
Hybrid Terrain Shadow Ray Casting

Tomas Sakalauskas
Vilnius University
Naugarduko 24,

Lithuania,03225,Vilnius

tomas.sakalauskas@prewise.lt

ABSTRACT
This paper describes an efficient algorithm for real-time terrain shadowing by directional light. The main
concept for this algorithm is fast preprocessing stage in model space that dramatically speeds up shadow
calculation for pixels in rasterization phase. Preprocessing is very fast and can be performed every frame still
achieving interactive frame rates. Therefore it is suitable for dynamic height field and moving light source
visualization.

Keywords
Landscape shadows, dynamic height field visualization, terrain rendering, ray casting, GPU, silhouette detection.

1. INTRODUCTION
Shadows play important role in perception of three-
dimensional objects. It is difficult to determine
landscape feature dimensions and placement on the
terrain without proper shadows and lighting.
Displaying large terrain is a difficult task by itself,
rendering shadows makes this problem even harder.
Ever growing processing power of modern GPUs
makes some algorithms formerly used for offline
rendering and image processing available on
enthusiasts desktop in real-time. Still, amount of the
data that has to be processed in a landscape shadow
calculation can choke even the fastest GPUs
available today.
This article presents data structures and algorithms
that enable precise real-time shadow calculations for
large terrains. Our algorithm is fully suited for

dynamic height-field visualization as it relies on
light-weight preprocessing which can be performed
each frame. Even though it is done every frame, we
refer to this stage as preprocessing because it
prepares the structures used in the actual rendering
pass.

Implications of rendering algorithm
selection
When a landscape is rendered using LOD (level of
detail) or other adaptive algorithms, rendered
geometry is not always the best choice for shadow
calculation. For example some feature may be
simplified as a result of visibility check or because
such simplification would produce small visual error
in screen space. But the simplification or elimination
of shadow casted by such feature may have a
dramatic impact on overall rendering quality. Our
algorithm uses original height-map for shadow
calculation so it can be integrated into any landscape
rendering algorithm as long as we can determine
height-map coordinates of pixel being rendered.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

2. RELATED WORK
We focus on hard shadow algorithms, analyzing their
suitability for landscape rendering. Analysis of

WSCG2008 Communication papers 175 ISBN 978-80-86943-16-9

broader range of shadow algorithms is given in
[Ber95a].
Hard shadow algorithms can be classified to object
space algorithms, dealing with vector representation
of objects, and image space algorithms that project
objects to shadow maps and use the maps in
rendering phase. Hybrid algorithms, like one
described in [Cha04a], use shadow maps for points
that are fully lit or shadowed and fall back to object
space algorithms in boundary conditions to avoid
aliasing problems.

Shadow maps
A shadow map [Wil78a] is z-buffer of scene
rendered from light position. To determine if a point
lies in a shadow, its depth in light-space is compared
to the value in the shadow map.
Shadow maps suffer from aliasing artifacts – when
points projected to distant locations in screen space
are mapped to same or neighbor pixels in the shadow
map.
In [Sta02a] shadow maps are generated in
normalized device coordinate space, i.e., after
perspective transformation. This gives better shadow
map resolution in areas close to the camera. Still the
resulting precision is view-dependent and does not
completely eliminate aliasing.
Due to floating point precision errors shadow maps
do not work very well for large self-shadowing
objects such as landscapes.

Shadows in object space
Atheron et. al. [Atr78a] proposes subdivision of
polygons in the scene, clipping projected shadow
source polygons to receiver polygons. Every polygon
after such subdivision is fully lit or shadowed.
Correct material for every polygon has to be selected
and the scene can be rendered as usual.
Blinn [Bli88a] projects the vertices of shadow source
object to a plane of receiver polygon and uses
resulting polygons to modulate the surface color.
Due to the large amounts of polygons involved in
landscape rendering, full scene triangulation is
usually not performed – some adaptive algorithms
may be used instead, or landscape remains in original
height-map form that is used for ray-casting.
Another object space technique is shadow volume
algorithm [Cro97a]. Shadow volume for an object is
semi-infinite volume behind the shadow source
object extending from the silhouette lines as seen
from the light source. Shadow volume divides object
space in two: areas that are in shadow and areas that
are not. To detect whether a particular point is in the
shadow, crossings between shadow volume polygons
and any ray extending from that point are counted.

