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ABSTRACT

In this paper, we propose a solution to adapt thedifferential point renderingtechnique developed by Kalaiah and
Varshney to implicit surfaces. Differential point rendering was initially designed for parametric surfaces as a two-
stage sampling process that strongly relies on an adjacency relationship for the samples, which does not naturally
exist for implicit surfaces. This fact made it particularly challenging to adapt the technique to implicit surfaces. To
overcome this difficulty, we extended theparticle samplingtechnique developed by Witkin and Heckbert in order
to locally account for the principal directions of curvatures of the implicit surface. The final result of our process is
acurvature driven anisotropic samplingwhere each sample ”rules” a rectangular or elliptical surrounding domain
and is oriented according to the directions of maximal and minimal curvatures. As in the differential point rendering
technique, these samples can then be efficiently rendered using a specific shader on a programmable GPU.
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1 Introduction
Implicit surfaces are an elegant surface representation
to model 3D surfaces without explicitly having to ac-
count for topology issues. Moreover, it is possible
to develop a complete modeling-animating-rendering
pipeline with almost no topological constraints by us-
ing ray-tracing to render the corresponding surfaces.
Unfortunately, to be able to provide a decent ren-
dering of implicit surfaces at interactive framerates,
there is usually no other choice than to convert them
into polygonal meshes, which inherently reintroduces
heavy topological constraints.
In 2001, Kalaiah and Varshney [17, 16] proposed an
innovative technique to render parametric surfaces in
higher quality. The basic idea of theirdifferential point
renderingtechnique is to generate a discrete sampling
of the parametric surface, where each sample locally
defines the differential geometry (i.e. the position, the
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tangent plane, as well as the minimal and maximal di-
rection of curvature). All the samples are individu-
ally rendered without any connectivity information by
point rendering using a specific rectangular ”splatter”
accounting for the local differential geometry. This
splatter can then be efficiently rendered by specific
shaders on a programmable GPU (see also recent work
of Botsch et al. [5]).
The differential point rendering technique is partic-
ularly well adapted to parametric surfaces since the
samples can be generated explicitly using the local dif-
ferential geometry, and the technique can be simply
extended to triangular meshes by estimating the dif-
ferential geometry at the mesh vertices.
Since the differential point rendering technique offers
high quality rendering of surfaces using less surface
samples, it is quite appealing to extend it for implicit
surfaces as well. This was the initial motivation of
the work we present here. Unfortunately, the exten-
sion is not as straightforward as it may appear at first
glance. The main concern is that the sampling tech-
nique proposed by Kalaiah and Varshney is basically a
two-stage process. In the first stage, a relatively dense
point sampling of the surface is computed, either by
direct sampling of the parameter space (in the case of
a parametric surface), or by using the existing vertices
(in the case of a triangular mesh). Then, during the
second stage, many of the samples are removed using
a simplification process that accounts for the local dif-
ferential geometry, i.e. keeping more samples in the



directions of high curvature and less samples in the
directions of low curvature. The final result is acur-
vature driven anisotropic samplingwhere each sample
”rules” a rectangular or elliptical surrounding domain,
locally oriented according to the directions of maximal
and minimal curvatures. The problem is, that this sec-
ond stage is heavily based on the adjacency relation-
ship between the samples. This relationship naturally
exists in a triangular mesh or in a regular sampling
of a parametric surface, but it has no natural counter-
part for an implicit surface. As a consequence, even
if it can theoretically be implemented, the two-stage
process proposed by Kalaiah and Varshney is not well
adapted to implicit surfaces.
The goal of this paper is to present an alternative solu-
tion for implicit surfaces to obtain a curvature driven
anisotropic sampling that offers similar properties as
the one generated by Kalaiah and Varshney. Our solu-
tion is based on a particle system, in the spirit of the
one initially proposed by Witkin and Heckbert [31],
but we also account for anisotropic sampling using lo-
cal differential geometry.
The remainder of the paper is organized as follows:
Section 2 presents some related previous work mainly
dealing with sampling techniques for implicit surfaces.
Section 3 details our new anisotropic sampling tech-
nique for implicit surfaces. Section 4 presents several
experimental results that focus on the visual quality
and the convergence speed. Section 5 concludes and
presents some directions we are currently studying.
Finally, the mathematical background to compute the
principal curvature directions of an implicit surface as
well as the corresponding curvature amounts is given
in the Appendix.

