
A Framework for the Development of Applications
Allowing Multimodal Interaction with Virtual Reality

Worlds

Héctor Olmedo-Rodríguez
Universidad de Valladolid

Dpto. Informática (E.T.S.I.I.)
Campus Miguel Delibes s/n
 SPAIN (47008), Valladolid

holmedo@infor.uva.es

Valentín Cardeñoso-Payo
Universidad de Valladolid

Dpto. Informática (E.T.S.I.I.)
Campus Miguel Delibes s/n
 SPAIN (47008), Valladolid

valen@infor.uva.es

David Escudero-Mancebo
Universidad de Valladolid

Dpto. Informática (E.T.S.I.I.)
Campus Miguel Delibes s/n
 SPAIN (47008), Valladolid

descuder@infor.uva.es

ABSTRACT

With the definition of a mark-up language for specifying scenes, behaviour and multimodal interaction based on

the metaphor of interactive movie, we want to propose a framework to develop applications allowing multimodal

interaction with virtual reality worlds. Reusing standardized mark-up languages for describing graphics, vocal

interaction and graphical interaction, we have defined the basis of an architecture for integrating components of

this kind of applications of multimodal interaction with virtual reality worlds. Using this framework we make

easier the development of these applications and we provide capabilities to reuse code, graphics and dialogues.

Keywords
Virtual Reality, Behavior, Vocal Interaction, Graphical Interaction, Human-Computer Interaction, Multimodality,

Spoken Dialogue Systems, Avatar

1 INTRODUCTION
It’s a matter of fact that Virtual Reality Systems

(VR) strongly increase the potential of Human

Computer Interaction (HCI) [1]. If we consider

Spoken Dialogue Systems (DS) add a complementary

channel to the graphical channel as sound or vocal

channel [2] is, the integration of both researching

fields could be seen as a natural evolution of both

technologies. For example we could navigate in a VR

world using the mouse and we could select objects at

the same simply by saying the name of the object.

Nevertheless it has been hardly exploded in

commercial systems, and despite of existing

prototypes [3], there is a work scope to discover: The

main reason for not existing hardly integrating

solutions of VR and DS is the youth of these work

areas, where most efforts have focussed on improving

separately both fields despite of studying the

necessities of interdependence derived from our

proposal. Here we present a proposal that combines

VR-DS posing a platform for developing applications

based on 3D virtual worlds allowing multimodal

interaction driven by spoken dialogue.

VR and DS fields are characterized by a relative

availability of prototypes developed at research

laboratories and by some commercial system that

generally has neglected the need of adjusting to any

development or standard specification. VoiceXML

[4] is the standard of DS, on VR there is a standard

for scene definition that is X3D [5] evolutioned from

VRML [6]. These standards are a framework of

reference for developers to adapt their systems, with

the consequent contributions on ease of use referring

to definition of 3D scenes and dialogues and on

portability of reusable modules. In this paper a

framework is presented pretending to be a language

for specification of 3D worlds with dialogue

integration, a platform to set our worlds in motion

and a repository of objects. The solution we

contribute with respects the available standards for

VR and DS and it’s of use to link both worlds, giving

argumental coherence to the definition of 3D scenes

with spoken interaction.

In this article we introduce firstly mark-up

languages for specifying scene and graphical and

vocal interaction, and then we introduce the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

WSCG2008 Communication papers 79 ISBN 978-80-86943-16-9

XMMVR2 process and its defined languages. Next

we define the needed architecture to be able to

implement this kind of applications and the basis we

have centred its design on as well as the used

elements. After a comparison with other actual

proposals, we end with the conclusions and the future

work.

2 3D MULTIMODAL INTERACTION

AND MARKUP LANGUAGES
Adding vocal interaction to virtual environments

with graphical interaction brings clear profits. Thanks

to it we can broadcast commands keeping freedom

for hands and eyes. Besides, users can refer to objects

outside actual sight of virtual world, making actions

to be quick and its effect immediate. But there exists

a difficulty for general approximation to multimodal

fusion that makes necessary the definition of a

reusable architecture for building new multimodal

systems. This difficulty resides on the different

natures of the metaphors each modality is based on.

