
Mesh Simplification for Interactive Applications

Carlos González
Dpto. de Lenguajes y
Sistemas Informáticos

Universitat Jaume I
12071 Castellón de la

Plana, Spain

cgonzale@lsi.uji.es

Jesús Gumbau
Dpto. de Lenguajes y
Sistemas Informáticos

Universitat Jaume I
12071 Castellón de la

Plana, Spain

jgumbau@lsi.uji.es

Miguel Chover
Dpto. de Lenguajes y
Sistemas Informáticos

Universitat Jaume I
12071 Castellón de la

Plana, Spain

chover@lsi.uji.es

Pascual Castelló
Dpto. de Lenguajes y
Sistemas Informáticos

Universitat Jaume I
12071 Castellón de la

Plana, Spain

castellp@lsi.uji.es

ABSTRACT
Meshes used in real-time applications are usually composed of sub-meshes which contain vertices with different
sets of attributes. This kind of mesh cannot be used directly in the current graphics pipeline architecture because
meshes for interactive applications usually duplicate vertices to ensure that every vertex has a single set of
attributes. This fact causes apparently contiguous surfaces to be split into pieces or patches, and so traditional
simplification error metrics will fail in any attempt they make to simplify them.
Here we present a method for this kind of mesh which is based on edge collapses and takes into account the
information about attributes that contribute to obtain a more realistic appearance of the object, like normals and
texture coordinates, in the error metric and recalculating this information after the simplification steps.

Keywords
Interactive applications, simplification methods, error metric, texture coordinates, normals.

1. INTRODUCTION
Simplification methods make it possible to reduce
the amount of geometry needed to represent an
object while maintaining the visual quality as much
as possible, which benefits the performance of the
GPU.

Many articles about simplification techniques can be
found in the literature. The vast majority of them are
based on geometry metrics to define the order of
collapses. These methods are relatively fast and offer
good simplifications.

However, more recently, other kinds of methods
have been developed that are not based on a
geometric metric. Instead they use image-based or
viewpoint-driven metrics to provide a visual error
metric which can potentially offer better results than
the traditional geometry-based error metrics. Due to
the visual nature of these methods, they can take
advantage of visual aspects such as occlusion to

decimate those parts of the objects which are hidden
or that are not important because they are parts of the
object that are not “seen”.

Moreover, these methods can detect how per-vertex
information affects the visual appearance of the mesh
and take that information into account for the
simplification metric. This is important because
simplifying an object without taking this information
into consideration can, for example, cause valid
geometric simplifications that completely distort
texture coordinates or per-vertex normals.

Meshes used for real-time applications are usually
composed of sub-meshes that contain vertices with
different sets of attributes. To ensure that every
vertex has a single set of attributes, they need to
duplicate vertices. If these meshes were used directly
by the current graphics pipeline architecture a
distorted final object would be obtained.

A method for mesh simplification is presented in this
section. It is based on edge collapses and was
designed to take these situations into account in order
to provide valid simplifications for real-time meshes,
taking into account vertices with more than one
single set of attributes while preserving the
appearance of the object.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

WSCG2008 Communication papers 87 ISBN 978-80-86943-16-9

This method is especially useful for sub-mesh
simplification because most of the current methods
collapse vertices which are in the same spatial
location, thus losing attribute information at the
union of sub-meshes. Our method can handle this
situation to provide good simplifications. Moreover,
it takes into account the information about attributes
that help to obtain a more realistic appearance of the
object, such as normals and texture coordinates, in
the error metric and recalculating this information
after the simplification steps.

The rest of this paper is structured as follows. In
chapter 2 we describe the background to this
research. In chapter 3 we explain the method set out
here. Chapter 4 shows some results and we conclude
the paper in chapter 5.

2. STATE OF THE ART
Algorithms for mesh simplification can be classified
as belonging four different types:

- Vertex decimation [Ciam96a] [Sch97a]. These
methods are based on the removal of vertices from
the mesh. Once a vertex is removed, all faces using
that vertex are also removed and then the hole is re-
triangularised. Because of the way it creates
triangles, this kind of algorithms is limited to
manifold meshes.

- Vertex clustering [Low97a] [Ros93a]. These
methods are based on an inclusion box divided into
several cells. All vertices that are included in a cell
are collapsed into one single vertex and the triangles
that share the removed vertices are updated. These
methods tend to be very fast but the visual
appearance of the final mesh is not relatively very
good.