2 Previous work
Since the groundbreaking work done in 1985 by Levoy
and Whitted [20] which was revisited by Grossman
and Dally in 1998 [13], point rendering has become
a popular research domain in recent years. But as our
goal is to adapt the differential point rendering tech-
nique to implicit surfaces, it is out of the scope of this
paper to recall all existing point rendering techniques.
We refer the interested reader to a recent overview [18]
and tutorial [1].
We will thus focus more precisely on sampling tech-
niques for implicit surfaces. Basically, existing work
can be divided into two main families: tessellating
techniques and particle system techniques.

2.1 Tessellating implicit surfaces

The tessellating techniques of implicit surfaces can
themselves be divided into three categories. First,spa-
tial sampling techniquessubdivide the 3D space into

cells, commonly either cubes or tetrahedra, and search
for the cells that intersect the implicit surface. One
of the most commonly known spatial sampling tech-
niques is the marching cubes algorithm [32, 21], that
divides the 3D space into cubic cells, and triangles
are generated according to the sign at the corners of
the cells. Unfortunately, there are ambiguous con-
figurations that have to be resolved [12]. Marching
tetrahedra algorithms, e.g. by Shirley and Tuchman
[23] or Hall and Warren [14], further divide the cubic
cells into tetrahedra, and for each tetrahedra there are
no ambiguous configurations. Nevertheless, marching
tetrahedra algorithms create numerous, often over dis-
torted triangles. In both the marching cubes and the
marching tetrahedra algorithms, the cells are of con-
stant size, so all these techniques may miss small fea-
tures, do not adapt to the local geometry of the implicit
surface, and require knowledge about the topology of
the implicit surface. When the cell size is too small,
an excessive number of polygons may be produced,
and when it is too large, details may be obscured. To
overcome this drawback, adaptive subdivision tech-
niques that converge to the surface recursively have
been developed [3], but with such techniques cracks
may occur between triangles of adjacent cells of dif-
ferent size.
The second category aresurface fitting techniquesthat
create a seed mesh that roughly approximates the im-
plicit surface and progressively adapt and deform it
to better fit the implicit surface. For example, Velho
[29, 30] starts with a coarse polygonal approximation
of the surface and subdivides each polygon recursively
according to the local curvature. But still there must
be some a priori knowledge about the topology of the
surface since the coarse polygonal approximation has
to capture the correct topology of the implicit surface.
Other surface fitting techniques either assume special
classes of implicit surfaces created from skeletal ele-
ments [10, 7], or rely on a search for critical points
[28, 6] suffering from inefficiency for complex im-
plicit surfaces.
The third category aresurface tracking techniques(or
continuation techniques) that start from a seed ele-
ment on the surface and iteratively grow a polygonal
mesh that approximates the implicit surface. Cellu-
lar surface tracking techniques [2, 32, 4] start from a
cell that intersects the implicit surface and iteratively
find all intersecting cells among its neighbors. Since
the cells are of constant size, cellular surface track-
ing techniques suffer from the same drawbacks as non-
adaptive spatial sampling techniques, and furthermore,
in the general case, it can be difficult to determine a
seed cell.



