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ABSTRACT 
This paper describes an efficient algorithm for real-time terrain shadowing by directional light. The main 
concept for this algorithm is fast preprocessing stage in model space that dramatically speeds up shadow 
calculation for pixels in rasterization phase. Preprocessing is very fast and can be performed every frame still 
achieving interactive frame rates. Therefore it is suitable for dynamic height field and moving light source 
visualization.  
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1. INTRODUCTION  
Shadows play important role in perception of three-
dimensional objects. It is difficult to determine 
landscape feature dimensions and placement on the 
terrain without proper shadows and lighting. 
Displaying large terrain is a difficult task by itself, 
rendering shadows makes this problem even harder. 
Ever growing processing power of modern GPUs 
makes some algorithms formerly used for offline 
rendering and image processing available on 
enthusiasts desktop in real-time. Still, amount of the 
data that has to be processed in a landscape shadow 
calculation can choke even the fastest GPUs 
available today. 
This article presents data structures and algorithms 
that enable precise real-time shadow calculations for 
large terrains. Our algorithm is fully suited for 

dynamic height-field visualization as it relies on 
light-weight preprocessing which can be performed 
each frame. Even though it is done every frame, we 
refer to this stage as preprocessing because it 
prepares the structures used in the actual rendering 
pass. 

Implications of rendering algorithm 
selection 
When a landscape is rendered using LOD (level of 
detail) or other adaptive algorithms, rendered 
geometry is not always the best choice for shadow 
calculation. For example some feature may be 
simplified as a result of visibility check or because 
such simplification would produce small visual error 
in screen space. But the simplification or elimination 
of shadow casted by such feature may have a 
dramatic impact on overall rendering quality. Our 
algorithm uses original height-map for shadow 
calculation so it can be integrated into any landscape 
rendering algorithm as long as we can determine 
height-map coordinates of pixel being rendered. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
Copyright UNION Agency – Science Press, Plzen, Czech 
Republic. 

2. RELATED WORK 
We focus on hard shadow algorithms, analyzing their 
suitability for landscape rendering. Analysis of 
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broader range of shadow algorithms is given in 
[Ber95a]. 
Hard shadow algorithms can be classified to object 
space algorithms, dealing with vector representation 
of objects, and image space algorithms that project 
objects to shadow maps and use the maps in 
rendering phase. Hybrid algorithms, like one 
described in [Cha04a], use shadow maps for points 
that are fully lit or shadowed and fall back to object 
space algorithms in boundary conditions to avoid 
aliasing problems. 

Shadow maps 
A shadow map [Wil78a] is z-buffer of scene 
rendered from light position. To determine if a point 
lies in a shadow, its depth in light-space is compared 
to the value in the shadow map. 
Shadow maps suffer from aliasing artifacts – when 
points projected to distant locations in screen space 
are mapped to same or neighbor pixels in the shadow 
map. 
In [Sta02a] shadow maps are generated in 
normalized device coordinate space, i.e., after 
perspective transformation. This gives better shadow 
map resolution in areas close to the camera. Still the 
resulting precision is view-dependent and does not 
completely eliminate aliasing. 
Due to floating point precision errors shadow maps 
do not work very well for large self-shadowing 
objects such as landscapes. 

Shadows in object space 
Atheron et. al. [Atr78a] proposes subdivision of 
polygons in the scene, clipping projected shadow 
source polygons to receiver polygons. Every polygon 
after such subdivision is fully lit or shadowed. 
Correct material for every polygon has to be selected 
and the scene can be rendered as usual.  
Blinn [Bli88a] projects the vertices of shadow source 
object to a plane of receiver polygon and uses 
resulting polygons to modulate the surface color. 
Due to the large amounts of polygons involved in 
landscape rendering, full scene triangulation is 
usually not performed – some adaptive algorithms 
may be used instead, or landscape remains in original 
height-map form that is used for ray-casting. 
Another object space technique is shadow volume 
algorithm [Cro97a]. Shadow volume for an object is 
semi-infinite volume behind the shadow source 
object extending from the silhouette lines as seen 
from the light source. Shadow volume divides object 
space in two: areas that are in shadow and areas that 
are not. To detect whether a particular point is in the 
shadow, crossings between shadow volume polygons 
and any ray extending from that point are counted. 

