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ABSTRACT

In this paper, we present a fast GPU-based algorithm for ray-tracing point-based models, which includes an efficient computa-
tion of secondary and shadow rays, contrary to previous work which supported ray-surface intersections for primary rays only.
Volumetric effects are added to the models by means of scattered data interpolation in order to combine point-based surface
and volume rendering in the same scene. This allows us to obtain effects such as refraction within volumetric objects. The
flexibility of our method is demonstrated by combining shadows, textured objects, refraction and volumetric effects in the same
scene comprised uniquely by point sets.
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1 INTRODUCTION

Mesh-based methods have become the standard de
facto for a wide range of applications. The advances in
mesh-based techniques stimulated the development of
hardware specific to meshes, which in turn encouraged
the development of new and better mesh-based meth-
ods. However, during the last five years, the increase
in the computation power of todays processors and the
flexibility provided by graphics hardware, allowed the
arising of a new set of point-based techniques, which
represent an alternative to mesh-based methods. By
working directly with point clouds, the processing
is done on the raw data without the need for any
intermediate representation and generally artificial
connectivity relations18. Since the only information
needed is the geometry given by the points, larger
models can be stored in memory. Also, re-sampling
during extreme deformations and topology changes is
supported efficiently.

Among the point-based surface approximation meth-
ods developed in the last years are Point Set Surfaces
(PSS)6;30 As stated by Adamson and Alexa 2, PSS
have clear advantages over other point-based surface
approximation techniques when ray-tracing is to be
used, namely the locality of the computations, the
possibility of defining a minimum feature size and the
fact that the surface is smooth and manifold. Beside the
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inherent implications of these three characteristics, the
second advantage can be exploited when computing
the intersection of the ray with the surface, whilst the
last one makes CSG operations feasible.

However, ray-tracing a PSS on current standard PC pro-
cessors is not interactive. To tackle this problem, imple-
mentations on special hardware have been presented.
Wald and Seidel28 implemented a highly-tuned ray-
tracer that used Adamson and Alexa’s implicit surface
definition3 on an Opteron PC, making use of SIMD op-
erations and a number of acceleration techniques origi-
nally developed by the authors in the last years for mesh
models. Tejada et al.27 presented a GPU implemen-
tation to compute ray-surface intersections of primary
with the PSS proposed by Alexa et al. 6.

Thus, based on the work by Tejada et al., we chose to
render the PSS on the GPU exploiting the flexibility and
new functionality offered by currently available com-
modity graphics hardware. As mentioned above, this
approach includes a fast computation of the intersec-
tion of primary rays with the PSS. However, intersec-
tions with secondary and shadow rays are computed by
means of a brute force scheme. Therefore, computing
efficiently these intersections with the PSS on the GPU
is our main concern in this work. The resulting algo-
rithm, which we present in this paper, allows us to work
with nested surfaces and to include self-shadowing in
the scene. In order to include volumetric effects in the
scene, we exploited the texture-based data structure we
use for ray-tracing the PSS, to interpolate the scalar at
the sampling points. This way, we are able to create
scenes, where both surface rendering of the PSS and
volumetric effects are combined. Furthermore, if the
points belonging to a material boundary of the volumet-
ric object are properly identified, we are able to com-
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bine refraction with volume rendering to obtain inter-
esting visual effects.

2 RELATED WORK

As mentioned before, during the last years point-based
methods have gained a new popularity. Modeling tools
and techniques for creating and editing point-based
models have been developed 12;20;30. Also deformable
bodies simulation16, animation19;21, and rendering
algorithms1;3;9;25;29 have been proposed. Alexa et
al.6 proposed a resampling technique for generating
dense samplings in order to cover the image space
consistently by simply projecting the points onto the
screen. The ‘surfaces’ obtained this way are therefore
known as Point Set Surfaces (PSS). PSS is a surface
approximation method that, as stated in the previous
section, presents important advantages for ray-tracing.
PSS have been further studied by Alexa et al. 5, by
Adamson and Alexa3;4, and by Amenta and Kil7;8,
who noted that PSS are an special case of extremal
surfaces15. Amenta and Kil7 also studied important
characteristics about the domain of point set surfaces.

