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ABSTRACT 
Meshes used in real-time applications are usually composed of sub-meshes which contain vertices with different 
sets of attributes. This kind of mesh cannot be used directly in the current graphics pipeline architecture because 
meshes for interactive applications usually duplicate vertices to ensure that every vertex has a single set of 
attributes. This fact causes apparently contiguous surfaces to be split into pieces or patches, and so traditional 
simplification error metrics will fail in any attempt they make to simplify them. 
Here we present a method for this kind of mesh which is based on edge collapses and takes into account the 
information about attributes that contribute to obtain a more realistic appearance of the object, like normals and 
texture coordinates, in the error metric and recalculating this information after the simplification steps. 
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1. INTRODUCTION 
Simplification methods make it possible to reduce 
the amount of geometry needed to represent an 
object while maintaining the visual quality as much 
as possible, which benefits the performance of the 
GPU. 

Many articles about simplification techniques can be 
found in the literature. The vast majority of them are 
based on geometry metrics to define the order of 
collapses. These methods are relatively fast and offer 
good simplifications. 

However, more recently, other kinds of methods 
have been developed that are not based on a 
geometric metric. Instead they use image-based or 
viewpoint-driven metrics to provide a visual error 
metric which can potentially offer better results than 
the traditional geometry-based error metrics. Due to 
the visual nature of these methods, they can take 
advantage of visual aspects such as occlusion to 

decimate those parts of the objects which are hidden 
or that are not important because they are parts of the 
object that are not “seen”. 

Moreover, these methods can detect how per-vertex 
information affects the visual appearance of the mesh 
and take that information into account for the 
simplification metric. This is important because 
simplifying an object without taking this information 
into consideration can, for example, cause valid 
geometric simplifications that completely distort 
texture coordinates or per-vertex normals. 

Meshes used for real-time applications are usually 
composed of sub-meshes that contain vertices with 
different sets of attributes. To ensure that every 
vertex has a single set of attributes, they need to 
duplicate vertices. If these meshes were used directly 
by the current graphics pipeline architecture a 
distorted final object would be obtained. 

A method for mesh simplification is presented in this 
section. It is based on edge collapses and was 
designed to take these situations into account in order 
to provide valid simplifications for real-time meshes, 
taking into account vertices with more than one 
single set of attributes while preserving the 
appearance of the object. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 
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This method is especially useful for sub-mesh 
simplification because most of the current methods 
collapse vertices which are in the same spatial 
location, thus losing attribute information at the 
union of sub-meshes. Our method can handle this 
situation to provide good simplifications. Moreover, 
it takes into account the information about attributes 
that help to obtain a more realistic appearance of the 
object, such as normals and texture coordinates, in 
the error metric and recalculating this information 
after the simplification steps. 

The rest of this paper is structured as follows. In 
chapter 2 we describe the background to this 
research. In chapter 3 we explain the method set out 
here. Chapter 4 shows some results and we conclude 
the paper in chapter 5. 

2. STATE OF THE ART 
Algorithms for mesh simplification can be classified 
as belonging four different types: 

- Vertex decimation [Ciam96a] [Sch97a]. These 
methods are based on the removal of vertices from 
the mesh. Once a vertex is removed, all faces using 
that vertex are also removed and then the hole is re-
triangularised. Because of the way it creates 
triangles, this kind of algorithms is limited to 
manifold meshes. 

- Vertex clustering [Low97a] [Ros93a]. These 
methods are based on an inclusion box divided into 
several cells. All vertices that are included in a cell 
are collapsed into one single vertex and the triangles 
that share the removed vertices are updated. These 
methods tend to be very fast but the visual 
appearance of the final mesh is not relatively very 
good. 

- Edge contraction [Gar97a]. These methods use an 
iterative selection of edges to be removed to decrease 
the level of detail. At each step, a single edge is 
selected for removal (or a pair of unconnected 
vertices). All faces sharing that edge are also 
removed, and the faces which share just one of the 
vertices of that edge are updated to cap the hole. 
Degenerated faces and edges are also removed. 

- Morphological operations [Noo03a]. These 
methods apply morphological operations (in contrast 
volumetric objects), like erosion and dilation, to 
decrease the level of detail of objects. They are very 
fast and tend to offer good results. 