2.2 Particle systems

The second way to sample implicit surfaces is to use
so-calledparticle systemsthat evenly distribute sam-
ples over the implicit surface. The first time that par-
ticles were used to sample and control a surface was
in a complete modeling tool using oriented particle
systems by Szeliski and Tonnesen [24], but in their
work there was no underlying implicit surface. Turk
[26] used a similar process in order to generate tex-
tures using a reaction-diffusion method. Like the par-
ticle system, he used repulsion radii to simulate this
reaction-diffusion, but the distribution of the particles
is uniform and does not adapt to the local curvatures.
Figueiredo et al. introduced a system to sample im-
plicit surfaces using particles [9]. Even if the force ap-
plied to the particles is not the same as the one used by
Turk, the authors used the relaxation process of Turk
in order to achieve a uniform distribution of the points.
Then these points are used to compute a polygonal ap-
proximation of the implicit surface. Turk’s reaction-
diffusion method can also be used to re-tile polygo-
nal surfaces [27] according to the curvature with more
points in regions of high curvature. But the method
only takes into account isotropic curvature informa-
tion and does not consider the principal directions of
curvature of the surface.
Witkin and Heckbert [31] developed a powerful mod-
eling application by putting together some of these ex-
isting ideas. Indeed, they demonstrated that particle
systems are useful in order to both display and control
implicit surfaces. They used two different types of par-
ticles: floatersthat lie on the surface and that are used
for rendering, andcontrol pointsthat are used to de-
form the surface. These two types of particles must re-
solve a set of constraints so that the floaters follow the
implicit surface and that the surface follows the con-
trol points. Moreover, the authors defined an adaptive
repulsion and a split/death condition so that particles
could either split or disappear from the surface. Hart
et al. [15] improved upon this particle system for au-
tomatic and numerical differentiation of the implicit
surfaces. Indeed, in the work of Witkin and Heck-
bert, the derivatives for complex models can become
computation-demanding and error-prone. Moreover,
shape adapterswere introduced that simplify surface
deformations. One main limitation of both works is
that no information about the curvature of the implicit
surface is taken into account, thus only uniform dis-
tribution can be generated with spherical particles that
all have the same repulsion radius.
Crossno and Angel [8] derived another extension based
on the work of Witkin and Heckbert that can be used
to sample an isosurface extracted from a 3D density
image. A trilinear interpolation between the eight ver-
tices of the voxel surrounding the particle location is

used to approximate the implicit function. They use
the same repulsion forces and movement calculation
as in [31], but they estimate the repulsion radius of
each particle depending on the curvature at the sample.
Consequently, particles in regions of higher curvature
have a smaller repulsion radius. Nevertheless, Crossno
and Angel only account for isotropic curvature infor-
mation and thus do not consider principal directions of
curvature.
Finally, Pauly et al. [22] used a particle system in order
to simplify point-sampled surfaces. The same linear
force as in [27] is used and the distribution of points
depends on the curvature of a moving least squares
(MLS) surface that approximates the points. Using
a death condition combined with the repulsion forces
enables them to simplify the number of points of the
surface. Again, they only account for isotropic curva-
ture information and do not consider principal direc-
tions and curvatures.
Some particle systems have also been used to poly-
gonize implicit surfaces [9] via a Delaunay triangula-
tion. Again, care must be taken that the particles are
dense enough to create a topologically correct polygo-
nal mesh.

3 Anisotropic sampling
Recall that our goal is to generate an anisotropic sam-
pling technique for implicit surfaces that offers similar
properties as the one generated by Kalaiah and Varsh-
ney for parametric surfaces. The density of the sam-
pling should be related to the local curvatures as well
as to account for the directions of maximal and min-
imal curvatures. In other words, each sample should
be the center of an elliptical domain oriented along
these directions and sized according to the maximal
and minimal radius of curvature. To reach this goal,
we propose to adapt the particle sampling technique
developed by Witkin and Heckbert [31].
The basic idea of the sampling algorithm is outlined in
Algorithm 1. In this section, we detail the choice we
made for every step involved in this algorithm.

Algorithm 1 The basic idea of our algorithm.
Require: An implicit surface

Create a set of particles lying on the surface
while Convergence is not reacheddo

Compute the repulsion radii of the set of particles
Compute the repulsion forces of the set of particles
Update the position of the particles
Split particles when necessary

end while

3.1 Initial set of particles

Actually, thanks to the particle splitting step, the al-
gorithm converges even when starting with one sin-



gle initial particle, but it is more efficient to have an
initial set of particles covering the surface. The easi-
est way to reach this is to use a scheme similar to the
shrink-wraptechnique [28]: first regularly sample ei-
ther the bounding sphere or the bounding box of the
implicit surface and then migrate the resulting parti-
cles by following the gradient of the implicit function
until the surface is reached. Note that the diameter of
this bounding volume is used as a normalization scal-
ing factor during the entire process, so that every dis-
tance (radius, curvature, migration) can be computed
in a scale-independent manner.