In general, PSS methods make use of classical differ-
ential geometry results to ensure consistent local repre-
sentation through polynomial approximations. In this
respect, Zwicker et al.30 use linear minimization func-
tions based on Weighted Least-Squares (WLS) to de-
fine the local polynomial functions, whilst Alexa et al. 6

employ a non-linear strategy based on Moving Least-
Squares (MLS) to define a local coordinate system on
which a local polynomial approximation of the surface
is calculated using WLS. This approach was based on
the work by Levin14 on the approximation power of the
MLS method. Point-based techniques that make use of
implicit functions whose zero set is guaranteed to gen-
erate surface representations were also proposed 3;8;13.
Also, guarantees for homeomorphical approximations
to the original object based on this implicit function
have been presented11.

Ray-tracing PSS has been previously addressed both on
the CPU2;28 and the GPU27. However, as already men-
tioned, ray-tracing a PSS on the CPU is prohibitively
slow. Therefore, Wald and Seidel 28 presented a ray-
caster, implemented on the Opteron PC, for the implicit
surface definition by Adamson and Alexa 3. Also, a
GPU-based technique was proposed 27, that efficiently
computes the intersection of primary rays with the sur-
face. Although, the advantage of this implementation
is the use of commodity hardware, a description of
how to compute the intersection between secondary and
shadow rays with the PSS efficiently is not presented.
Ray-tracing on the GPU has been addressed in a more
general sense by Purcell23.

3 POINT SET SURFACES

Given a set of points pi ∈ R
3, i ∈ {1, ...,N}, Alexa et

al.6 define the corresponding Point Set Surface Sp as
the set of stationary points for the projection procedure
described in the following. First a local orthonormal
coordinate system is built upon the plane H(n,r + tn),
where the normal n to the plane and the scalar t are
obtained by minimizing

∑
pi∈P(r)

< pi − r− tn,n >2 θ (‖pi − r− tn‖) (1)

with respect to both n and t. Here θ (x) is a non-
negative, monotonically decreasing function and P(r)
is the set of points in the neighborhood of r. For the
weighting function θ (x), authors frequently make use

of a Gaussian θ (x) = e
− x2

h2 , where h represents the lo-
cal level of detail of the object (feature size). Note that
the constraint ‖n‖= 1 must be observed during the min-
imization. Also note that, as a result of this minimiza-
tion, H will be a plane close to r and quasi-tangent to
Sp.

Once the local coordinate system is built over H with
origin in q = r + tn, a local bivariate polynomial ap-
proximation g to the surface is computed using the
points in P(r). If qi is the projection of pi onto H,
(xi,yi) is the local representation of qi in the local sys-
tem and fi = n · (pi −q) (the height of pi over H), then
the coefficients of this polynomial are found by mini-
mizing

∑
pi∈P

(g(xi,yi)− fi)
2θ (‖pi −q‖). (2)

Then, the projection P(r) onto Sp is defined by
P(r) = q+g(0,0).

The minimization defined in Equation 1 is a non-linear
optimization problem. To solve it, we use an iterative
process that descends to the next local minima. This it-
erative process consists of two steps: (1) minimize with
respect to t and (2) minimize with respect to n. In or-
der to start the process a first approximation of n must
be computed using covariance analysis 18. Then, the
minimization with respect to t is performed using the
Brent with derivative algorithm 22, and the resulting t is
then fixed for minimizing with respect to n. Since min-
imizing with respect to n in S

2 (the space of directions)
is computational expensive, an approximation could be
obtained as in the work by Alexa et al. 6 by minimizing
q on the plane defined by q = P(r)+ tn and the previ-
ous n using the conjugate gradient algorithm 26. These
two steps are repeated until the change in both parame-
ters is smaller than a pre-defined threshold. With these
results we build the local coordinate system and com-
pute the local polynomial approximation as described
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above. The minimization of Equation 2 can also be per-
formed using conjugate gradient.