The three components of multimodal interaction

with 3D environments are: (1) three-dimensional

specification that basically consist of modelling

objects in the virtual world that can be static and/or

dynamic, (2) graphical interaction (GUI) based on

keyboard and mouse as we know nowadays and

always orbiting to the event model and based on

action spaces [7] that are metaphorical

approximations for structuring three-dimensional user

interfaces (two fundamental: theatre metaphor,

locomotion metaphor; five structural: rooms,

revolving stages, buildings, space stations, urban

metaphors; and five navigational: elevator, train,

slide, flying carpet, tele-portage); and finally (3)

vocal interaction (VUI) where four metaphors are

possible (proxy, divinity, telekinesis or interface

agent [8]). To choose the adequate vocal interaction

metaphor for our world is a difficult task and even

more to specify a language including this inside of

the defined framework.

Several mark-up languages exist for specifying

vocal interaction, scenes and behaviour separately but

there are also other mark-up languages that we will

define as hybrid. Examples of mark-up languages for

specifying vocal interaction are VoiceXML [4],

SALT [9] and X+V [10]. As mark-up languages for

specifying scenes we have VRML [6] and X3D [5].

The limitations of these two languages for specifying

behaviour of integrating elements of the scene have

caused the definition of mark-up languages for

specifying behaviour, as for example Behavior3D

[11] or VHML [12]. Into the hybrid mark-up

languages we can mention MIML [13] that allows

integrating speech and gesture information and the

context of a given application using an approach of

parsing or syntactic/semantic processing and MPML-

VR that is an extension of MPML (Multimodal

Presentation Mark-up Language) a mark-up language

designed for multimodal presentations using VRML

2.0 to be able to represent three-dimensional spaces

through an anthropomorphic agent or human like

avatar [14]. Besides of the seen mark-up languages

there exist others that look for defining specifications

for concrete applications [15]. According to the goal

of defining a mark-up language for specifying virtual

worlds with multimodal interaction, we propose the

XMMVR2 language that will be described on next

paragraph.

3 THE XMMVR2 PROCCESS
On next figure the two steps of XMMVR2 process

are shown:

Figure 1 XMMVR2’s two steps process

The general idea is developing a repository of

objects for building VR worlds with multimodal

interaction and reusing those objects being able to

define new worlds. Next paragraphs describe each of

the components.

3.1 OLMMVR
The extensible mark-up language for Objects

Library for MultiModal interaction with Virtual

Reality worlds is an XML file referencing to a

repository of actors, localizations and dialogues.

Actors have a java class inheriting puppet class and a

VRML file that determines the appearance of the

actor in the world. Localizations are stages

represented by its corresponding VRML file. Every

dialogue is composed by one or several VoiceXML

files.

3.2 DAMMVR
The extensible mark-up language for Definition

of Applications of MultiModal interaction with

WSCG2008 Communication papers 80 ISBN 978-80-86943-16-9

Virtual Reality worlds is a definition file of the

application to be built. In this file we select the

actors, the localizations and the dialogues forming

part of the defined world or interactive movie. Here

we select among the possible actors of our

OLMMVR repository the ones conforming our cast.

Likewise, we choose the stage or stages to configure

the movie (see “stage” on figure 2). Finally, we select

dialogues guiding our world or interactive movie (see

“script” on figure 2).

Figure 2 OLMMVR’s XMLSchema

3.3 XMMVR2
The eXtensible mark-up language for

MultiModal interaction with Virtual Reality worlds

version 2 is the result of step 1 if everything is correct

(see figure 1). On this process we probe that the

DAMMVR file defined is valid with respect its DTD

and that it references elements existing in the

OLMMVR repository. If previous condition is not

accomplished, the user will be advised with the

corresponding error to modify the DAMMVR file.

Figure 3 DAMMVR’s XMLSchema

If everything is correct, the XMMVR2 file can be

defined for describing our world. XMMVR2 is a

proposal for definition of a mark-up language for

defining scene, behaviour and interaction where we

consider every world or interactive movie as an

“xmmvr” element based on the cinematographic

movie metaphor. We could say that XMMVR2 is a

hybrid mark-up language because the idea is to use

other languages such as VoiceXML or X+V for vocal

interaction and X3D or VRML to describe the scene

to be kept embebed on it.