The most extended and precise methods for surface 
simplification [Gar99a] [Hec97a] [Pup97a] use 
techniques based on iterative edge contraction. These 
methods make it possible to contract edges and join 
vertices so that the connectivity of the mesh is 
preserved. A weight is assigned to each edge in a 

pre-process that considers to the geometric 
importance of that edge in the simplification. 

One of the most relevant improvements to the 
geometry-oriented simplification methods is the 
incorporation of vertex attributes, such as texture 
coordinates and normals, into the simplification 
metric. Hoppe extended his initial work [Hop96a] by 
proposing a new technique based on quadrics 
incorporating colour and texture coordinates 
[Hop99a]. The authors of the Qslim [Gar97a] 
[Gar98a] algorithm also extended their metric to take 
into account this kind of information. 

Cohen et al [Coh98a] developed an algorithm based 
on edge collapses which convert vertex positions, 
diffuse colours and normals into texture and normal 
maps. This algorithm is based on a texture deviation 
metric. 

Lindstrom et al. [Lin00a] handle the problem as a 
visual approach by creating a purely image-based 
metric. Basically, their method determines the cost of 
a collapse operation by rendering the model from a 
set of viewpoints. Then the algorithm compares the 
resulting images and adds the per-pixel error as an 
extra value for each pixel. All edges are then sorted 
using this error information so that the first edge 
collapses are those which have the least error. 

The main advantage of the metric is that it offers a 
good balance between the geometry of the object and 
its vertex attributes in a natural way, without the user 
having to assign any weight to them. Its main 
disadvantage is its high temporal cost. 

Luebke et al. [Lue01a] presented a method for view-
dependent simplification using perceptual error 
metrics. Later, Williams et al [Wil03a] extended this 
work to shaded and textured meshes. 

Zhang et al. [Zha02a] proposed a new algorithm that 
takes visibility into account. This work defines a new 
visibility function that considers the surface of the 
model and a set of cameras located on the surface of 
a virtual sphere surrounding the model. The number 
of cameras influences the precision and the temporal 
cost of the algorithm. Luebke et al. used up to 258 
cameras. To guide the simplification process, they 
combined their visibility algorithm with Garland’s 
quadric-based error metric [Gar97a]. 

Recently, Lee et al [Lee05a] introduced the saliency 
concept as an error metric, which was used for mesh 
simplification algorithms. Basically their work 
consists in the generation of a saliency map to be 
used in the Qslim [Zha02a] simplification algorithm. 
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3. METHOD 
The method presented here takes into account the 
properties of the meshes used for games, so it can 
effectively handle the presence of duplicated vertices 
with different attributes, which are considered in the 
simplification. Algorithm 1 shows a pseudo-code of 
the method. This method extends a viewpoint-driven 
simplification method [Cas07a] with different 
improvements in order to present better appearance 
in the final objects. But the user can use only the 
needed extensions depending on the requirements. 
Begin 
For each edge (a) of the Model 
 Collapse edge a 
 Calculate collapse cost 

Insert the information (a, 
     cost) in the queue q 

 Undo the collapse of edge a 
End For 
While (queue q is not empty) 

Extract from queue q the edge 
with the least cost (a)  

 Collapse edge a 
 RecalculateCoordsText(a) 

Recalculate costs of neighbour 
edges of a and update position in 
queue q 

End While 
RecalculateNormals(Model) 
End  

Algorithm 1. Pseudo-code of the method. 

Error metric 
The error metric employed to test our simplification 
uses a viewpoint-driven model [Cas07a]. Its 
objective is to provide simplifications so that the 
simplified mesh makes the appearance as similar as 
possible to the initial un-simplified mesh. To do this, 
it applies the entropy from a viewpoint, a concept 
which is taken from the “Theory of Information”. 
The entropy of a viewpoint is obtained from the 
distribution of the projected areas of the polygons of 
the mesh. Projected areas are calculated by analysing 
the frame buffer using a histogram. Different 
viewpoint-driven simplification methods can be 
found in the literature [Lue97a][ElS99a][Hop97a]. 