3.2 Repulsion radii

At each step of the particle migration loop, the re-
pulsion radius for each particle has to be calculated.
As stated above, we want an anisotropic repulsion
process where particle are repelling more in directions
of low curvature and less in directions of high cur-
vature. So we actually compute two repulsion radii
per particle (for the directions of maximal and mini-
mal curvatures, respectively) by adapting the compu-
tation given in [17] to implicit surfaces. The math-
ematical background to compute the principal curva-
ture directions of an implicit surface as well as the cor-
responding curvature amounts is given in the Appen-
dix. Note that this calculation allows us to determine
the variation of the implicit field of the implicit sur-
face. The values that are found are not some distance
measurements of the curvature that could be used di-
rectly in the application. Indeed, one has to multiply
these values by a coefficient in order to scale them and
to be able to use them as distance measurements that
will define a repulsion domain around each particle.
More specifically,minCurv andmaxCurv will yield
the curvature amounts in the two principal directions
minCurvDir andmaxCurvDir.

3.3 Repulsion forces

This step of the algorithm differs significantly from
the rest of the literature. In [31, 8, 15], the authors
compute the repulsion forces between the particles by
using an energy measure. Even if it works well for
isotropic repulsion, this process cannot be generalized
for anisotropic repulsion. Another way to compute re-
pulsion forces between particles has been proposed in
[27, 22]. Again, the computation was proposed for
isotropic repulsion between circular particles, but in
contrary to the previous one, it is possible to extend
this scheme for anisotropic repulsion between ellipti-
cal particles.
More precisely, an elliptical particle can be defined
by combining the two repulsion radiiminRadius and
maxRadius and the two orthogonal directions of cur-

vature. By adding a radius in the third direction, we
actually define ellipsoidal particles instead of ellipti-
cal ones. We have done this modification because
in 3D space, it is much easier to compute repulsion
forces between ellipsoids than between 2D ellipses
defined on two different planar domains. Note that
the radius given for this third direction (let us call it
the heightof the particle) does not really matter: we
have tested either by using a small constant value for
each particle, to get almost flat ellipsoids, or by using
minRadius again, to get particles with a circular sec-
tion, but the final sampling obtained after the particle
migration process is very similar. The main reason is
that the centroids of neighboring ellipsoids lie almost
on the same plane during the last iteration steps, there-
fore the repulsion forces are more or less orthogonal
to the height direction canceling the influence of the
particle’s height.
Once the ellipsoidal shapes of the particles have been
set up, the repulsion forces can be computed accord-
ing to the algorithm given below. It is important to
note that we do not have to compute the repulsion
force between any pair of particles. We rather use a
space partitioning scheme that avoids computing the
force between two particles that belong to distant ar-
eas. We use the same scheme as in [31], but any other
hierarchical partitioning should work fine. Space par-
titioning reduces the overall complexity fromO(n2) to
O(n ln n) and thus significantly speeds up the compu-
tation involved in each step of the migration process.

3.3.1 Computing repulsion forces by using spher-
ical coordinates

We use Algorithm 2 in order to compute the repulsion
force.

Algorithm 2 Calculating the repulsion force between
two particles.
Require: Two particles with their respective curvature information

Compute vectorrij = pj − pi between the centers of the
particlesi andj
Comute the intersectionmi of rij and the ellipsoid ofi
Compute the intersectionmj of rij and the ellipsoid ofj
Determine whether the two ellipsoids intersect themselves
Compute their repulsion force.

This algorithm is really efficient as it only requires
computing two line/ellipsoid intersections.
The intersection of the two ellipsoids can then be cal-
culated. Starting from the two intersection pointsmi

andmj :

res = ‖mi‖+ ‖mj‖ − ‖rij‖ (1)

A negativeres means that the two particlesi andj do
not intersect and thus do not apply forces to each other.