4 RAY-TRACING POINT SET SUR-
FACES ON THE GPU

Based on the observation that the influence of a sam-
ple point pi on the shape of the PSS can be limited,
Adamson and Alexa2 defined a trust region Ti for each
sample point pi as the ball with center on pi and radius
b, where 0.5h < b < h. The idea for the ray-tracing
process is to compute a first approximation of the in-
tersection between the ray and the PSS and then con-
verge iteratively to the actual intersection. For this, in
a pre-processing step, the local polynomial approxima-
tion at each point pi is calculated as described above,
i.e. r = pi. The first approximation for the intersec-
tion is then the nearest intersection xt of the ray with
these pre-computed local polynomials, that lies within
the trust region of the corresponding pi. To converge to
the actual intersection between the ray and Sp, P(xt)
is computed. Note that during this projection process
a local polynomial approximation gt is found. The dis-
tance between P(xt) and xt gives us a measure for the
error et of the current intersection xt . If this error is
greater than an user-defined threshold, the intersection
between gt and the ray is calculated and taken as the
new xt . If xt lies outside the current trust region, the
next nearest intersection of the ray with the pre-stored
local polynomials is found and the process repeated.

Some simplifications were introduced into the GPU im-
plementation of the projection operator 27. Firstly, since
the pre-computation of the local polynomials stored in
each pi requires projecting the sample points, which
are almost on Sp, the iterative process for minimizing
Equation 1 is not performed. Instead, the initial n is
calculated using covariance analysis and the local coor-
dinate system is built over H(n, pi). The same applies
to the computation of P(xt) for the current intersection
xt . Secondly, in order to make feasible the computation
of the coefficients of the local polynomial approxima-
tions on the GPU, an incomplete polynomial of degree
2 is used, namely g(x,y) = Ax2 +By2 +Cxy+D.

We introduce here a further simplification based on the
observation that the intersection of a ray with the stored
polynomials often suffices for obtaining good approxi-
mations to the actual intersection point between the ray
and the point set surface. This means, that the itera-
tive process used to converge to the actual intersection
with Sp is completely avoided. As can be appreciated in
Section 7, the resulting renderings are of good quality
even with this first rough approximation, whilst gaining
performance.

To store the information needed on the GPU, we
use a 2D texture tex_positions with the posi-
tions in space of the sampling points pi and a 3D
texture tex_neighbors with the pointers to the
nearest neighbors of each pi. These textures are
used to calculate the coefficients of the polynomial
gi(x,y) for each pi, which is written to the target
texture tex_polynomial, and the orthonormal
base of the local coordinate system, written to textures
tex_basea, tex_baseb and tex_basec, as done
in previous work27.

With this information, the intersection of the primary
rays with Sp can be efficiently computed 27. However,
contrary to previous work, we approximate this inter-
section as the intersection of the ray with the nearest
polynomial that lies inside the corresponding trust re-
gion. The process is started by rendering for each pi

a viewport-aligned disc with center in pi and radius
b. Each fragment generated this way represents a ray
that intersects the trust region Ti of pi. In the fragment
shader, the ray corresponding to the fragment is trans-
formed to the local system, its intersection with the lo-
cal polynomial gi is computed and, in case the inter-
section lies within Ti, the intersection point is written
to texture tex_intersection, and the normal at
the intersection point to texture tex_normal. With
this information the viewable part of the surface can be
lit and displayed, as shown in Figure 1 where the sur-
face rendering of the Armadillo model (172974 points)
obtained with our GPU renderer is shown. The perfor-
mance for this model was 6 fps on an Nvidia 7900 GT
grahics card.