Shadow volumes can be hardware accelerated using
stencil buffers to count crossings [Hei91a]. Bounding
polygons of shadow volume are rendered using the
camera transformation, incrementing or
decrementing stencil buffer value for every pixel
based on the face orientation. Only the pixels having
stencil value zero are lit. This algorithm easily
becomes fill-bound if light direction approaches
horizontal. Also the amount of vertex processing
power needed to shadow large terrain is huge.
Yet another approach is ray-casting [App68a]. The
idea behind ray casting is to shoot rays from eye, one
per pixel and find the closest object blocking the path
of that ray. Hard shadow determination using ray
casting is a simplified problem in the sense that only
the existence of objects between the point being
rendered and the light source needs to be determined
without a need to identify the object blocking the ray.
We use a hybrid approach that shows some
properties of shadow maps, shadow volumes and
ray-casting.

3. BRUTE FORCE RAY CASTING
Given the directional light

1),,,(== vwvu LLLLL ,

calculating shadow for a model point
),,(wvu PPPP = involves detecting whether a ray,

starting at point P and going direction opposite to
L , intersects any geometry.
Brute force approach for terrain shadow detection is
straightforward. We trace height map from the point
P along L− direction checking the height map
points iT at integral positions: v

),(

.0),(*
i

v
i

u
i

h

vivi
i

TTheightT

PvPvLPT

≡

<≤−−=

If at any trace point we go below the surface -
 ,, i

h
i

w
i TTT <∃

P is in shadow, otherwise it is lit.
This is the algorithm for brute force shadow
calculation:

IsShadow(P)
 d0 = fract(P.v); // distance to integral V
 T = P-L*d0; // trace point
 while(Tu,Tv inside heightmap)
 {
 // get heightmap value at Tu,Tv
 h = height[Tu,Tv]
 if(h>Tw)// tracepoint below surface
 return true;
 T = T – L;
 }
 return false; // no hit detected

WSCG2008 Communication papers 176 ISBN 978-80-86943-16-9

Figure 1. Scanning the height map.

Fig.1. illustrates the process. T0 is a point with
integral , where the scan starts. T0, T1, T2, T3 are
scanned, but the tracing position passes above the
landscape. T4 generates a hit and the search is
stopped.

v

Silhouette points
It may be noted that it is sufficient to check only
those height map positions iT that form up a
silhouette when looking from light position. Point

iT is a silhouette point if the segment before iT is
facing the light and the segment after iT is back-
facing or

 and (1) w
i

h
i

h LTT +> −1
w

i
h

i
h LTT −> +1

Figure 2. Silouette detection.

Fig. 2. illustrates the silhouette detection – only T2 is
a silhouette point as projections of its neighbours T1
and T3 are below T3 itself. Points T0 and T1 may be
skipped when performing ray-casting.
IsSilhouette(h0,h1,h2)
 if h1>h0+Lw and h1>h2-Lw
 return true;
 else
 return false;

This observation suggests that we could greatly
minimize the number of positions visited if we knew
how to skip through non-silhouette points.

4. APPROACH
To understand our approach, consider a beam of rays
that all cross a single line within a segment of
unit length.

v ab

Figure 3. Beam having unit cross section ab.