Otherwise, the repulsion force of the particlej applied
on the particlei is defined by:

Fij(i) = res ∗ (pi − pj) (2)

We use the same linear repulsion force as in [27, 22]
because of its compact radius of support. The total
force exerted oni is then given by

F (i) =
∑

j∈Np

Fij(i), (3)

whereNp is the neighborhood ofi that can be retrieved
by the spatial partitioning.

3.4 Migration of the particles

After we have computed the repulsion forces for all
the particles, the next step of the algorithm is to move
the particle according to its repulsion force. Since the
repulsion forceF (i) of a particle is a vector, we just
have to add this vector to the position of the particle
in order to find its new position:pi += kF (i). The
constantk defines the rigidity of the particle’s reaction
with respect to the forces that are applied on it. In our
implementation we use a constant value, but ideally
k should be proportional to the average distance from
a particle to its neighbors. Note that after this move-
ment the particle does not exactly lie on the surface
anymore, and we have to apply a step of the Newton-
Raphson method to glue the particle on the surface:
pi -=f(pi)ni, wheref(pi) is the value of the implicit
functionf at the particlei andni is the normal at the
new position of particlei.
Once we have the final position of the particle, we have
to compute its normal one last time for rendering.

3.5 Determining the fate of the particles

The final step of the algorithm is to determine whether
the particle has to be split. We have seen that a good
condition is to subdivide a particle when the sum of
the norms of the forces that are applied on it be-
comes lower than a predefined threshold. Indeed, as
the forces of repulsion are applied on a finite radius
around the particles, the fact of having a particle with
few forces applied means that it is in an under-sampled
region. It is then natural to divide it in order to increase
the local sampling density.

3.6 Rendering

After that the characteristics of the ellipsoids for all
the particlesi have been created, we use them in or-
der to create the differential points that are rendered

as fragment-shaded rectangles. Since current graph-
ics hardware does not support curved primitives as
differential points, we make use of the possibility of
directly programming new primitives in the GPU of
these graphics cards.
More precisely, we use a rectangular primitive to rep-
resent a particle according to the local differential
geometry. Similar to [17], the rectangle is defined in
the tangent plane of the particle where the normal and
the two perpendicular curvature directions define a lo-
cal coordinate system.
The rectangle’s extent is computed according to the
maximum and minimum curvature amounts. Conse-
quently, the higher the surface curvature, the smaller
is the rectangle. In order to render the rectangle as a
piece-wise smooth surface, an adequate normal distri-
bution of the rectangle is required. In contrast to Kala-
iah and Varshney, who select the best fitting normal out
of 256 precomputed normals according to the principal
curvatures, we interpolate the normals at the corners of
the differential point’s rectangle usingvertex shaders
and fragment shaders. Since we know the underly-
ing implicit surface, we assign the normal to each of
the four vertices of the rectangle. In other words, we
define a normal field over the rectangle that locally ap-
proximates the appearance of the smooth implicit sur-
face. The fragment shader interpolates the normals for
each fragment and normalizes them by using acube
map texture.
The rectangles are fragment-shaded using the pro-
grammable graphics pipeline with vertex and fragment
programs. In the vertex program, we do not compute
the shading since we want per-pixel lighting. We write
the normal, light and half vector in texture registers in
order to interpolate them and define a normal distrib-
ution in screen-space. Then, in the fragment program,
we normalize the interpolated normal, light and half
vector and shade the fragment with both diffuse and
specular components according to the Phong shading
model. Finally, the set of these fragment-shaded rec-
tangles gives a visual impression of a smooth surface.