This way, the interpretation of valid XML files

according to the XMMVR2 DTD allows the

necessary programs and files to make the specified

world to work. Our XMMVR2 based system is event

driven, so that a minimum list of events will have to

be defined and it does not exist a time line. An

“xmmvr” element will be formed mainly by the cast

of actors, element “cast” and by the sequence of

scenes, element “sequence” that marks the passing of

the world. Besides we reserve an element “context”

for internal use.

Figure 4 XMMVR2’s XMLSchema

Element “cast” will be the set of sprites/actors

appearing in the world or “xmmvr” movie, that is

every element with a graphical appearance specified

by a VRML file and a behaviour allowing interaction

with the user. We will consider the user as a spectator

with no presence in the world but interacting with the

actors included in the cast, so that we use the proxy

metaphor already explained to specify vocal

interaction so that we base the system on the

cinematographic movie metaphor. This could be an

evolution from a fundamental metaphor for graphical

interaction: the theatre metaphor. We can say an

“actor/sprite” is every element taking part of the

defining world and having its own behaviour to be

specified with the “behaviour” mark. Every

“behaviour” will be defined as a couple event and list

of actions to play every actor/sprite on a determinated

condition. An event can be ordered by the user from a

graphical interaction “GUI” or a vocal interaction

“VUI”. Likewise there exist events from the system

to define interaction with other actor/sprite in the

world “ACT” or interaction with the world or system

“SYS”. The list of actions will be one or several

actions generated when an event occurs and can be of

graphical character “GUI”, vocal “VUI”, of

interaction with other actor in the world “ACT” or of

interaction with the world or system “SYS”. Finally,

we have to specify the sequence of scenes “sequence”

where we have one or more scenes to be presented by

default in the written order. In every “xmmvr2” world

there is at least a scene and interaction between user

and the scene on the world, there must exist by means

an actor/sprite living in the defined world. With all

those premises we’ve defined a DTD and we’ll be

able to develop applications for multimodal

interaction with virtual reality worlds based on XML

files valid for that DTD that are indeed the

specification of the scenes, behaviour and interaction

in those virtual worlds.

4 XMMVR2 PLATFORM
The general objective is to dispose of a

framework and a language to develop applications of

WSCG2008 Communication papers 81 ISBN 978-80-86943-16-9

Multimodal (graphical and vocal) HCI with 3D

environments. Building of a concrete application

using our framework consists of specifying a virtual

world, the sequence of dialogue, the generated

actions and their relationship with the elements in the

world. The sequence of dialogues is specified using

VoiceXML and the virtual world using VRML. For

describing the behaviour of the world we must

specify the structure of components forming part of

the world manager and the correspondence between

dialogue with the user and the high level actions

included in the world manager. All these

specifications will be expressed in a structured

document using XML conforming the DTD for

XMMVR2. This will allow us developing an

embedded application on a web browser allowing the

user to control a virtual world developed in VRML

by the voice. To do this we use the computer

microphone where the application is running sending

orders to a dialogue manager based on VoiceXML.

At the same time we can interact with such world

through the keyboard/mouse of the computer. The

architecture to implement has to be based on VRML-

EAI and VoiceXML architectures defined models

integrated with the dialogue manager ATLAS from

IBERVOX [16].

4.1 AAMMVR
The Architecture for Applications of MultiModal

interaction with Virtual Reality worlds is the

architecture supporting our XMMVR2 defined

applications.

Voice

Server

Voice

Platform

XML

XMMVR2

Hashtable

Configuration

SPRITE A

.WRL

DTD

for

XMMVR2

Manager

access

LEVEL 1

LEVEL 2

SPRITE B

Events queue

Complex threads

Vrml node

sensor
Puppet B

(Clickable)

Vrml node

Puppet

A

Java class

ControlPuppet

B

(Clickable)

Java class

ControlPuppet

A

WORLD MANAGER

NODE A

NODE B

Simple threads

ALARMS

MANAGER Simple queues

Complex queues

Events insertor

Inicializator

Hashtable

World Control

(State of the world)

EAI

IE browser

Applet

World manager

(MVM)

EAI

Tomcat

newRedirigir
(servlet)

8000

Voice

XML

8765

4000

8080

Cortona

1701-1702

SCENE 1

NODE 1

ATLAS IBERVOX
VOXSERVER

paral=”4”