Shadow calculation for a landscape section covered
by such beam of light can be optimized if we
perform two preprocessing steps:

• For every along the beam check if there
are any silhouette points in cross-section

, that satisfty (1). If such points exist we
mark position Black, otherwise it is
marked White. Section 5 describes this step.

v

ab
v

• For every determine the closest that is
marked Black going the light direction. See
Section 6.

v v

SMap
For a beam we make a structure - SMap. For any
SMap[v] defines Color and NextV. SMap allows us
to rewrite shadow detection algorithm, to skip over
non-silhouette (white) points:

v

IsShadow(P)
 // advance to integral V
 d0 = fract(P.v);
 T = P-L*d0; // trace point

 if SMap[Tv].Color = White
 // advance to next black V
 T = T -L*(SMap [Tv].NextV-Tv)

 while(Tu,Tv inside heightmap)
 {
 h = height [Tu,Tv]
 if(h>Tw)
 return true;

 // advance to next black V
 T = T -L*(SMap[Tv].NextV-Tv)
 }
 return false;

Fig.4. shows this algorithm in action.

WSCG2008 Communication papers 177 ISBN 978-80-86943-16-9

Figure 4. Scanning for shadow.

P – target point, T0 – trace at integral v, T1 – first
black vertex (below trace line), T2 – second black

vertex (hit).
The algorithm scans only Black V's. According to the
statistics on our sample data for different view
positions, black points occupy 5.7% of the total data
in the height map in average. Therefore efficiency of
per-pixel ray casting process is greatly improved.
We may cover all landscape with an array of beams
each having unit cross-section, then calculate SMap
for each beam, and finally make IsShadow function
select the correct beam before performing the scan.
Section 7 describes a way to store SMap in GPU
texture.

5. DETECTING SILHOUETE LINES
To calculate coordinates of a point P in cross-
section (see Fig.3.) we have to read 3 points
from the height map:

ab

 A = (floor(a), v, height[floor(a), v])

 B = (Au+2, v, height[Au+2, v])

 = (Au+1, v, height[Au+1, v]) C
Corrdinates of the point are then found by
interpolating

P
A , B and : C

GetPoint(A,B,C,u)
 if(u<Cu)
 return mix(A,C,u-Au)
 else
 return mix(C,B,u-Bu)

Fig.5. shows calculation of point when u is less
than .

P
uC

Figure 5. Interpolation of P at u.

Detecting the color of a particular element SMap[v]
is done by analyzing cross-section segment ab ,
searching for silhouette points. As integral
coordinates in height map define extreme points,

examining 5 positions for each SMap element is
sufficient.

Figure 6. Detecting the color for SMap[v].

In case any of the points with the following u values

uuuuu LCLCCba −+ 2,0,1,, (Fig.6.) are
silhouette points, we mark element Black.
We get all non-grid points needed for such
calculation using GetPoint function, so we need to
read 9 height-map values as seen from Fig. 6.
The following code implements this logic:
// u,v coordinates of a
HasSilhouette (u,v)

 // line v
 a1 = u
 b1 = a1 + 1
 v1 = v
 u1 = floor(a1)
 A1 = (u1,v1,height[u1,v1])
 B1 = (u1+2,v1,height[u1+2,v1])
 C1 = (u1+1,v1,height[u1+1,v1])

 // line v-1
 a0 = u - Lu
 b0 = a0 + 1
 v0 = v - 1
 u0 = floor(a0)
 A0 = (u0,v0,height[u0,v0])
 B0 = (u0+2,v0,height[u0+2,v0])
 C0 = (u0+1,v0,height[u0+1,v0])

 // line v+1
 a2 = u + Lu
 b2 = a2 + 1
 v2 = v + 1
 u2 = floor(a2)
 A2 = (u2,v2,height[u2,v2])
 B2 = (u2+2,v2,height[u2+2,v2])
 C2 = (u2+1,v2,height[u2+1,v2])

 // check if a is silhouette
 U = a1
 p0 = GetPoint(A0,B0,C0,U-Lu)
 p1 = GetPoint(A1,B1,C1,U)
 p2 = GetPoint(A2,B2,C2,U+Lu)
 if IsSilhouette(p0,p1,p2)
 return true;