- Edge contraction [Gar97a]. These methods use an
iterative selection of edges to be removed to decrease
the level of detail. At each step, a single edge is
selected for removal (or a pair of unconnected
vertices). All faces sharing that edge are also
removed, and the faces which share just one of the
vertices of that edge are updated to cap the hole.
Degenerated faces and edges are also removed.

- Morphological operations [Noo03a]. These
methods apply morphological operations (in contrast
volumetric objects), like erosion and dilation, to
decrease the level of detail of objects. They are very
fast and tend to offer good results.

The most extended and precise methods for surface
simplification [Gar99a] [Hec97a] [Pup97a] use
techniques based on iterative edge contraction. These
methods make it possible to contract edges and join
vertices so that the connectivity of the mesh is
preserved. A weight is assigned to each edge in a

pre-process that considers to the geometric
importance of that edge in the simplification.

One of the most relevant improvements to the
geometry-oriented simplification methods is the
incorporation of vertex attributes, such as texture
coordinates and normals, into the simplification
metric. Hoppe extended his initial work [Hop96a] by
proposing a new technique based on quadrics
incorporating colour and texture coordinates
[Hop99a]. The authors of the Qslim [Gar97a]
[Gar98a] algorithm also extended their metric to take
into account this kind of information.

Cohen et al [Coh98a] developed an algorithm based
on edge collapses which convert vertex positions,
diffuse colours and normals into texture and normal
maps. This algorithm is based on a texture deviation
metric.

Lindstrom et al. [Lin00a] handle the problem as a
visual approach by creating a purely image-based
metric. Basically, their method determines the cost of
a collapse operation by rendering the model from a
set of viewpoints. Then the algorithm compares the
resulting images and adds the per-pixel error as an
extra value for each pixel. All edges are then sorted
using this error information so that the first edge
collapses are those which have the least error.

The main advantage of the metric is that it offers a
good balance between the geometry of the object and
its vertex attributes in a natural way, without the user
having to assign any weight to them. Its main
disadvantage is its high temporal cost.

Luebke et al. [Lue01a] presented a method for view-
dependent simplification using perceptual error
metrics. Later, Williams et al [Wil03a] extended this
work to shaded and textured meshes.

Zhang et al. [Zha02a] proposed a new algorithm that
takes visibility into account. This work defines a new
visibility function that considers the surface of the
model and a set of cameras located on the surface of
a virtual sphere surrounding the model. The number
of cameras influences the precision and the temporal
cost of the algorithm. Luebke et al. used up to 258
cameras. To guide the simplification process, they
combined their visibility algorithm with Garland’s
quadric-based error metric [Gar97a].

Recently, Lee et al [Lee05a] introduced the saliency
concept as an error metric, which was used for mesh
simplification algorithms. Basically their work
consists in the generation of a saliency map to be
used in the Qslim [Zha02a] simplification algorithm.

WSCG2008 Communication papers 88 ISBN 978-80-86943-16-9

3. METHOD
The method presented here takes into account the
properties of the meshes used for games, so it can
effectively handle the presence of duplicated vertices
with different attributes, which are considered in the
simplification. Algorithm 1 shows a pseudo-code of
the method. This method extends a viewpoint-driven
simplification method [Cas07a] with different
improvements in order to present better appearance
in the final objects. But the user can use only the
needed extensions depending on the requirements.
Begin
For each edge (a) of the Model
 Collapse edge a
 Calculate collapse cost

Insert the information (a,
 cost) in the queue q

 Undo the collapse of edge a
End For
While (queue q is not empty)

Extract from queue q the edge
with the least cost (a)

 Collapse edge a
 RecalculateCoordsText(a)

Recalculate costs of neighbour
edges of a and update position in
queue q

End While
RecalculateNormals(Model)
End

Algorithm 1. Pseudo-code of the method.

Error metric
The error metric employed to test our simplification
uses a viewpoint-driven model [Cas07a]. Its
objective is to provide simplifications so that the
simplified mesh makes the appearance as similar as
possible to the initial un-simplified mesh. To do this,
it applies the entropy from a viewpoint, a concept
which is taken from the “Theory of Information”.
The entropy of a viewpoint is obtained from the
distribution of the projected areas of the polygons of
the mesh. Projected areas are calculated by analysing
the frame buffer using a histogram. Different
viewpoint-driven simplification methods can be
found in the literature [Lue97a][ElS99a][Hop97a].

