some comparisons on their processes.
Then, we justify our choices from this study.

Algorithms overview

3.1.1 Nirenstein’s algorithm
Nirenstein designed his algorithm to query if two poly-
gons were visible or not. First, an initial polytope
representing their stabbing lines is built. Next CSG
operations are computed in the Plücker space to re-
move the lines blocked by each occluder. This is the
same process as depicted by figure 3. Only the visible
parts of the initial polytope are preserved during the
process. However, this information is not organised
and is only maintained as a set of sub-polytopes. As
soon as the visibility or the invisibility is established,
they are all dropped.
Exact visibility computation is sensitive to the num-
ber of occluders that have to be removed. Nirenstein
makes a selection of the most effective occluders to
be removed first. The occluded lines set can be re-
moved using less occluders. This method minimises
the number of intersection computation to perform. As
a consequence, the algorithm termination is acceler-
ated.
Nirenstein uses his algorithm to compute Potentially
Visible Sets (PVS) for viewcells in 3D environment. In
this context, he develops a framework including several
optimisations that aim either to quickly find simple vis-
ibilities/invisibilities, or to choose an effective order for
removing occluders. On the one hand, ray sampling
handles trivial visibilities and finds effective occlud-
ers. On the other hand, a hierarchical subdivision of
the scenes is used. Visibility queries are first applied
to the cells of this hierarchy. Only visibility with poly-
gons inside visible cells have to be computed, whereas
invisible cells can be used as virtual occluders.

3.1.2 Bittner’s algorithm
The purpose of Bittner’s algorithm is different from
Nirenstein’s one. It was first developed in 2D [Bit01b]
and then extended to three dimensional environments.
It aims to encode all the visibilities with a scene from
a source polygon. This information is encoded and
structured by an occlusion tree [Bit98a]. Each leaf
represents either a visibility or an invisibility set (when
nothing can be seen). In particular, each in-leaf rep-
resents a set of lines that first stabs the same visible
polygon.
The occlusion tree construction implies to treat occlud-
ers in a front to back order. This assumes the scene
pre-processing to avoid overlapping occluders. For
each of them, the associated polytope is inserted into
the occlusion tree, from the root to the leaves, and is
tested against each node met. If the hyperplane stored
in a node splits the polytope, the algorithm continues
in both subtree with the two relevant fragments. If an
out-leaf is reached, the occluder is visible and the out-
leaf is replaced by its fragment elementary occlusion



tree. If an in-leaves is reached, the fragment elemen-
tary occlusion tree is merged to update the visibility
information.
Bittner also uses a hierarchical subdivision of the scene
to enhance the occlusion tree construction. At the end
of the process, the occlusion tree provides each part of
the geometry that can be seen from the source polygon.
Like Nirenstein, Bittner uses this information to com-
pute PVS for viewcells. He also gives an example of
virtual occluders extraction, valid from any viewpoint
on the source polygon.

Algorithms Implementation
As explained, computing exact visibility implies an
important computational effort. This can not be
trivially implemented. Some computational differ-
ences can be noticed between Nirenstein and Bittner
implementations :

Polytope construction
The hyperplane representation of a polytope can be
easily obtained from the Plücker mapping of polygons
edges. However the intersection tests require the vertex
representation. In any case, this can be achieved us-
ing an enumeration algorithm as in [Avi96a]. Such an
algorithm is used by Bittner. For two given polygons,
Nirenstein proposes in his thesis [Nir03a] a more effi-
cient solution, including explicitly the additional con-
straints to cap the unbounded polyhedron. In contrast,
the capping of the polyhedron in Bittner’s algorithm
requires more computation tests.

Intersection tests
Before splitting a polytope, intersection tests are made
with hyperplanes. A common test to both methods is
to compute whether polytope vertices fall in both half
spaces induced by a hyperplane. In addition, Niren-
stein implementation first makes a conservative test
using the bounding sphere of a polytope. Then, a re-
jection test is applied using the other hyperplanes of the
same occluder, as detailed in the next section. Contrary
to Bittner’s algorithm, this allows to limit the intersec-
tion computation to the zone of occluded lines.

Polytope splitting
The key for occluders removal is to compute the inter-
section of a polytope with a hyperplane. The imple-
mentation of Bittner computes implicit intersections.
This means that a splitting hyperplane is added to the
hyperplanes representation of a polytope, and all the
vertices are enumerated again.
Nirenstein computes explicitly intersections using an
algorithm similar to Bajaj and Pascucci’s one [Baj96a].
As a requirement to this algorithm, the full face lattice
of the polytope has to be computed. Nirenstein uses a
combinatorial face enumeration as in [Fuk94a]. This
is potentially more efficient since only the new ver-

tices are computed, whereas Bittner enumerates all the
vertices again.