Clickable puppet

puppet

anti-actions

 Vocal event

Graphical event

Figure 5 AAMMVR

To implement an architecture integrating the

described platform based on an applet on the web

browser Internet Explorer allowing our VRML

browser CORTONA [21] showing the state of the

world we interact with, we have developed several

Java packages based on EAI API [23] supported on a

servlet in an Apache Tomcat server to feed the vocal

browser of our dialogue system. It allows us having

an architecture supporting defined applications on a

normal PC with the only hardware requirement of

having an active microphone and speakers plugged

on the sound card. We could say our architecture

brings together several technologies based on XML:

VoiceXML, VRML/X3D and XMMVR2. This way

we can reuse documents of every technology,

obtaining a saving of developing time on this kind of

applications.

4.2 Flow control
An intelligent agent having to play a high level

objective on a given 3D stage, will have to solve

multiple elemental actions whose execution are

depending on the semantic of the concrete task and

on the state of the world. For it, during different

projects made by our group, elements allowing

developing the defined platform have been made.

This platform will be in charge of the events flow

control and of the execution of the actions to be

performed in our applications. For it we will specify

the behaviours in the correspondent XML files valid

for the DTD for XMMVR2. Next we will define

behaviour on virtual worlds.

Simple behaviour: State changes of the objects

depend exclusively on internal events generated by

nodes described inside of the VRML file, without the

intervention of any language alien to VRML. It can

be said this kind of behaviour is owned by VRML.

Event propagation is made by routing or driving

events from one node to another. This way, one event

can generate “events waterfall” so that it generates

answers or changes on the nodes directed to.

As simple behaviour is restricted to drive data from

one node to another, by means of VRML instructions.

There are limitations as the next ones: it is impossible

by means of this mechanism to determine if a door is

closed or open, or moving an object along a course

defined by a mathematical equation. For carrying out

these or other more complex operations, it must be

used a programming language of general purpose.

Complex behaviour on a VRML world is that where

state changes of the objects depend on a

programming language alien to VRML [17].

Dynamic changes in the scene can be stimulated by

actions programmed on a script, message passing,

WSCG2008 Communication papers 82 ISBN 978-80-86943-16-9

user commands or behaviour protocols. It offers the

possibility of interaction with other languages

(specifically languages as Java y JavaScript). To do

so Script nodes or an API as EAI are used. This way

it is possible to assign more elaborated behaviours as

described on the successive.

4.3 Global layered vision
The raised solution to define our control flow

platform consists on dividing our system on several

superimposed layers where each of them gives

support to the immediately upper layer. We will

revise the layers conforming our platform and we will

place them between two layers: one on the top and

another at the bottom to be able to frame our action

manager in a context and make it easier to

understand. We follow a top-bottom order at the

abstraction level as seen on figure:

Figure 6 Global layered vision

4.3.1 !Top layer
This layer corresponds to a spoken dialogue manager

that generates events from vocal interaction with the

user and supplies the input for the immediately

inferior layer that is the input for our action manager

(vocal and graphical).

4.3.2 Action manager
It is identified with a subsystem receiving events; it

translates them in series of actions and plans its

execution. Later it processes actions interacting with

the virtual world through the supplied interface by the

puppet to be detailed latter. It must be independent

from the characteristics of the virtual world to be

controlled. To do so, it is subdivided in two

additional layers:

4.3.2.1 Schedule
It is the layer providing a mechanism of unified

access for the input of events from different sources.

Once inside, these events are translated into complex

actions and everyone is subdivided on a series of

simple actions. Such series of actions can be executed

on parallel but simple actions originated by the same

complex action are executed sequentially. Besides

this layer implements an architecture for the treatment

of “anti-actions” orders writing off simple actions

pending of processing.

4.3.2.2 Control
The input of this layer is simple actions coming from

the top layer. Here these actions are executed

regarding the state of the world. We call state of the

world to the set formed by the states of every

dynamic elements making up the virtual world. After

the execution of a simple action the state of the world

will be updated with the new states.

4.3.3 !Communication and synchronization
This is the basis for the execution of actions on the

virtual world with an upper level of abstraction [18].