 // check if b is silhouette
 U = b1
 ...
 // check if C1 is silhouette

WSCG2008 Communication papers 178 ISBN 978-80-86943-16-9

 U = C1u
 ...
 // check if C0+L is silhouette
 U = C0u+Lu
 ...
 // check if C2-L is silhouette
 U = C2u-Lu
 ...

 return false;

Fig. 7. shows silhouette points (black) of our sample
data calculated from 2 light directions. Black area is
relatively small (5.7% of total map).

Figure 7. Examples of silhouette detection pass.

6. FINDING BLACK V
Finding closest black element in SMap with linear
scan in the worst case is performed in
lookups, which is no better than linear scan for per-
pixel shadow detection. Unlike the screen pixels,
SMap elements make a regular structure and
logarithmic algorithms can be used. We do this by
running the search times, each time
doubling the search block size DIST.

2/3N

N2log

Fig.8. shows SMap being built. Different shades of
blue above SMap mark the range of DIST, arrows on
the top show lookupV - position that is checked for
NextV, which is at the first element in the next range.
If it contains back point lookupV is used, otherwise
NextV stored at that position is taken. Square arrows
below SMap show NextV pointers after the step.
Each step of algorithm ensures that blocks of size
2*DIST have properly connected elements. Such
blocks are separated by dashed line. Each step
merges 2 blocks from a previous step.

Step-0. DIST=1
For every element SMap[v]
FindNextV(DIST,v)
 If v mod 2 = 1 // even V coordinate
 {
 lookupV = v - 1; // check odd V
 if SMap[v-1].Color = Black
 SMap[v].NextV = v-1;
 else
 SMap[v].NextV = unknown;
 }

Step-n. DIST= n2
For every element SMap[v]
FindNextV(DIST,v)
 If v/DIST mod 2 = 1
 {
 If SMap[v].NextV = unknown
 {
 lookupV = v – (v mod DIST) - 1;
 if SMap[lookupV].Color = Black
 SMap[v].NextV = lookupV;
 else
 SMap[v].NextV = SMap[lookupV].NextV;
 }
 }

Figure 8. Finding black V: a) source SMap,

b) DIST=1, c) DIST=2, d) DIST=4, e) DIST=8.
Step-n is generic - it can be also used for step-0 if we
set SMap[v].NextV to unknown in color detection
phase.

Optimization
Steps needed to compute SMap can be halved if we
merge 4 blocks from a previous step instead of 2.
This is the rewritten algoritm:
FindNextV(DIST,v)
{
 lookupV = v – (v mod DIST) - 1;
 minLookupV = v - v mod DIST*4;

 while lookupV >= minLookupV
 {
 If SMap[v].NextV = unknown
 {
 if SMap[lookupV].Color = Black

WSCG2008 Communication papers 179 ISBN 978-80-86943-16-9

 SMap[v].NextV = lookupV;

)*(1
),*(

vLfractub
vLfractua

u

u

++=
+=

 (2) else
 SMap[v].NextV = SMap[lookupV].NextV;
 }
 lookupV = lookupV – DIST;

8. IMPLEMENTATION }

We define two helper functions for mapping between
landscape coordinates and SMap texture coordinates:

}
Fig. 9. Illustrates optimized calculation.