4 Experimental results
All the images of this section were produced on a Pen-
tium IV at 3.0 GHz with 1 GB of main memory and
an NVidia GeForce Quadro FX. No code optimization
effort has been done, the only acceleration technique
is the spatial subdivision in order determine the parti-
cles that are in the compact support radius of another
particle. We implemented the differential point render-
ing using Cg’s vertex and fragment shaders on a NV30
chipset graphics board from NVidia.
The only parameter that a user can modify is the scal-
ing factor of the curvature amounts. Note that this fac-
tor must be chosen carefully. Indeed, the differential



point rendering allows having a smooth rendering of
an implicit surface with a reduced number of points.
Nevertheless, when the repulsion radii are too large,
each differential point covers a too large amount of the
surface resulting in a lower rendering quality. Figure 1
underlines this problem. Indeed, Figure 1(a) shows an
ellipsoid rendered with a large repulsion radii. Arte-
facts appear at the silhouette of the surface as well as in
the shaded regions compared to Figure 1(b), where the
ellipsoids are rendered with a smaller repulsion radii
and thus reducing the artefacts.

(a) Large repulsion radii (b) Small repulsion radii

Figure 1: Differential point rendering

As explained in Section 3.6, differential point render-
ing renders the surface as a collection of overlapping
fragment-shaded rectangles. In Figure 2, a random
color has been used for each rectangle in order to out-
line the underlying structure. Figure 3(a) presents the
rabbit rendered with a constant diffuse material but it
should be noted that once the size and orientation of
the rectangles have been defined, any fragment-shader
can be used. As an example, Figure 3(b) shows a
non-photorealistic rendering that is obtained by sim-
ply changing the shaders.

Figure 2: The differential points are rendered with ran-
dom colors to outline the overlapping.

The principal problem of particles systems concerns
the convergence detection: even if the surface seems
to be well sampled, particles can still be created due
to the splitting criterion of the particle system. Indeed,
a slightly moving particle can lead to a change in the
splitting criterion and thus to the generation of a new
particle. This does not have a high impact on the ren-
dering of the surface, but it shows that the convergence

(a) Constant diffuse material(b) Non-photorealistic rendering

Figure 3: Different renderings of the rabbit

of particle systems is critical. A simple example of this
problem is given in Figure 4.
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Figure 4: Residual particles motion and number of
particles created per iteration.

Figure 4 underlines the fact that some particles are
created even when the surface is well sampled. For
example, Figure 4 shows that between iteration num-
ber 600 and iteration number 800, only 5 to 10 par-
ticles are created. So a quasi-equilibrium state of the
system has been reached as soon as iteration number
200, but, because of the particle system behaviour, a
small number of particles continues to split. Another
evidence that lead us to believe that the equilibrium
state has been reached is that, even if some particles
have been created, the residual motion the particles de-
creases after a higher number of iterations. This means
that the surface is well sampled and that the new parti-
cles only have a small influence on the motion of other
particles. In order to resolve this problem, we are cur-
rently working on a more robust convergence criterion
based on the residual motion of the particles instead of
thresholding the forces.

5 Conclusion
In this paper, we presented an adaptation of the differ-
ential point rendering to implicit surfaces by anisotrop-
ically sampling the implicit surfaces using a particle
system. Linking differential point rendering with par-
ticle systems provides an elegant way to sample and



render implicit surfaces. By pushing the information
of the local differential geometry into each sample, we
can describe the surface using fewer particles. This
is particularly beneficial for remote rendering applica-
tions with limited bandwith.
Another contribution of our work is the mathematical
background that we provide to compute the principal
curvature directions of an implicit surface as well as
the corresponding curvature amounts (cf. Appendix).
One drawback of the current implementation concerns
the definition of a robust convergence criterion: in the
case of spherical particle systems, an energy criterion
can be used to identify the convergence. Unfortu-
nately, energy criteria work well for isotropic particle
systems (using spheres), but cannot be easily adapted
for anisotropic systems (using ellipsoids).
We believe that the convergence time and the number
of iterations of the relaxation process can be signifi-
cantly reduced by first doing a global approximation
step of the sampling and then running the particle sys-
tem in a second step. More precisely, the global sam-
pling step should determine the number of particles to
sample the surface, and the second step determines the
position of the particles on the surface.
Finally, we believe that particles systems are perfectly
suited for interactive implicit surface modeling. As a
consequence, the next step of our application will be to
allow the user to deform the surface while the particles
are following the surface deformation.
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Appendix: Principal curvature directions
of an implicit surface