Several viewpoints are uniformly distributed around
the mesh. The variation in the entropy of each of
these viewpoints after a collapse operation is used to
calculate the error that the operation has caused. The
collapse operation used is an edge collapse whose
resulting vertex is one of the two vertices of the
collapsed edge. The collapses in the two directions
are simulated to determine which collapse produces
the least changes in the curvature of the mesh. It is
also possible to determine the exact location of the

resulting vertex by taking into account the curvature
of the mesh.

The following equation shows the formula used to
calculate the entropy of a viewpoint v, where Hv is
the final entropy for v, Nf is the number of polygons
in the mesh, ai is the projected area of the polygon i
and at is the total projected area.

t

i
N

i t

i
v a

a
a
a

H
f

log
0
∑
=

=

The simplification process is an iterative process.
Initially, the error caused by an edge collapse is
calculated and stored in a heap. After that, the edge
with the smallest associated cost is extracted from the
heap. This process is repeated until the minimum
desired polygon count is reached or there are no
more possible collapse candidates in the heap.

Models usually contain additional attributes such as
texture coordinates or normals. Interactive
applications, such as games or virtual worlds, need to
show correctly textured objects, because textures
play a very important role in the final appearance of
a rendered object.

If texture information is considered in the
simplification method, the texture of the final object
will be distorted. To take this into account, we use an
extension to the error metric that takes into account
texture information [Gon07a]. This extension is
based on the existing borders in the texture image.
Border detection is based on the Canny method for
border detection in image space [Can83a] [Can86a].
After obtaining the borders of the texture image,
texture coordinates are used to check whether an
edge is colliding against any of these generated
borders or not. All the edges that collide with a
border are penalised by incrementing their cost. This
will cause that edge collapses that would distort the
final appearance of the mesh are avoided as much as
possible during the simplification process. Figure 1
shows the eye model, its texture image and the
borders obtained by the border detection method.
Figures 2 and 3 show three levels of simplification
applied to the eye model. Artifacts caused by a
simplification method that does not take into account
texture information can be observed in Figure 2.
Figure 3 shows how the new texture extension solves
these problems.

WSCG2008 Communication papers 89 ISBN 978-80-86943-16-9

Figure 1. Eye model (left), texture image (centre)

and borders detected in the texture.

Figure 2. Eye model simplified to 75% (left), 50%

(middle) and 25% (right) without applying the
texture extension metric.

Figure 3. Eye model simplified to 75% (left), 50%

(middle) and 25% (right) applying the texture
extension for appearance preserving.

Simplifying with holes (duplicated
vertices)
Meshes used in games often present different vertices
with the same spatial coordinates. This is necessary
to represent vertices with more than a single set of
attributes (like the corners of a cube), but causes
invisible holes in the mesh. These holes will become
visible if the simplification method does not take that
situation into account.

To solve this problem the simplification strategy
makes use of three new concepts: real edge, twin
edge and fake edge. Real edge refers to the collapsed
edge; the twin edge is the edge joining two vertices
which have the same spatial coordinates as the
collapsed vertices. The meaning of fake edge is well
illustrated in Figure 4. These new concepts help to
avoid the existence of holes in the final object.

Figure 4 presents a simple example of a
simplification step. This figure shows a part of a
mesh composed by two different submeshes (green
and yellow). The edge (va,vb) has been chosen by
the simplification algorithm as the edge to be
collapsed (real edge). After that, edge (vc,vd) is
determined as the twin edge for (va,vb) and must
also be collapsed in order to avoid a hole. However,
this is not always sufficient to completely avoid holes
in this kind of mesh because in some cases there is
not an edge that can be collapsed to cap the hole (see
Figure 4 - b, c, d). In these cases a new vertex (fake

vertex) must be generated to create a fake edge so
that it can be collapsed to effectively cap the hole.
This fake vertex will be initially topologically
disconnected and it will be used in the fake edge
collapse. The attributes (normal, texture coordinates,
bone assignments, and so forth) of the fake vertex
will be calculated to reduce visual artifacts in the
simplified mesh.