// returns beginning of cross-section
 // represented at u,v position of SMap

GetA(u,v)

 return u + fract(Lu*v)

// returns SMap u-coordinate that holds
// information about given point
GetU(a,v)
 return a – fract(Lu*v);

Pass0(u,v) // detect color
 a = GetA(u,v)
 if(HasSilhouette(a,v))
 SMap[u,v].Color = Black
 else
 SMap[u,v].Color = White
 SMap[u,v].NextV = unknown
 Figure 9. Optimized black V search: a) source

SMap, b) DIST=1, c) DIST=4. Pass1stepN(u,v,DIST) // find V
 a = GetA(u,v)
 lookupV = v – (v mod DIST) - 1;

7. SMap TEXTURE FORMAT minLookupV = v - v mod DIST*4;
 Each beam and grid line cross-section has unit

length, but it takes more than N beams to cover
whole landscape as Fig. 10. illustrates.

 while lookupV >= minLookupV
 {
 If SMap[u][v].NextV = unknown
 {

 lookupA = a + (lookupV-v)*Lu;
 lookupU = GetU(lookupA,lookupV);
 lookup = SMap[lookupU][lookupV];
 if lookup.Color = Black
 SMap[u][v].NextV = lookupV;
 else
 SMap[u][v].NextV = lookup.NextV;
 }
 lookupV = lookupV – DIST;
 }

Integrating shadow calculation
Landscape rendering is out of scope of this article,
but rewritten IsShadow function can be integrated to
any rendering algorithm. It detects whether a point

),,(wvuP = in landscape coordinate system is
shadowed. It may be used for any points, not just
landscape surface.

Figure 10. Beams.
SMap can be stored in texture with dimensions
(N+1) x N as brown elements contain no relevant
information. Pixel in SMap texture contains
information about cross-section of line ,
where:

),(vu
ab v

Figure 11. Successive steps searching for black V (512x512). DIST=1,4,16,64,256.

Red - NextV, Blue – Color.

WSCG2008 Communication papers 180 ISBN 978-80-86943-16-9

IsShadow(P)
 // advance to integral V
 d0 = fract(P.v);
 T = P-L*d0;

 lookupU=GetU(Tu,Tv)
 lookup = SMap[lookupU,Tv]
 if lookup.Color = White
 // advance to next black V
 T = T -L*(lookup.NextV-Tv)

 while(Tu,Tv inside heightmap)
 {
 h = height [Tu,Tv]
 if(h>Tw)
 return true;
 // advance to next black V
 lookupU=GetU(Tu,Tv)
 lookup = SMap[lookupU,Tv]
 T = T -L*(lookup.NextV-Tv)
 }
 return false;

9. OPTIMIZATIONS
The following additional optimizations were done to
improve the performance of the algorithm.

Choosing better NextV values
Instead of choosing closest black V actual
implementation performs more complex analysis
when setting NextV value of SMap. If silhouette
point is found, it is not stored to NextV if the
silhouette cannot shadow the segment ab being
analyzed. Additionally, NextV value is overwritten
when another silhouette that completely shadows
currently stored NextV is found. This greatly reduces
the number of points to check when performing scan
in IsShadowed function.

Parallel computation of NextV
FindNextV algorithm was rewritten to calculate 4
neighboring points by encoding the information into
RGBA channels of the texture and using GLSL
functions that handle vec4 data.

10. RESULTS
The algorithm was tested with DEM and LandSat5
data of Hawaii Island 2048x2048. Two resolutions of
data were used – original 2048x2048 and resized

512x512. The tests were conducted on AMD Athlon
64 3500+, 1GB RAM, NVidia GeForce 7900 GTX.
To get consistent results, all measurements were
done using fly-by camera path consisting of 1000
frames. Table 1 presents the actual results of our
algorithm.
First row shows the performance of underlying
terrain renderer without any shadow-related work
being performed. Full scan is brute-force ray-casting
performance. Binary and quad search modes
illustrate performance gains of optimization
described in section “Finding Black V”. Performance
boost of quad search with bigger data sets can be
explained by minimized memory footprint of
intermediate structures. Parallel computation of
NextV reduces memory and calculations
requirements even further.
A test with precomputed SMap shows performance
of the rendering stage only with SMap for static light
source generated before the rendering.