In the initial differential point rendering technique [17, 16],
Kalaiah and Varshney proposed to extract the principal di-
rections of curvature from parametric surfaces [11], triangu-
lar meshes [25], or NURBS surfaces that are fit to triangular
meshes [19]. In this appendix, we show how to extract the
principal directions of curvature for a pointp = [x, y, z]T

on the implicit surfaceS, i.e. p ∈ S. To this end, consider
the defining functionf : <3 → < (that has second order
partial derivatives) of the implicit surfaceS = {x ∈ <3 :
f(x) = 0}. Recall, that the normaln of a pointp is defined
by the non-zero gradient of the defining function

n = ∇f(p) =

�
∂f

∂x
(p),

∂f

∂y
(p),

∂f

∂z
(p)

�
.

In order to derive second-order local geometry for the deter-
mination of the principal directions of curvature, we require
theHessian matrixH of the second derivatives of the defin-
ing functionf :

H =

0
@

∂n
∂x (p)
∂n
∂y (p)
∂n
∂z (p)

1
A =

0
BB@

∂2f

∂x2 (p) ∂2f
∂x∂y (p) ∂2f

∂x∂z (p)
∂2f

∂x∂y (p) ∂2f

∂y2 (p) ∂2f
∂y∂z (p)

∂2f
∂x∂z (p) ∂2f

∂y∂z (p) ∂2f

∂z2 (p)

1
CCA

Note thatH is symmetric because of the equality of mixed
partials. We use a local parameterization to extract the prin-
cipal directions and curvatures on a pointp ∈ S with an
associated normaln and a Hessian matrixH. For the illus-
tration of the following calculations, consider Figure 5.
Let us now approximate the defining functionf of the im-
plicit surfaceS in a small vicinity of p by using a small
vectorw for a second degree Taylor expansion with an ap-
proximation erroro(‖w‖2):

f(p + w) = f(p) + nT •w +
1

2
w • (Hw) + (‖w‖2)

Sincep ∈ S, the defining function of the implicit surfaceS
in p is f(p) = 0, and we find

f(p + w) = nT •w +
1

2
w • (Hw) + o(‖w‖2).

�
�
�
�

�
�
�
�

� � � � � � � � � � �
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Figure 5: Curvature of an implicit surfaceS.

Now, we split vectorw into a vectorh that is orthogonal to
n, i.e. nT • h = 0, and a distance functiond to the tangent
plane inp: w = h + d(h)nT . We want to determine the
distance functiond so thatf(p + h + d(h)nT ) = 0. By
combining the two previous equations and settingd(h) =
o(h) sinced′(0) = 0 by definition, we find

nT • (h + d(h)nT ) +
1

2

�
(h + d(h)nT ) •

�
H(h + d(h)nT )

��

= o(‖h‖2),

that we develop to

nT • (h + d(h)‖n‖2 +
1

2

�
h • (Hh)

�
+

1

2

�
h •

�
Hd(h)nT

��

+
1

2

�
d(h)nT • (Hh)

�
+

1

2

�
d(h)nT • (Hd(h)nT )

�
= o(‖h‖2).

SincenT • h = 0, and since we can neglect the constant
term with respect toh, we find

d(h)‖n‖2+1

2

�
h•(Hh)

�
+d(h)

�
h•(HnT )

�
= o(‖h‖2),

and the second order approximation ofd is

d(h) = −h • (Hh)

2‖n‖2 .

Now, we want to find the maximum and minimum ofh •
(Hh) for h orthogonal ton. This implies that the derivative
of h• (Hh) has a component orthogonal ton with the value
0, and henceHh = µhT +λnT . To determine the principal
directions and curvatures, we have to find the eigenvectors
with associated non-zero eigenvalues of

Hh− (Hh) • nT

‖n‖2 nT =
�
I− nT • n

�
H

�
I− nT • n

‖n‖2
�

.

Summing up, the principal curvature amountsup andvp are
the non-zero eigenvalues of this latter matrix, and the prin-
cipal directionsup andvp are given by the corresponding
eigenvectors.
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