5 SHADOWS, REFLECTIONS AND
REFRACTION ON THE GPU

To limit the number of points tested to find the intersec-
tion of secondary rays with the local polynomials, we
build a Cartesian grid of reduced resolution (about 203

for a point set of size 35000) covering the domain of
the point set as depicted in Figure 3a. Then, to find the
intersection of a given ray with the point set surface we
traverse the grid starting in the cell where the origin of
the ray lies and test the points stored in each traversed
cell. If the origin of the ray lies outside the grid, the
intersection of the ray with the bounding box is found
and used as the new origin of the ray.

One important issue to consider is shown in Figure 3b,
where the case of a polynomial of a point in a neighbor-
ing cell intersecting the current cell is exemplified. To
deal with this case during the test we must include in
each cell the points in neighboring cells that lie within
a distance b from the boundaries of the cell as shown in
Figure 3a.

Full Papers 43 ISBN 978-80-86943-98-5 



Figure 1: The Armadillo model rendered with our GPU-
based point set surfaces renderer.

This process is also performed on the GPU. Thus, a
3D texture, tex_buckets, for the grid is created
where a pointer to a position in an intermediary
2D texture, tex_pointers, is stored. In tex-
ture tex_pointers pointers to the positions in
tex_position and tex_neighbors correspond-
ing to the points in the cell are stored sequentially.
Then, given a fragment corresponding to an arbitrary
ray (generated by rendering a single quad covering the
viewport and following the refracting ray) the points
corresponding to the cells intersected by the ray are
tested in the fragment shader using this texture-based
data structure.

In Figure 2 we show how this can be used for ray-
tracing a PSS following only the secondary refracted
rays. A complete ray-tracing algorithm on the GPU
could be easily implemented from this results (See 10;24

for details on the implementation of a GPU-based ray-
tracer). One important issue shown in Figure 2 is the
need for a CPU loop for traversing the grid. This loop
could also be implemented in a fragment shader and
only one render pass would be necessary for traversing
the complete object finding all intersections of the ray
(refracted each time an intersection is found) with the
object. However, the number of instructions executed
by the fragment processor is limited and when the num-
ber of points in the object over-passes a certain limit,
regions with green pixels are obtained. Therefore, we
opted for performing a render pass for each traversed
cell. We use ping-pong rendering in order to fetch the
results of the previous pass in the current pass, which

Figure 2: Ray-tracing a PSS following the secondary
refracted rays only. The red pointed arrows represent
the loop on the CPU used for reducing the number of
instructions performed in a single pass.

included the position, direction, cell and accumulated
color (therefore, we render to four render targets).

Also, support for different indices of refraction for each
channel was implemented. Since it is only possible to
have four render targets, we have to execute the process
above described for each channel and combine their
results in a further render pass. Shadows, including
self-shadowing, are easily implemented by traversing
the grid following the light vector. Figure 4 shows vi-
sual results of self-shadowing and shadows between the
Stanford Bunny and the point set of an artifical terrain.

6 INTRODUCING VOLUME RENDER-
ING EFFECTS

As mentioned before, we also included volumetric ef-
fects in the scene. For this, we make use of the texture-
based data structure to perform scattered data interpo-
lation17 of scalar values stored at the sampling points.
These points are classified as belonging to a material
boundary or not. The integration for a ray is started
by using the boundary points to find the first intersec-
tion xp of the ray with the object, with the process de-
scribed in the previous section. The ray is then sam-
pled using a constant step. The neighbors of the current
sampling point xp are found using the grid described in
the previous section, by accessing the points in the cell
where xp is stored, as well as the points belonging to
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(a)

(b)

Figure 3: The Cartesian grid to traverse the object. In
(a) the points within the bright green and red areas are
included in the list of points of the cell colored light
red, due to the case shown in (b) for the shaded cell.
Although there is no point inside the cell, a segment
(shown in red) of the Point Set Surface could intersect
it.