Shadow volumes can be hardware accelerated using 
stencil buffers to count crossings [Hei91a]. Bounding 
polygons of shadow volume are rendered using the 
camera transformation, incrementing or 
decrementing stencil buffer value for every pixel 
based on the face orientation. Only the pixels having 
stencil value zero are lit. This algorithm easily 
becomes fill-bound if light direction approaches 
horizontal. Also the amount of vertex processing 
power needed to shadow large terrain is huge. 
Yet another approach is ray-casting [App68a]. The 
idea behind ray casting is to shoot rays from eye, one 
per pixel and find the closest object blocking the path 
of that ray. Hard shadow determination using ray 
casting is a simplified problem in the sense that only 
the existence of objects between the point being 
rendered and the light source needs to be determined 
without a need to identify the object blocking the ray. 
We use a hybrid approach that shows some 
properties of shadow maps, shadow volumes and 
ray-casting. 

3. BRUTE FORCE RAY CASTING 
Given the directional light 

1),,,( == vwvu LLLLL ,  

calculating shadow for a model point 
),,( wvu PPPP =  involves detecting whether a ray, 

starting at point P  and going direction opposite to 
L , intersects any geometry.  
Brute force approach for terrain shadow detection is 
straightforward. We trace height map from the point 
P  along L−  direction checking the height map 
points iT  at integral  positions: v
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P  is in shadow, otherwise it is lit.  
This is the algorithm for brute force shadow 
calculation: 
 
IsShadow(P) 
  d0 = fract(P.v); // distance to integral V 
  T = P-L*d0; // trace point 
  while(Tu,Tv inside heightmap) 
  { 
    // get heightmap value at Tu,Tv 
    h = height[Tu,Tv] 
    if(h>Tw)// tracepoint below surface 
      return true; 
    T = T – L; 
  } 
  return false; // no hit detected 
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Figure 1. Scanning the height map. 

Fig.1. illustrates the process. T0 is a point with 
integral , where the scan starts. T0, T1, T2, T3 are 
scanned, but the tracing position passes above the 
landscape. T4 generates a hit and the search is 
stopped. 

v

Silhouette points 
It may be noted that it is sufficient to check only 
those height map positions iT  that form up a 
silhouette when looking from light position. Point 

iT  is a silhouette point if the segment before iT is 
facing the light and the segment after iT  is back-
facing or 
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Figure 2. Silouette detection.  

 
Fig. 2. illustrates the silhouette detection – only T2 is 
a silhouette point as projections of its neighbours T1 
and T3 are below T3 itself. Points T0 and T1 may be 
skipped when performing ray-casting. 
IsSilhouette(h0,h1,h2) 
  if h1>h0+Lw and h1>h2-Lw 
    return true; 
  else 
    return false; 

This observation suggests that we could greatly 
minimize the number of positions visited if we knew 
how to skip through non-silhouette points. 

4. APPROACH 
To understand our approach, consider a beam of rays 
that all cross a single  line within a segment  of 
unit length. 

v ab

 
Figure 3. Beam having unit cross section ab. 

 
Shadow calculation for a landscape section covered 
by such beam of light can be optimized if we 
perform two preprocessing steps: 

• For every  along the beam check if there 
are any silhouette points in cross-section 

, that satisfty (1). If such points exist we 
mark  position Black, otherwise it is 
marked White. Section 5 describes this step. 

v

ab
v

• For every  determine the closest  that is 
marked Black going the light direction. See 
Section 6. 

v v

SMap 
For a beam we make a structure - SMap. For any  
SMap[v] defines Color and NextV. SMap allows us 
to rewrite shadow detection algorithm, to skip over 
non-silhouette (white) points: 

v

 
IsShadow(P) 
  // advance to integral V 
  d0 = fract(P.v); 
  T = P-L*d0; // trace point 
  
  if SMap[Tv].Color = White 
    // advance to next black V 
    T = T -L*(SMap [Tv].NextV-Tv)  
   
  while(Tu,Tv inside heightmap) 
  { 
    h = height [Tu,Tv] 
    if(h>Tw) 
      return true; 
 
    // advance to next black V 
    T = T -L*(SMap[Tv].NextV-Tv) 
  } 
  return false; 
 

Fig.4. shows this algorithm in action. 
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Figure 4. Scanning for shadow. 