Several viewpoints are uniformly distributed around 
the mesh. The variation in the entropy of each of 
these viewpoints after a collapse operation is used to 
calculate the error that the operation has caused. The 
collapse operation used is an edge collapse whose 
resulting vertex is one of the two vertices of the 
collapsed edge. The collapses in the two directions 
are simulated to determine which collapse produces 
the least changes in the curvature of the mesh. It is 
also possible to determine the exact location of the 

resulting vertex by taking into account the curvature 
of the mesh. 

The following equation shows the formula used to 
calculate the entropy of a viewpoint v, where Hv is 
the final entropy for v, Nf is the number of polygons 
in the mesh, ai is the projected area of the polygon i 
and at is the total projected area. 
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The simplification process is an iterative process. 
Initially, the error caused by an edge collapse is 
calculated and stored in a heap. After that, the edge 
with the smallest associated cost is extracted from the 
heap. This process is repeated until the minimum 
desired polygon count is reached or there are no 
more possible collapse candidates in the heap. 

Models usually contain additional attributes such as 
texture coordinates or normals. Interactive 
applications, such as games or virtual worlds, need to 
show correctly textured objects, because textures 
play a very important role in the final appearance of 
a rendered object. 

If texture information is considered in the 
simplification method, the texture of the final object 
will be distorted. To take this into account, we use an 
extension to the error metric that takes into account 
texture information [Gon07a]. This extension is 
based on the existing borders in the texture image. 
Border detection is based on the Canny method for 
border detection in image space [Can83a] [Can86a]. 
After obtaining the borders of the texture image, 
texture coordinates are used to check whether an 
edge is colliding against any of these generated 
borders or not. All the edges that collide with a 
border are penalised by incrementing their cost. This 
will cause that edge collapses that would distort the 
final appearance of the mesh are avoided as much as 
possible during the simplification process. Figure 1 
shows the eye model, its texture image and the 
borders obtained by the border detection method. 
Figures 2 and 3 show three levels of simplification 
applied to the eye model. Artifacts caused by a 
simplification method that does not take into account 
texture information can be observed in Figure 2. 
Figure 3 shows how the new texture extension solves 
these problems. 
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Figure 1. Eye model (left), texture image (centre) 

and borders detected in the texture. 

 
Figure 2. Eye model simplified to 75% (left), 50% 

(middle) and 25% (right) without applying the 
texture extension metric. 

 
Figure 3. Eye model simplified to 75% (left), 50% 

(middle) and 25% (right) applying the texture 
extension for appearance preserving. 

Simplifying with holes (duplicated 
vertices) 
Meshes used in games often present different vertices 
with the same spatial coordinates. This is necessary 
to represent vertices with more than a single set of 
attributes (like the corners of a cube), but causes 
invisible holes in the mesh. These holes will become 
visible if the simplification method does not take that 
situation into account. 

To solve this problem the simplification strategy 
makes use of three new concepts: real edge, twin 
edge and fake edge. Real edge refers to the collapsed 
edge; the twin edge is the edge joining two vertices 
which have the same spatial coordinates as the 
collapsed vertices. The meaning of fake edge is well 
illustrated in Figure 4. These new concepts help to 
avoid the existence of holes in the final object. 

Figure 4 presents a simple example of a 
simplification step. This figure shows a part of a 
mesh composed by two different submeshes (green 
and yellow). The edge (va,vb) has been chosen by 
the simplification algorithm as the edge to be 
collapsed (real edge). After that, edge (vc,vd) is 
determined as the twin edge for (va,vb) and must 
also be collapsed in order to avoid a hole. However, 
this is not always sufficient to completely avoid holes 
in this kind of mesh because in some cases there is 
not an edge that can be collapsed to cap the hole (see 
Figure 4 - b, c, d). In these cases a new vertex (fake 

vertex) must be generated to create a fake edge so 
that it can be collapsed to effectively cap the hole. 
This fake vertex will be initially topologically 
disconnected and it will be used in the fake edge 
collapse. The attributes (normal, texture coordinates, 
bone assignments, and so forth) of the fake vertex 
will be calculated to reduce visual artifacts in the 
simplified mesh. 

Note that we only need to introduce fake vertices if 
we are restricted to working only with indices (such 
as in some multiresolution algorithms [Ram04a]). 
Other vertices are simply translated to cap the holes 
resulting in face elimination. A pseudo-code is 
presented in algorithm 2. 

This method is very useful for sub-meshes because it 
prevents holes from appearing in the joints of the 
sub-meshes when the simplification algorithm 
collapses and edge of one of the two sub-meshes. 