Algorithms discussion
Our purpose is to compute a coherent and exact visi-
bility information between two polygons. This infor-
mation has to be structured to be available from the
two queried polygons. The more coherent the visibil-
ity information will be, the more efficient its use will
be.
Bittner’s algorithm is interesting because it provides
a structured visibility information. However this in-
formation is oriented since it is significant from the
source polygon. As a consequence, it is not suited
for non-oriented polygon-to-polygonvisibility queries.
We can notice that the occlusion tree construction can
be restricted between two polygons. But it would still
encodes the occluder fragments only visible from one
polygon.
The computational part of the Nirenstein algorithm
seems to be more efficient. In particular, the differ-
ent tests made to limit the computation to the zone of
an occluded lines set are interesting for our purpose.
This should improve the coherence of the visibility in-
formation computed between two polygons. Besides,
his algorithm is more flexible than Bittner algorithm
with its fixed “front to back” substraction order. As an
example, the optimisation presented in this paper could
not be applied to his algorithm without corrupting the
output. This will be explained in the next section.
Nirenstein algorithm can provide a set of polytopes
representing all the visibility between two polygons.
This information is non-oriented. However it is not
structured like Bittner.
From this study, we choose to take advantage of the
Nirenstein algorithm for CSG computation on poly-
topes. But the algorithm output is modified to organise
the visibility information, like Bittner does. Our struc-
ture is suited for non-oriented polygon-to-polygon vis-
ibility. The next section presents our approach and an
optimisation of the Nirenstein algorithm. In particular,
this optimisation minimises the fragmentation of the
visibility information, and improves robustness.

4. PROPOSED APPROACH
Firstly, this section explains how useless polytope frag-
mentation can occur. Next an overview of our approach
is given and illustrates how the visibility information
is encoded. At last, we presents the “back splitting”
optimisation that allows to minimise the polytope frag-
mentation and to improve the robustness.

Unnecessary Splitting
Two configurations exist where unnecessary splitting
are computed. The first one appears when the splitting
of a polytope P results in a first polytope having the



same intersection as P with the Plücker hypersurface,
and a second one having no intersection with the hy-
persurface. Since only the Plücker surface intersection
is of interest, it becomes clear that such a splitting is
useless. However, we will see how to take advantage
of this problem.
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The second configuration is within the rejection test of
Nirenstein. It checks if a polytope is rejected by at least
one hyperplane from a given occluder. This test, de-
picted in figure 5, can not always prevent unnecessary
splitting operations. Figure 6 illustrates such a case.
This explains why useless polytopes fragmentation still
happens.
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Useless splitting generates two main problems. Firstly,
it seems obvious that the probability to face numerical
instability grows with the number of successive split-
ting operations performed. Next it leads to an unneces-
sary polytopes fragmentation,and so to a fragmentation
of the visibility information. These two problems are
obviously correlated. As a consequence, reducing the
polytopes fragmentation must be a solution to both of
them.

Overview
Our approach uses a similar algorithm to Nirenstein’s
one. In this paper, notice we are not in a specific con-
text. As a consequence, we do not use a framework as
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developed by Nirenstein for PVS computation. More-
over some parts of this framework are out of matter.
For example, ray sampling can not be used since we
are interested in the whole visibility information com-
putation.
We consider two polygons and obtain from their edges
the hyperplanes representation for the associated poly-
tope in the Plücker space. Our implementation takes
advantage of the Nirenstein solution [Nir03a] for com-
puting its vertices representation. Its full face lattice is
obtained with [Kai02a] that provides a better complex-
ity than [Fuk94a]. At last, explicit splitting operations
are achieved using the approach of [Baj96a].
To store the visibility information, we build a “history
tree”. It has some similarities with an occlusion tree.
It is a binary tree whose inner nodes are associated
with splitting hyperplanes. A leaf represents either a
set of blocked lines, or a set of visibilities between two
polygons. In the later case, the polytope for this set is
associated to the leaf.
But the history tree construction is different. It does
not require a traversal from the root to the leaves. In-
tersection tests are made on visible leaves. When a leaf
is split, it becomes an inner node associated with the
splitting hyperplane. Its children represent each part of
the intersected polytope. Initially, the root node is set
with the polytope associated to the two queried poly-
gons. A history tree can be understood as the history
of the successive splitting operations.
At the end of the process, it encodes and represents
all the visibility information between two polygons.
The history tree is easy to build and does not require
excessive computation time. This structure is suited to
be used as a visibility tool.
Moreover, it gives the opportunity to minimise unnec-
essary splits. Since this induces an useless polygon
fragmentation, we propose to detect and to cancel them
using the history tree. This is the purpose of the “back
splitting” algorithm. It also improves the visibility in-
formation coherence.