P – target point, T0 – trace at integral v, T1 – first 
black vertex (below trace line), T2 – second black 

vertex (hit). 
The algorithm scans only Black V's. According to the 
statistics on our sample data for different view 
positions, black points occupy 5.7% of the total data 
in the height map in average. Therefore efficiency of 
per-pixel ray casting process is greatly improved. 
We may cover all landscape with an array of beams 
each having unit cross-section, then calculate SMap 
for each beam, and finally make IsShadow function 
select the correct beam before performing the scan. 
Section 7 describes a way to store SMap in GPU 
texture. 

5. DETECTING SILHOUETE LINES 
To calculate coordinates of a point P  in cross-
section  (see Fig.3.) we have to read 3 points 
from the height map: 

ab

 A = (floor(a), v, height[floor(a), v]) 

 B = (Au+2, v, height[Au+2, v]) 

 = (Au+1, v, height[Au+1, v]) C
Corrdinates of the point  are then found by 
interpolating 

P
A , B  and :  C

GetPoint(A,B,C,u) 
  if(u<Cu) 
    return mix(A,C,u-Au) 
  else 
    return mix(C,B,u-Bu) 

Fig.5. shows calculation of point  when u  is less 
than . 

P
uC

 
Figure 5. Interpolation of P at u. 

Detecting the color of a particular element SMap[v] 
is done by analyzing cross-section segment ab , 
searching for silhouette points. As integral 
coordinates in height map define extreme points, 

examining 5 positions for each SMap element is 
sufficient. 

 
Figure 6. Detecting the color for SMap[v]. 

In case any of the points with the following u  values 

uuuuu LCLCCba −+ 2,0,1,,  (Fig.6.) are 
silhouette points, we mark element Black. 
We get all non-grid points needed for such 
calculation using GetPoint function, so we need to 
read 9 height-map values as seen from Fig. 6. 
The following code implements this logic: 
// u,v coordinates of a 
HasSilhouette (u,v) 
 
  // line v 
  a1 = u 
  b1 = a1 + 1 
  v1 = v 
  u1 = floor(a1) 
  A1 = (u1,v1,height[u1,v1]) 
  B1 = (u1+2,v1,height[u1+2,v1]) 
  C1 = (u1+1,v1,height[u1+1,v1]) 
 
  // line v-1 
  a0 = u - Lu 
  b0 = a0 + 1 
  v0 = v - 1 
  u0 = floor(a0) 
  A0 = (u0,v0,height[u0,v0]) 
  B0 = (u0+2,v0,height[u0+2,v0]) 
  C0 = (u0+1,v0,height[u0+1,v0]) 
 
  // line v+1 
  a2 = u + Lu 
  b2 = a2 + 1 
  v2 = v + 1 
  u2 = floor(a2) 
  A2 = (u2,v2,height[u2,v2]) 
  B2 = (u2+2,v2,height[u2+2,v2]) 
  C2 = (u2+1,v2,height[u2+1,v2]) 
 
  // check if a is silhouette 
  U = a1 
  p0 = GetPoint(A0,B0,C0,U-Lu) 
  p1 = GetPoint(A1,B1,C1,U) 
  p2 = GetPoint(A2,B2,C2,U+Lu) 
  if IsSilhouette(p0,p1,p2) 
    return true; 
 
  // check if b is silhouette 
  U = b1 
  ... 
  // check if C1 is silhouette 
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  U = C1u 
  ... 
  // check if C0+L is silhouette 
  U = C0u+Lu 
  ... 
  // check if C2-L is silhouette 
  U = C2u-Lu 
  ... 
 
  return false; 

 
Fig. 7. shows silhouette points (black) of our sample 
data calculated from 2 light directions. Black area is 
relatively small (5.7% of total map). 
 

 

 
Figure 7. Examples of silhouette detection pass. 

 

6. FINDING BLACK V 
Finding closest black element in SMap with linear 
scan in the worst case is performed in  
lookups, which is no better than linear scan for per-
pixel shadow detection. Unlike the screen pixels, 
SMap elements make a regular structure and 
logarithmic algorithms can be used. We do this by 
running the search  times, each time 
doubling the search block size DIST. 