While (EdgeList ≠ Ø) 
 realEdge=extract(EdgeList) 
 addSimplifList(realEdge) 
 If(∃ Twin(realEdge, EdgeList)) 
  twinEdge= Twin (realEdge, 
       EdgeList) 
  addSimplifList(twinEdge) 
 End If 
 While (∃          
  disconnectedVert(realEdge, 
             EdgeList)) 
  fakeVertex= 
  disconnectedVert(realEdge, 
             EdgeList) 
  fakeEdge= FakeEdge(realEdge, 
          fakeVertex) 
 
 calculateAttributes(fakeVertex) 
  addVertexList(fakeVertex)  
 End While 
End While 

Algorithm 2. Pseudo-code for edge contraction. 

 
Figure 4. The edge collapse va  vb (real edge) 
forces the collapses of two other edjes: vc  vd 

(twin edge) and ve  vf (fake edge). 
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Texture coordinates 
To obtain a better texture distribution over the 
simplified object, texture coordinates can be 
recalculated at each simplification step, which 
enhances the appearance of the simplified model. In 
an edge collapse, texture coordinates are recalculated 
taking into account the displacement of the vertex 
using a linear interpolation. 

The following equations will allow us to calculate 
the displacement to be applied to the texture 
coordinates in order to avoid texture distortions in 
the simplified mesh. 
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where
1' PQQ −= , 

12' PPU −= , 
13' PPV −= , 
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PPP are the three vertices of the 

modified triangle, Q  is the new position of the 

modified vertex and N is the normal of the triangle. 

On solving this equation system we obtain the values 
for the unknowns α, β and γ, which are the 
coordinates of Q expressed in the coordinate system 
of the triangle. They also represent how the vertex 
has moved after the collapse, and hence they can be 
used to calculate the new texture coordinate for that 
vertex (see Figure 5). Thus, the new texture 
coordinates are calculated as follows: 
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where 1T , 2T  and 3T  are the original texture 
coordinates for the three modified vertices of each 
modified triangle after the collapse.  

It must be borne in mind that we have only used α 
and β in our equation because texture coordinates are 
two-dimensional vectors contained in the plane 
formed by the triangle. Because γ represents the 
displacement along the normal vector we do not need 

it. Figure 6 shows an example for this texture 
coordinate correction. 

 
Figure 5. Displacing the new vertex after the 

collapse. P2 collapses to Q. 

Normals 
The final value of the normals influences the visual 
aspect of the simplified mesh and can cause invalid 
shading if they are not calculated correctly. So after 
the simplification process has ended, a 
renormalisation process can be applied to the final 
mesh to ensure correct calculation of all the normals. 

To calculate correct normals for the simplified model 
it must be determined whether a polygon needs per-
vertex or per-face normals. For example, the vertices 
of a cube must have face normals and the vertices of 
a sphere should have vertex normals. 

The process used to calculate normals for the 
simplified model is the following: 

 

- Duplicate vertices so that each vertex is 
used by exactly one triangle. 

- Each vertex normal is initialised to the 
normal of the face using that vertex. 

- All vertices sharing the same position and 
having faces with an angle less than a 
certain reference value (defined by the user) 
are collapsed into a single vertex with a 
normalised average normal. 

A pseudo-code is shown in the algorithm 3. Figure 7 
shows the results of applying our normal calculations 
over a simplified mesh 
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Function ExtendModel 
Begin 
count= 0 
For ∀  Vertex ∈ Model do 
 IndexN(Vertex)= count 
 count++ 
 Normal(Vertex)= Normal(Face) 
End For 
End 
 
 
Function CalculateNormals 
Begin 
For ∀  Vertex1 ∈ Model do 
For ∀  Vertex2 ∈ Model do 

If Vertex1≠ Vertex2 and  
Coordinates(Vertex1)== 

 Coordinates (Vertex2) 
  If Angle(Face1, Face2)< 
    EPSILON 
   Normal(Vertex1)+=  
   Normal(Face2) 
 
   IndexN(Vertex2)= 
   IndexN(Vertex1) 
  End If  
 End If 
End For 
End For 
End 

Algorithm 3. Pseudo-code for normals. 