Note that we only need to introduce fake vertices if
we are restricted to working only with indices (such
as in some multiresolution algorithms [Ram04a]).
Other vertices are simply translated to cap the holes
resulting in face elimination. A pseudo-code is
presented in algorithm 2.

This method is very useful for sub-meshes because it
prevents holes from appearing in the joints of the
sub-meshes when the simplification algorithm
collapses and edge of one of the two sub-meshes.

While (EdgeList ≠ Ø)
 realEdge=extract(EdgeList)
 addSimplifList(realEdge)
 If(∃ Twin(realEdge, EdgeList))
 twinEdge= Twin (realEdge,
 EdgeList)
 addSimplifList(twinEdge)
 End If
 While (∃
 disconnectedVert(realEdge,
 EdgeList))
 fakeVertex=
 disconnectedVert(realEdge,
 EdgeList)
 fakeEdge= FakeEdge(realEdge,
 fakeVertex)

 calculateAttributes(fakeVertex)
 addVertexList(fakeVertex)
 End While
End While

Algorithm 2. Pseudo-code for edge contraction.

Figure 4. The edge collapse va vb (real edge)
forces the collapses of two other edjes: vc vd

(twin edge) and ve vf (fake edge).

WSCG2008 Communication papers 90 ISBN 978-80-86943-16-9

Texture coordinates
To obtain a better texture distribution over the
simplified object, texture coordinates can be
recalculated at each simplification step, which
enhances the appearance of the simplified model. In
an edge collapse, texture coordinates are recalculated
taking into account the displacement of the vertex
using a linear interpolation.

The following equations will allow us to calculate
the displacement to be applied to the texture
coordinates in order to avoid texture distortions in
the simplified mesh.

⎪
⎭

⎪
⎬

⎫

++=

++=
++=

zzzz

yyyy

xxxx

NVUQ

NVUQ
NVUQ

γβα

γβα
γβα

'

'
'

where
1' PQQ −= ,

12' PPU −= ,
13' PPV −= ,

where },,{
321

PPP are the three vertices of the

modified triangle, Q is the new position of the

modified vertex and N is the normal of the triangle.

On solving this equation system we obtain the values
for the unknowns α, β and γ, which are the
coordinates of Q expressed in the coordinate system
of the triangle. They also represent how the vertex
has moved after the collapse, and hence they can be
used to calculate the new texture coordinate for that
vertex (see Figure 5). Thus, the new texture
coordinates are calculated as follows:

⎪⎭

⎪
⎬
⎫

+−+−=

+−+−=
11312

11312

)()(

)()(

vvvvv
res

v

uuuuu
res

u

TTTTTT

TTTTTT

βα

βα

where 1T , 2T and 3T are the original texture
coordinates for the three modified vertices of each
modified triangle after the collapse.

It must be borne in mind that we have only used α
and β in our equation because texture coordinates are
two-dimensional vectors contained in the plane
formed by the triangle. Because γ represents the
displacement along the normal vector we do not need

it. Figure 6 shows an example for this texture
coordinate correction.

Figure 5. Displacing the new vertex after the

collapse. P2 collapses to Q.

Normals
The final value of the normals influences the visual
aspect of the simplified mesh and can cause invalid
shading if they are not calculated correctly. So after
the simplification process has ended, a
renormalisation process can be applied to the final
mesh to ensure correct calculation of all the normals.

To calculate correct normals for the simplified model
it must be determined whether a polygon needs per-
vertex or per-face normals. For example, the vertices
of a cube must have face normals and the vertices of
a sphere should have vertex normals.

The process used to calculate normals for the
simplified model is the following:

- Duplicate vertices so that each vertex is
used by exactly one triangle.

- Each vertex normal is initialised to the
normal of the face using that vertex.

- All vertices sharing the same position and
having faces with an angle less than a
certain reference value (defined by the user)
are collapsed into a single vertex with a
normalised average normal.

A pseudo-code is shown in the algorithm 3. Figure 7
shows the results of applying our normal calculations
over a simplified mesh

WSCG2008 Communication papers 91 ISBN 978-80-86943-16-9

Function ExtendModel
Begin
count= 0
For ∀ Vertex ∈ Model do
 IndexN(Vertex)= count
 count++
 Normal(Vertex)= Normal(Face)
End For
End

Function CalculateNormals
Begin
For ∀ Vertex1 ∈ Model do
For ∀ Vertex2 ∈ Model do

If Vertex1≠ Vertex2 and
Coordinates(Vertex1)==

 Coordinates (Vertex2)
 If Angle(Face1, Face2)<
 EPSILON
 Normal(Vertex1)+=
 Normal(Face2)

 IndexN(Vertex2)=
 IndexN(Vertex1)
 End If
 End If
End For
End For
End

Algorithm 3. Pseudo-code for normals.