Figure 4: The Stanford Bunny model generating a
shadow on the point-based texturized terrain. Self-
shadowing is also computed.

the neighboring cells. From these points we only use
those within a pre-defined distance k to the integration

point. The interpolated value s(xp) at xp is then given
by

s(xp) =
∑pi∈N(xp) s(pi)exp(−d(xp, pi)

2/2ρ)

∑pi∈N(xp) exp(−d(xp, pi)2/2ρ)
(3)

where N(xp) is the set of points in the k-neighborhood
of xp, d(xp, pi) is the distance between xp and pi and ρ
is a smoothing parameter.

This process is easily combined with the one depicted
in Figure 2 to render mixed scenes with both point-
based surfaces and scattered volumetric data. Further-
more, refraction at the boundaries of a volume is possi-
ble. During grid traversal, for each visited cell, we test
the intersection between the ray and the polynomials of
the points stored in the cell that belong to a material
boundary. If an intersection is found, the direction of
the refracted ray is computed and the integration pro-
cess continues with this new ray direction. This render-
ing process results in interesting visual effects, as can
be seen in the next section.

7 RESULTS

Here we present performance and visual results ob-
tained with known data sets from tests carried out on
a PC equipped with an NVidia 7900 GT graphics card
and rendering to a viewport of size 640× 480. We
run tests with the models using refraction, shadows
computation, volume rendering and volume rendering
with refraction. Also, results for surface rendering with
different indices of refraction (IOR) for each channel
are presented. All these rendering modes can be seen
in Figure 7. For surface rendering without refraction
we achieved frames rates of 28 and 20 fps for the
Stanford Bunny dataset (35947 points) and the Horse
dataset (48485 points) respectively. Including shadows
reduced the performance to 10 fps for the Bunny and to
11 fps for the Horse.

Complex scenes can be described by means of point
clouds as seen in the figures, where examples with
texturized point-based terrains, scenes with refracted
surfaces and volumes, self-shadowing and refracted
volumes are shown. Furthermore, scenes with com-
bined modalities, e.g. refracted volumes and texturized
terrains, are supported. Following the refracted ray
through the object we obtained frame rates of 1.33 fps
for the Stanford Bunny and of 2.16 fps for the Horse
model. As stated above, multiple indices of refraction
were also implemented using multiple passes, which
turned into a slow down of the rendering process (0.25
and 0.22 fps for the Bunny and the Horse respectively).

On the other hand, including volumetric effects in the
rendering does not have a significant impact on the per-
formance, since the scalar values are interpolated at the
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Figure 5: The Stanford Bunny and Horse point sets rendered with the techniques implemented. Starting with the
left-top image row-wise: the raw point set, the point set surface, refraction with single IOR, refraction with multiple
IOR, volume rendering with refraction and volume rendering using transfer functions.

same positions on the ray we use to traverse the grid
structure while computing the intersections of the ray
with the surface. Thus, 1.08 fps were achieved for the
Bunny using combined refraction and volumetric ef-
fects. In this case, the performance for the Horse was
0.96 fps.

8 CONCLUSION

In this paper, we presented GPU-based rendering tech-
niques to render scenes comprised by volumes and sur-
faces described only by points with no other informa-
tion than the position of the points in space and the
scalar value associated to them. By implementing our

techniques on the GPU, we managed to reduce the com-
putation time compared to CPU implementations. Al-
though higher frame rates have been achieved with im-
plementations on specialized hardware, the advantage
of working with commodity graphics hardware is the
accessibility to desktop users and the rapid increase in
computational power and flexibility compared to CPUs.

Currently the most important problem we find for con-
tinuing with the development of point-based methods
is the complexity of the proximity queries. In order to
reduce the time spent in this queries, we had to pre-
compute the nearest neighbors for the sample points
and use a grid-based structure during ray traversal as
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in previous work on ray-tracing on the GPU. However,
this has the disadvantage of using additional storage
space that, although is not as large as the required by
surface meshes or structured and non-structured vol-
umes, could become a serious problem for larger mod-
els. On the other hand, we believe that the advances
on point-based methods will capture the attention of re-
searchers and hardware manufacturers in the near fu-
ture, resulting in the inclusion of such expensive oper-
ations in hardware allowing the further developing of
point-based computer graphics.
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