4. RESULTS 
Our simplification method allows simplified objects 
to preserve the appearance of the original models as 
much as possible because both geometric 

considerations  and vertex attributes are taken into 
account for the simplification. 

Figures 8 and 9 show two examples of objects 
simplified using our method. Figure 8 shows the 
ninja model simplified to a 50% of its original 
geometric complexity. Figure 9 shows two 
simplifications for the racing car. Notice how texture 
details are preserved over the simplified objects. 

A table is also presented showing times for various 
simplifications of different models, as well as the 
initial and final number of polygons (see Table 1). 
The greater part of the time is spent on calculating 
the entropy, due to the large number of renderings of 
the model that need to be performed in order to 
obtain such information. 

 

Triangles 
Original 

Triangles 
Final Time (seconds) 

815 100 12.27 
4 698 500 93.45 
4 806 1 200 97.33 
6 592 500 153.18 
8 468 500 226.78 

10 474 1 000 300.07 
13 810 1 000 453.34 

Table 1.  Simplification times for our method. 
 

 

 

 
Figure 6. Original model (left), object simplified without recalculating its texture coordinates (centre) and 

the same object with application of texture coordinates perturbation. 
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Figure 7. Original model (left) and the simplified model after recalculating (right). 

 
Figure 8. Ninja model. From left to right: original model front view (1008 triangles),  

original model rear view, model simplified to 50% (504 triangles), front and rear views. 

 
Figure 9. Racing car model. From left to right: original model (8345 triangles),  

model simplified to 66% (5506 triangles) and 33% (2753 triangles). 

5. CONCLUSIONS 
A simplification method has been presented which is 
designed for use with real-time meshes such as those 
used for games. This method preserves the final 
appearance of the simplified model as much as 
possible, taking into account that the meshes 
typically used for interactive applications often 
duplicate vertices in order to allow them to represent 
different per-face attributes, and also bearing in mind 
the normal and texture coordinate perturbation 
caused by edge collapses. 

Due to the way duplicated vertices are handled his 
method is capable of simplifying sub-meshes while 
avoiding visual distortions in the final appearance of 
the mesh. This is especially useful if the user wants 
to simplify a single sub-mesh avoiding to loose per-
vertex information, as occurs in other simplification 

methods that tend to collapse duplicated vertices. 
Thus, the texture coordinates and normals that are 
needed to obtain an accurate visual simplification can 
be preserved with this method. 

6. ACKNOWLEDGMENTS 
This work has been supported by the Spanish 
Ministry of Education and Science (MATER project 
TIN2004-07451-C03-03, TIN2005-08863-C03-03), 
the European Union (GAMETOOLS project IST-2-
004363), the Jaume I University (PREDOC/2005/12, 
PREDOC/2006/54) and FEDER funds. 