11. CONCLUSIONS AND FUTURE
WORK
We have presented an algorithm that achieves the
precision of brute-force ray-casting in a fraction of
time. This enables rendering big terrain models at
real-time and achieves interactive frame rates even
for large data sets.
It is a hybrid approach that scales much better than
pure shadow-map solutions with increasing screen
resolution. Proposed object space parameterization
for a shadow-map does not depend on camera and
light relation, giving consistent results from all
viewing angles.
Current algorithm deals with directional light as it
assumes constant unit length cross-section between
beams of light and height-map grid lines. Although
color detection for SMap element is more difficult
with variable length cross-sections, the rest of the
algorithm is suitable for point light sources as well.

Terrain size 512x512 2048x2048
Algorithm Min Fps Max Fps Avg Fps Min Fps Max Fps Avg Fps
No shadow 57.49 80.82 69.08 28.64 37.29 30.94
Full scan 4.13 15.63 8.18 1.25 4.70 2.32

Binary search V 31.08 39.29 34.53 2.10 2.14 2.12
Quad search V 32.45 40.00 35.80 5.04 5.21 5.10
Parallel quad V 37.85 47.72 42.61 9.27 10.57 10.02

Precompute SMap 50.44 65.05 58.65 21.07 35.18 26.24
Table 1. Performance results.

WSCG2008 Communication papers 181 ISBN 978-80-86943-16-9

12. REFERENCES
[App68a] A. Appel. Some Techniques for Shading
Machine Renderings of Solids. Proc.AFIPS JSCC,
vol. 32, pp. 37-45, 1968.
[Ath78a] P. Atherton, K. Weiler, and D. Greenberg.
Polygon shadow generation. Computer Graphics
(SIGGRAPH '78 Proceedings), vol. 12, 275-281,
1978
 [Bli88a] J. Blinn, Me and My Fake Shadow. IEEE
Computer Graphics and Applications, 8(1), 82-86,
1988.
 [Cha04a] E. Chan and F. Durand. An efficient
hybrid shadow rendering algorithm. Proceedings of
the Eurographics Symposium on Rendering, pp. 185
[Cro77a] F. Crow. Shadow algorithms for computer

graphics. Computer Graphics (SIGGRAPH ’77
Proceedings), vol. 11, 242-248. 1977.
 [Hei91a] T. Heidmann. Real shadows real time. IRIS
Universal, 18. 1991.
195, 2004.
 [Sta02a] M. Stamminger and G. Drettakis.
Perspective shadow maps. Proceedings of ACM
SIGGRAPH 2002, 557-562. 2002.
[Wil78a] L. Williams. Casting curved shadows on
curved surfaces. Computer Graphics (SIGGRAPH
'78 Proceedings), vol. 12, 270-274, 1978.
 [Woo90a] A. Woo, P. Poulin, A. Fournier. A
Survey of Shadow Algorithms. IEEE Computer
Graphics and Applications, 10(6):13–32, November
1990.

WSCG2008 Communication papers 182 ISBN 978-80-86943-16-9

	wscg2008_SHORT_Numbered_.pdf
	A59-full.pdf
	A59-full.pdf

	A67-full.pdf
	B47-full.pdf
	E02-full.pdf
	E07-full.pdf
	1. INTRODUCTION
	Implications of rendering algorithm selection
	2. RELATED WORK
	Shadow maps
	Shadows in object space

	3. BRUTE FORCE RAY CASTING
	Silhouette points

	4. APPROACH
	SMap

	5. DETECTING SILHOUETE LINES
	
	6. FINDING BLACK V
	Step-0. DIST=1
	Step-n. DIST=
	Optimization

	7. SMap TEXTURE FORMAT
	8. IMPLEMENTATION
	Integrating shadow calculation

	9. OPTIMIZATIONS
	Choosing better NextV values
	Parallel computation of NextV

	10. RESULTS
	11. CONCLUSIONS AND FUTURE WORK
	12. REFERENCES

	F19-full.pdf
	F37-full.pdf