It avoids us to know EAI API used by Java to

communicate with the VRML world and provides us

a mechanism of synchronization for the interaction

with the objects in the world. This layer was

redefined to admit the possibility of generating events

for a virtual element when clicked with the mouse

over its visual representation in the world (clickable

puppet) [19]. We have here two extra sublevels:

4.3.3.1 Puppets
It is a layer of greater abstraction; it works with the

bottom layer through the EAI to offer a more

complex API allowing the possibility to run more

simple actions but not close to the VRML referring to

upper layers.

4.3.3.2 VRML nodes
It is the bottom layer. It only has the graphical

representation to be displayed. It shows its interface

to the top layer through the EAI.

It is considered that a puppet is composed of two

separate natures: One is a three-dimensional object

developed in the model language VRML, this object

is just an image without any kind of behaviour or

capacity for executing actions. Another is the Java

class associated to the object in the virtual world and

it gives functionality and capacity to perform actions

for the object.

To keep this philosophy we must define VRML

nodes in our applications based on a defined format.

We do not only need to know VRML specification,

but to keep the norms derived from the integration

with XMMVR2.

4.4 Event handling
The events arriving to our system are translated into

the actions associated according to the XML file

valid for the DTD for XMMVR2. If these actions are

Top layer (Dialogue Manager)

Schedule (LEVEL 1)

Control

Communication and synchronization

VRML World

Action manager

EAI

Schedule (LEVEL 2)

XMMVR2

WSCG2008 Communication papers 83 ISBN 978-80-86943-16-9

high levelled, they are decomposed according to the

other two types of less abstract actions. Once the

events are translated into successions of less complex

actions, these actions are executed on the pertinent

puppet taking into account the actual status of the

implied puppets and modifying its new state

subsequently. If user clicks into the visual

representation of any puppet, this will produce its

associated event and will feedback it into the

subsystem.

Having a clear vision of the case we are dealing,

we’ll have a great part of the work done when

deciding the software architecture to give the

subsystem. Besides this way we have the problem

explained in a natural way legible for anybody

unfamiliar with the analysis and design standards in

software engineering.

The hierarchy of events schedule is seen as a series of

producers/consumers problems. If a static structure of

classes is chosen, the execution of simultaneous

actions into the world would be an extremely difficult

task. The subsystem would be blocked waiting for the

processing of an event and it had not been able to

satisfy the execution demand on real time. Besides, it

had not been possible the processing of “anti-actions”

these are exceptional events able to inhibit the

execution of simple actions waiting to be executed.

Threads and queues are the basic components to

resolve problems of the kind of producers/consumers

but this always implies that some norms have to be

carried out to avoid blockade and being able to

access to the critical resources safely. For it, instead

of using any predefined structure in Java, a class

EventQueue has been implemented, designed to

satisfy our concrete needs and equipped with the

synchronizing mechanisms to assure a correct

working. This has been accomplished implementing a

class Queue providing mechanisms of insertion and

removal of elements over an array of elements.

5 OTHER RELATED WORKS
MMI group from the W3C has marked the lines to

follow by the architecture of a multimodal interaction

application at the Multimodal Architecture and

Interfaces [20]. This architecture is based on a

Runtime Framework, providing the Basic structure

and managing communication between the other

elements or Constituents. The Delivery Context

Component, that is a subcomponent of the Runtime

Framework, provides information about the

capacities of the platform, there is no similar element

in our proposal so we will have to develop it in next

revisions. The Interaction Manager that is the next

subcomponent of the Runtime Framework, manages

the different modalities, it could be the Controller

from MVC paradigm and in the AMMVR

architecture presented could be similar to the world

manager. The Data Component is the last

subcomponent from the Runtime Framework and is

the provider of the common data model, it would

represent the Model from the MVC paradigm and it

could be equated to the XML file valid for the DTD

of XMMVR2 in our proposal. The Modality

Components, put up specific interaction capacities, it

would be the Views in the MVC paradigm and the

VRML and VoiceXML files for the specification of

graphical interaction, scene and vocal interaction

respectively in our proposal. Likewise, we could

equate EAI API and the servlet we talked about

presenting our architecture with the Modality

Component API proposed at the Multimodal

Architecture and Interfaces.