4. RESULTS
Our simplification method allows simplified objects
to preserve the appearance of the original models as
much as possible because both geometric

considerations and vertex attributes are taken into
account for the simplification.

Figures 8 and 9 show two examples of objects
simplified using our method. Figure 8 shows the
ninja model simplified to a 50% of its original
geometric complexity. Figure 9 shows two
simplifications for the racing car. Notice how texture
details are preserved over the simplified objects.

A table is also presented showing times for various
simplifications of different models, as well as the
initial and final number of polygons (see Table 1).
The greater part of the time is spent on calculating
the entropy, due to the large number of renderings of
the model that need to be performed in order to
obtain such information.

Triangles
Original

Triangles
Final Time (seconds)

815 100 12.27
4 698 500 93.45
4 806 1 200 97.33
6 592 500 153.18
8 468 500 226.78

10 474 1 000 300.07
13 810 1 000 453.34

Table 1. Simplification times for our method.

Figure 6. Original model (left), object simplified without recalculating its texture coordinates (centre) and

the same object with application of texture coordinates perturbation.

WSCG2008 Communication papers 92 ISBN 978-80-86943-16-9

Figure 7. Original model (left) and the simplified model after recalculating (right).

Figure 8. Ninja model. From left to right: original model front view (1008 triangles),

original model rear view, model simplified to 50% (504 triangles), front and rear views.

Figure 9. Racing car model. From left to right: original model (8345 triangles),

model simplified to 66% (5506 triangles) and 33% (2753 triangles).

5. CONCLUSIONS
A simplification method has been presented which is
designed for use with real-time meshes such as those
used for games. This method preserves the final
appearance of the simplified model as much as
possible, taking into account that the meshes
typically used for interactive applications often
duplicate vertices in order to allow them to represent
different per-face attributes, and also bearing in mind
the normal and texture coordinate perturbation
caused by edge collapses.

Due to the way duplicated vertices are handled his
method is capable of simplifying sub-meshes while
avoiding visual distortions in the final appearance of
the mesh. This is especially useful if the user wants
to simplify a single sub-mesh avoiding to loose per-
vertex information, as occurs in other simplification

methods that tend to collapse duplicated vertices.
Thus, the texture coordinates and normals that are
needed to obtain an accurate visual simplification can
be preserved with this method.

6. ACKNOWLEDGMENTS
This work has been supported by the Spanish
Ministry of Education and Science (MATER project
TIN2004-07451-C03-03, TIN2005-08863-C03-03),
the European Union (GAMETOOLS project IST-2-
004363), the Jaume I University (PREDOC/2005/12,
PREDOC/2006/54) and FEDER funds.