Back Splitting Algorithm
The back splitting optimisation takes advantage of the
history tree to cancel useless operations. This implies
the following modifications : Before splitting a poly-
tope, its copy is left in its associated node of the history
tree. An inner node is then associated with a polytope
and a splitting hyperplane. Back splitting affects the
construction of the history tree, with the combination
of two rules.
The first one aims to reduce the number of splits to im-
prove the robustness. It is applied during an occluder
removal, after a splitting operation. If the intersection
with the hypersurface has not been modified,this means
the splitting was useless. However, to keep the opera-
tion benefit, the smaller polytope representing the same
set of lines replaces the copy of the initial polytope.
This may seem a contradiction to the robustness im-
provement. Our motivation is to work with polytopes
as close as possible to the hypersurface, to improve
further rejection tests, and so to decrease the number
of splitting operations. The robustness is related to this
number. Our tests have shown that keeping the smaller
polytope gives finally a smaller splitting number than
keeping the initial polytope.
The second rule tries to minimise the polytopes frag-
mentation. It has to be applied after each occluder
removal. It relies on a quick analysis of each pair of
leaves sharing the same father. This rule is applied each
time one of the two following configuration occurs :

• If both leaves are visible, this means that the poly-
tope set in the father node was unnecessary split,
as shown in Figure 6(b). In this case, this opera-
tion is cancelled. Both children are removed and
the father node restored as a visible leaf.

• If both leaves are invisible, children are removed
and the father node is replaced by a leaf marked
invisible. A similar implication was proposed by
Bittner for its occlusion tree. However, due to the
back to front order constraint, he could not apply
the previous configuration.

This optimisation helps to minimise the polytopes frag-
mentation and the number of splitting operations. This
may seem a contradiction since less fragmentation im-
plies bigger polytopes and bigger polytopes is a con-
tradiction to the first rule. However the justification is
that a polytope can be “big” as long as it remains close
to the Plücker hypersurface.
Moreover, this allows a smaller history tree that de-
scribes the same visibility information. As a conse-
quence, we can expect a more efficient use of this
information and to spare memory. Notice that all the
polytopes associated with nodes can be removed after
the construction of the history tree. The tree with the
splitting hyperplanes in inner nodes is then sufficient.

In the next section, we present some experimental re-
sults emphasising the back splitting improvement. We
test different configurations depending on the visual
complexity.

5. RESULTS
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To test the back splitting optimisation we use an urban
environment composed by 38834 polygons as depicted
in figure 7. This scene was chosen for the various con-
figurations proposed in terms of occlusion and visual
complexity. The hardware used is an Athlon XP1800+
(1.5 GHz) with 512Mo RAM.
From the test scene, we choose three sets of buildings,
each one representing a different configuration for oc-
clusion and visual complexity.

Set 1 The first set is composed of the ten smallest
buildings in the scene. Here, the occlusion is
strong, and the visual complexity is low.

Set 2 In opposition to the first set, the second set
is composed of the ten highest buildings in the
scene. This implies many visibilities and few
occlusion.

Set 3 The third set contains ten buildings with an av-
erage height. It combines both visual complexity
and depth visibility. This means that occlusion
can not be defined by a small subset of occluders.

From each set, the exact visibility between each build-
ing wall and the other scene polygons are computed.
Table 1 shows results for the three sets.
For the first set, the back splitting has no contribution.
We can notice a small time over cost for a query using
back splitting. The explanation lies in the fact that the
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(in)visibilities are quickly determined, before the two
rules could have an impact on the computation.
For the second set, a significant contribution appears :
40% of the splitting operations are avoided. This leads
to an improvement (35%) of the time computation per
query. However, the most interesting result is the num-
ber of polytopes reduced from 40.5 to 20.44. As the size
of the history tree is connected to the fragmentation of
the polytopes, this implies a better coherence of the in-
formation and a reduction of the memory requirement.
In spite of an important number of occluders and a
significant visual complexity, back splitting remains
efficient on the third set, where 31% of the splitting
operation are avoided. We note the same reduction for
the computation time per query. Once again, the main
result is the minimisation of the fragmentation of the
polytopes. Back splitting reduces fragmentation from
more than 56%.
This result illustrates the back splitting efficiency for
reducing the fragmentation of the polytopes. More-
over, since less splitting operations are performed, this
increases the robustness of the visibility computation.
As a secondary result, the time per query is improved.

6. CONCLUSION
This paper has presented a solution to compute a co-
herent and exact visibility information between two
polygons. The fundamental principles to achieve ex-
act visibility computation has been recalled. From the
first two tractable solutions study, we have proposed an
unified approach taking advantage of both of them. It
modifies the Nirenstein algorithm to provide a history
tree. This allows to organise the visibility informa-
tion similarly to Bittner, but suited for non-oriented
polygon-to-polygon queries. Moreover, we have pre-
sented the back splitting optimisation that improves the
visibility coherence and the robustness. As the infor-
mation is described using a smaller set of polytopes,
memory can also be spared.
Results show that our approach is mainly efficient with

a consequent visibility complexity, which is the most
challenging configuration in graphic applications such
as realistic image synthesis.
As a future work,we plane to enhance such applications
by taking advantage of the history tree as a visibility
tool. Moreover, a collaboration with a telecommunica-
tion department is already in progress for an accurate
and fast visualisation of electromagnetic waves.
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