7. REFERENCES 
[Can83a] Canny, J. “A variational approach to edge 
detection”. In AAAI-83. 1983. 

WSCG2008 Communication papers 93 ISBN 978-80-86943-16-9



[Can86a] Canny, J. “A computational approach to 
edge detection”. IEEE Trans. Pattern Analysis and 
Machine Intelligence, pp. 679-698. 1986. 
[Cas07a] Castelló, P., Sbert, M. Chover, M. Feixas, 
M. “Viewpoint Entropy-driven Simplification”. Proc. 
of 15th International Conference in Central Europe 
on Computer Graphics, Visualization and Computer 
Vision, pp. 249-256. 2007. 
[Ciam96a] Ciampalini, A., Cignoni, P., Montani, C. 
and Scopigno R. “Multiresolution decimation based 
on global error”. Technical report, Centre National 
de la Recherche Scientifique, Paris, France, 1996. 
[Coh98a] Cohen, J., Olano, M., Manocha, D. 
“Appearance preserving simplification”. SIGGRAPH 
'98, vol. 32, pp. 115-122. 1998. 
[ElS99a] El-Sana, J., Varshney, A. “Generalized 
view-dependet simplification”. Eurographics ’99. 
Milano (Italy). 1999. 
[Gar97a] Garland, M. and Heckbert, P. “Surface 
simplification using quadric error metrics”. In 
SIGGRAPH ’97: 24th annual conference on 
Computer graphics and interactive techniques, pp. 
209–216. 1997. 
[Gar98a] Garland, M., Heckbert, P. S. “Simplifying 
surfaces with color and texture using quadric error 
metrics”. VIS '98: Proc. of the conference on 
Visualization '98, pp. 263-269. 1998. 
[Gar99a] Garland, M. “Multiresolution Modeling: 
Survey & Future Opportunities”. State of the Art 
Reports of EUROGRAPHICS'99, vol. 14 (4), pp. 
111-131. 1999. 
[Gon07a] González, C., Castelló, P., Chover, M. “A 
texture-based metric extension for simplification 
methods”. 2nd International Conference on 
Computer Graphics Theory and Applications, pp. 69-
76. 2007. 
[Hec97a] Heckbert, P. and Garland, M. “Survey of 
polygonal surface simplification algorithms”. 
Technical report, Multiresolution Surface Modeling 
Course Notes of SIGGRAPH’97, 1997. 
[Hop96a] Hoppe H. “Progressive meshes”. 
SIGGRAPH '96: Proc. of the 23rd annual conference 
on Computer graphics and interactive techniques, pp. 
99-108. 1996. 
[Hop97a] Hoppe, H. “View-dependent refinement of 
progressive meshes”. SIGGRAPH ’97, pp. 189-197. 
1997. 
[Hop99a] Hoppe, H. “New quadric metric for 
simplifying meshes with appearance attributes”. VIS 

'99: Proc. of the conference on Visualization '99. 
IEEE Computer Society Press, pps 59-66. 
[Lee05a] Lee C.H., Varshney A., Jacobs D.W. Mesh 
saliency. ACM Trans. Graph. 24, 3, pp. 659-666. 
2005. 
[Lin00a] Lindstrom, P., Turk, G. “Image-driven 
simplification”. ACM TOG 19, 3, pp. 204-241. 2000. 
[Low97a] Low, K. and Tan, T. “Model simplification 
using vertex-clustering”. In SI3D ’97: Proceedings  
of the 1997 symposium on Interactive 3D graphics, 
pp. 75–ff. ACM Press, 1997. 
[Lue97a] Luebke, D., Erikson, C. “View-dependent 
simplification of arbitrary polygonal enviroments”. 
SIGGRAPH ’97, pp. 199-208. 1997. 
[Lue01a] Luebke, D.P., Hallen, B. “Perceptually-
driven simplification for interactive rendering”. Proc. 
of the 12th Eurographics Workshop on Rendering 
Techniques, pp. 223-234. London, UK. 2001. 
[Noo03a] Nooruddin, F. and Turk, G. 
“Simplification and repair of polygonal models using 
volumetric techniques”. IEEE Transactions on 
Visualization and Computer Graphics, 9(2): 191-205. 
2003. 
[Pup97a] Puppo, E. and Scopigno, R. 
“Simplification, lod and multiresolution - principles 
and applications”. Tutorial Notes of 
EUROGRAPHICS’ 97, 16(3). 1997. 
[Ram04a] Ramos, J. F. and Chover, M. “Lodstrips: 
Level of detail strips,” in International Conference on 
Computational Science, 2004, pp. 107–114. 
[Ros93a] Rossignac, J. and Borrel, P. “Multi-
resolution 3d approximations for rendering complex 
scenes”. In B. Falcidieno and T. Kunii, eds, 
Modeling in Computer Graphics: Methods and 
Applications, pp. 455–465. Springer- Verlag, 1993. 
[Sch97a] Schroeder, W. J. “A topology modifying 
progressive decimation algorithm”. In VIS ’97: 8th 
conference on Visualization ’97, pp. 205–ff. IEEE 
Computer Society Press. Los Alamitos, CA, USA. 
1997. 
[Wil03a] Williams N., Luebke D., Cohen J.D., 
Kelley M., Schubert B. “Perceptually guided 
simplification of lit, textured meshes”. Proc. of the 
2003 symposium on Interactive 3D graphics. ACM 
Press, pp. 113-121. 2003. 
[Zha02a] Zhang E., Turk G. “Visibility-guided 
simplification”. Proc. of IEEE Visualization 2002, 
vol. 31, pp. 267-274. Nov, 2002. 
 

 

WSCG2008 Communication papers 94 ISBN 978-80-86943-16-9


	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	F19-full.pdf
	F37-full.pdf