7. REFERENCES
[Can83a] Canny, J. “A variational approach to edge
detection”. In AAAI-83. 1983.

WSCG2008 Communication papers 93 ISBN 978-80-86943-16-9

[Can86a] Canny, J. “A computational approach to
edge detection”. IEEE Trans. Pattern Analysis and
Machine Intelligence, pp. 679-698. 1986.
[Cas07a] Castelló, P., Sbert, M. Chover, M. Feixas,
M. “Viewpoint Entropy-driven Simplification”. Proc.
of 15th International Conference in Central Europe
on Computer Graphics, Visualization and Computer
Vision, pp. 249-256. 2007.
[Ciam96a] Ciampalini, A., Cignoni, P., Montani, C.
and Scopigno R. “Multiresolution decimation based
on global error”. Technical report, Centre National
de la Recherche Scientifique, Paris, France, 1996.
[Coh98a] Cohen, J., Olano, M., Manocha, D.
“Appearance preserving simplification”. SIGGRAPH
'98, vol. 32, pp. 115-122. 1998.
[ElS99a] El-Sana, J., Varshney, A. “Generalized
view-dependet simplification”. Eurographics ’99.
Milano (Italy). 1999.
[Gar97a] Garland, M. and Heckbert, P. “Surface
simplification using quadric error metrics”. In
SIGGRAPH ’97: 24th annual conference on
Computer graphics and interactive techniques, pp.
209–216. 1997.
[Gar98a] Garland, M., Heckbert, P. S. “Simplifying
surfaces with color and texture using quadric error
metrics”. VIS '98: Proc. of the conference on
Visualization '98, pp. 263-269. 1998.
[Gar99a] Garland, M. “Multiresolution Modeling:
Survey & Future Opportunities”. State of the Art
Reports of EUROGRAPHICS'99, vol. 14 (4), pp.
111-131. 1999.
[Gon07a] González, C., Castelló, P., Chover, M. “A
texture-based metric extension for simplification
methods”. 2nd International Conference on
Computer Graphics Theory and Applications, pp. 69-
76. 2007.
[Hec97a] Heckbert, P. and Garland, M. “Survey of
polygonal surface simplification algorithms”.
Technical report, Multiresolution Surface Modeling
Course Notes of SIGGRAPH’97, 1997.
[Hop96a] Hoppe H. “Progressive meshes”.
SIGGRAPH '96: Proc. of the 23rd annual conference
on Computer graphics and interactive techniques, pp.
99-108. 1996.
[Hop97a] Hoppe, H. “View-dependent refinement of
progressive meshes”. SIGGRAPH ’97, pp. 189-197.
1997.
[Hop99a] Hoppe, H. “New quadric metric for
simplifying meshes with appearance attributes”. VIS

'99: Proc. of the conference on Visualization '99.
IEEE Computer Society Press, pps 59-66.
[Lee05a] Lee C.H., Varshney A., Jacobs D.W. Mesh
saliency. ACM Trans. Graph. 24, 3, pp. 659-666.
2005.
[Lin00a] Lindstrom, P., Turk, G. “Image-driven
simplification”. ACM TOG 19, 3, pp. 204-241. 2000.
[Low97a] Low, K. and Tan, T. “Model simplification
using vertex-clustering”. In SI3D ’97: Proceedings
of the 1997 symposium on Interactive 3D graphics,
pp. 75–ff. ACM Press, 1997.
[Lue97a] Luebke, D., Erikson, C. “View-dependent
simplification of arbitrary polygonal enviroments”.
SIGGRAPH ’97, pp. 199-208. 1997.
[Lue01a] Luebke, D.P., Hallen, B. “Perceptually-
driven simplification for interactive rendering”. Proc.
of the 12th Eurographics Workshop on Rendering
Techniques, pp. 223-234. London, UK. 2001.
[Noo03a] Nooruddin, F. and Turk, G.
“Simplification and repair of polygonal models using
volumetric techniques”. IEEE Transactions on
Visualization and Computer Graphics, 9(2): 191-205.
2003.
[Pup97a] Puppo, E. and Scopigno, R.
“Simplification, lod and multiresolution - principles
and applications”. Tutorial Notes of
EUROGRAPHICS’ 97, 16(3). 1997.
[Ram04a] Ramos, J. F. and Chover, M. “Lodstrips:
Level of detail strips,” in International Conference on
Computational Science, 2004, pp. 107–114.
[Ros93a] Rossignac, J. and Borrel, P. “Multi-
resolution 3d approximations for rendering complex
scenes”. In B. Falcidieno and T. Kunii, eds,
Modeling in Computer Graphics: Methods and
Applications, pp. 455–465. Springer- Verlag, 1993.
[Sch97a] Schroeder, W. J. “A topology modifying
progressive decimation algorithm”. In VIS ’97: 8th
conference on Visualization ’97, pp. 205–ff. IEEE
Computer Society Press. Los Alamitos, CA, USA.
1997.
[Wil03a] Williams N., Luebke D., Cohen J.D.,
Kelley M., Schubert B. “Perceptually guided
simplification of lit, textured meshes”. Proc. of the
2003 symposium on Interactive 3D graphics. ACM
Press, pp. 113-121. 2003.
[Zha02a] Zhang E., Turk G. “Visibility-guided
simplification”. Proc. of IEEE Visualization 2002,
vol. 31, pp. 267-274. Nov, 2002.

WSCG2008 Communication papers 94 ISBN 978-80-86943-16-9

	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	F19-full.pdf
	F37-full.pdf