Figure 7 Multimodal Architecture and

Interfaces

Besides of this architectural model, the multimodal

interaction group from the W3C is developing other

series of standards like for example an XML

language for transporting input data from different

modalities to the interaction manager, EMMA or

Extensible MultiModal Annotation Language [26]. It

is a specification for establishing how the input or

output objects are plugged into the interaction

manager, a mechanism for the unification or

discrimination into different input modalities for

resolving contradictory inputs cases for example, or

selection into values from different modalities based

on determined rules or priorities but unlike our

XMMVR2 language it does not specify behaviour.

On COLLADA project [29] an open standard XML

Schema is defined for exchanging digital assets

among various graphics software applications. Our

proposal wants not only to be an exchanging medium

inter platforms, we want it to be a platform.

XMMVR2 has similarities with projects as MIML

and MPML before described. The last one is a mark-

up language designed for multimodal presentations

and originally used an agent for animating

presentations PowerPoint like. The need of giving

more realism to the presentations made to pose the

possibility of presenting three-dimensional spaces

Delivery

Content

Component

Interaction

Manager

Data

Component

Runtime Framework

Modality

Component

1

Modality

Component

2

Modality Component API Modality Component API

WSCG2008 Communication papers 84 ISBN 978-80-86943-16-9

despite of simple two-dimensional photographs, this

way it evolved to MPML-VR that is an extension of

MPML using VRML 2.0 to be able to present three-

dimensional spaces through an anthropomorphic

agent or avatar with human aspect. It is based on the

control of states in a scene, this is controlling

transitions on a scene based on elements “event” as a

mouse click or a voice command or “speech input”. It

is on this event control that it is similar to our

proposal but in its concrete object goes far from it.

NICE [27] is a project for developing interactive

games where a scenario with characters is presented

the user can interact with the characters to achieve

success in the game. Each character has a domain

model corresponding to its vision of the world,

ontology that can be described in a tree way and it

can be represented in XML format. The world is

defined by scenes with several phases on base to

some “dialogue events” that generate java classes.

Project CONTIGRA [28] has defined Behavior3D, it

is an XML Schema automatically generated that

integrates every available behaviours for widgets 3D

living a repertory of definitions of behaviour and that

has been part of inspiration for our proposal thought

its objectives are reduced to define behaviour of

widgets 3D.

6 CONCLUSIONS AND FUTURE

WORK
With the presented proposal of XMMVR2 language

we want to prove that it is necessary defining a meta-

script to specify any virtual world allowing

multimodal interaction. It puts up modularity

obtaining clearness and improving possibilities of

reusing and standardization. With the end of

improving effectiveness of the proposed language, we

have implemented the described architecture with a

small example application: we have just defined an

actor and one stage so we should make more complex

the number of actors and stages on future

developments. On the other hand, this proposal only

considers the proxy metaphor for vocal interaction so

we must extend it to give a solution to every

presented metaphor of vocal interaction or to all of

them globally. As we have used VRML language to

specify the elements and graphical interaction based

on an obsolete VRML browser as Cortona is, another

task will be redefining our architecture to be able to

work with the graphical specification language X3D

using an adequate browser, this will require

redeveloping the architecture based on the SAI API

[22] instead of EAI API. Finally, we want our

platform to be based totally on open source software

for easing the work community desiring to add our

proposal to join us without problems, so that we are

working with other browsers as FreeWRL [25] or

XJ3D [26] that can be executed on platforms as

Debian Linux. Referring to the vocal browsers, we

are also posing the searching for open source

solutions but nowadays it will be more difficult so by

the moment we will keep on with the actual platform

without leaving evaluation of other possible

candidates. After the definition of a new platform

based on open source tools, we will develop an

evaluation phase with real users for the defined

interaction capabilities to correct and improve our

design trying to give an answer to every presented

limitations.

Our proposal, differently from the others described

has an intention of being a generic platform for

development of VR applications with multimodal

interaction allowing to experiment with the

metaphors owned for every interaction mode, vocal

and/or graphical. This way we will get a laboratory

for playing with the possibilities that the use of

multimodality allowed us. This will make possible

the development of applications for specific areas

where multimodality could be a great support to ease

the interaction. An example could be the

development of educational games based on VR for

users with accessibility problems.

7 REFERENCES
[1] W. R. Sherman, A. Craig. Understanding Virtual

Reality: Interface, Application, and Design, The

Morgan Kaufmann Series in Computer Graphics,

2002

[2] D.Dahl. Practical Spoken Dialog Systems (Text,
Speech and Language Technology), Springer,

2004

[3] C. González-Ferreras, A. González Escribano,
D. Escudero Mancebo y V. Cardeñoso Payo.

Incorporación de interacción vocal en mundos

virtuales usando VoiceXML, CEIG, 2004

[4] VoiceXML Forum. “Voice eXtensible Markup

Language”: http://www.voicexml.org (Revised at

December 2007)

[5] Extensible 3D (X3D):
http//www.web3d.org/x3d.html (Revised at

December 2006)

[6] Jed Hartman, Josie Wernecke. The VRML 2.0

Handbook, Silicon Graphics, 1994

[7] R. Dachselt. Action Spaces - A metaphorical
concept to support navigation and interaction in

3D interfaces; User Guidance in Virtual

Environments, Workshop "Usability Centred

Design and Evaluation of Virtual 3D

Environments", 2000

[8] S. McGlashan, T. Axling. Talking to Agents in
Virtual Worlds, UK VR-SIG Conf., 1996

WSCG2008 Communication papers 85 ISBN 978-80-86943-16-9

[9] SALT Technical White Paper:
http://www.saltforum.org/whitepapers/whitepaper

s.asp (Revised at December 2007)

[10] XHTML+Voice Profile 1.2:
http://www.voicexml.org/specs/multimodal/x+v/1

2/spec.html (Revised at December 2007)

[11] R. Dachselt. BEHAVIOR3D: An XML-Based

Framework for 3D Graphics Behaviour; ACM

Web3D, 2003

[12] VHML Standard: http://www.vhml.org (Revised
at December 2007)

[13] Latoschik, M.E. Designing transition networks
for multimodal VR-interactions using a markup

language, ICMI, 2002

[14] Naoaki Okazaki y otros. An Extension of the
Multimodal Presentation Markup Language

(MPML) to a Three-Dimensional VRML Space,

Wiley-Interscience 2005

[15] M.P Carretero y otros. Animación Facial y
Corporal de Avatares 3D a partir de la edición e

interpretación de lenguajes de marcas, CEIG,

2004

[16] ATLAS de IBERVOX http://www.verbio.com
(Revised at December 2007)

[17] Rolando Quintero Téllez. Asignación de
Comportamiento Complejo a Mundos Virtuales

VRML Utilizando C++,

http://www.revista.unam.mx/vol.2/num2/art2/inde

x.html (Revised at December 2007)

[18] Ignacio Fernandez-Divar Escacho, Alejandro
Alcántara Zarzuela, Herramientas para

manipulación dinámica de mundos virtuales,

PFC-ECASIMM (9/2004)

[19] Samuel García Blanco, Modelo e

implementación de un gestor de acciones en

mundos virtuales, PFC-ECASIMM (9/2005)

[20] Multimodal Architecture and Interfaces
http://www.w3.org/TR/2006/WD-mmi-arch-

20061211/ (Revised at December 2007)

[21] Cortona
http://www.parallelgraphics.com/products/cortona

/ (Revised at December 2007)

[22] SAI, Scene Access Interface
http://www.xj3d.org/tutorials/general_sai.html

(Revised at December 2007)

[23] Andrew M Phelps, Rochester Institute of
Technology, Department of Information

Technology, Introduction to the External

Authoring Interface, EAI.

http://andysgi.rit.edu/andyworld10/gallery/archive

s/vrml/media/eaiclass.doc (Revised at December

2006)

[24] FreeWRL http://freewrl.sourceforge.net/
(Revised at December 2007)

[25] XJ3D http://www.xj3d.org/ (Revised at
December 2007)

[26] EMMA http://www.w3.org/TR/emma/ (Revised
at December 2007)

[27] NICE http://www.niceproject.com/ (Revised at
December 2007)

[28] CONTIGRA http://www-mmt.inf.tu-
dresden.de/Forschung/Projekte/CONTIGRA/inde

x_en.xhtml (Revised at December 2007)

[29] COLLADA http://www.collada.org (Revised at
December 2007)

WSCG2008 Communication papers 86 ISBN 978-80-86943-16-9

	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	F19-full.pdf
	F37-full.pdf