2/3N

N2log

Fig.8. shows SMap being built. Different shades of 
blue above SMap mark the range of DIST, arrows on 
the top show lookupV - position that is checked for 
NextV, which is at the first element in the next range. 
If it contains back point lookupV is used, otherwise 
NextV stored at that position is taken. Square arrows 
below SMap show NextV pointers after the step. 
Each step of algorithm ensures that blocks of size 
2*DIST have properly connected elements. Such 
blocks are separated by dashed line. Each step 
merges 2 blocks from a previous step. 

Step-0. DIST=1 
For every element SMap[v] 
FindNextV(DIST,v) 
  If v mod 2 = 1 // even V coordinate 
  { 
    lookupV = v - 1; // check odd V 
    if SMap[v-1].Color = Black 
       SMap[v].NextV = v-1; 
    else 
      SMap[v].NextV = unknown; 
  } 

Step-n. DIST=  n2
For every element SMap[v] 
FindNextV(DIST,v) 
  If v/DIST mod 2 = 1 
  { 
    If SMap[v].NextV = unknown 
    { 
      lookupV = v – (v mod DIST) - 1; 
      if SMap[lookupV].Color = Black 
        SMap[v].NextV = lookupV; 
      else 
        SMap[v].NextV = SMap[lookupV].NextV; 
    } 
  }  

 
Figure 8. Finding black V: a) source SMap,  

b) DIST=1, c) DIST=2, d) DIST=4, e) DIST=8. 
Step-n is generic - it can be also used for step-0 if we 
set SMap[v].NextV to unknown in color detection 
phase. 

Optimization 
Steps needed to compute SMap can be halved if we 
merge 4 blocks from a previous step instead of 2. 
This is the rewritten algoritm: 
FindNextV(DIST,v) 
{ 
  lookupV = v – (v mod DIST) - 1; 
  minLookupV = v - v mod DIST*4; 
 
  while lookupV >= minLookupV 
  { 
    If SMap[v].NextV = unknown 
    { 
      if SMap[lookupV].Color = Black 
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        SMap[v].NextV = lookupV; 
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 (2)       else 
        SMap[v].NextV = SMap[lookupV].NextV; 
    } 
    lookupV = lookupV – DIST; 

8. IMPLEMENTATION   } 

We define two helper functions for mapping between 
landscape coordinates and SMap texture coordinates: 

} 
Fig. 9. Illustrates optimized calculation. 

// returns beginning of cross-section 
 // represented at u,v position of SMap 

GetA(u,v) 

 

  return u + fract(Lu*v) 
 
// returns SMap u-coordinate that holds 
// information about given point 
GetU(a,v) 
  return a – fract(Lu*v); 
 
Pass0(u,v) // detect color 
  a = GetA(u,v) 
  if(HasSilhouette(a,v)) 
    SMap[u,v].Color = Black 
  else 
    SMap[u,v].Color = White 
  SMap[u,v].NextV = unknown 
 Figure 9. Optimized black V search: a) source 

SMap, b) DIST=1, c) DIST=4. Pass1stepN(u,v,DIST) // find V 
  a = GetA(u,v) 
  lookupV = v – (v mod DIST) - 1; 

7. SMap TEXTURE FORMAT   minLookupV = v - v mod DIST*4; 
 Each beam and grid line cross-section has unit 

length, but it takes more than N beams to cover 
whole landscape as Fig. 10. illustrates. 

  while lookupV >= minLookupV 
  { 
    If SMap[u][v].NextV = unknown 
    { 

 

      lookupA = a + (lookupV-v)*Lu; 
      lookupU = GetU(lookupA,lookupV); 
      lookup = SMap[lookupU][lookupV]; 
      if lookup.Color = Black 
        SMap[u][v].NextV = lookupV; 
      else 
        SMap[u][v].NextV = lookup.NextV; 
    } 
    lookupV = lookupV – DIST; 
  } 

Integrating shadow calculation 
Landscape rendering is out of scope of this article, 
but rewritten IsShadow function can be integrated to 
any rendering algorithm. It detects whether a point 

),,( wvuP =  in landscape coordinate system is 
shadowed. It may be used for any points, not just 
landscape surface. 

Figure 10. Beams. 
SMap can be stored in texture with dimensions 
(N+1) x N as brown elements contain no relevant 
information. Pixel  in SMap texture contains 
information about cross-section  of line , 
where: 

),( vu
ab v

 
Figure 11. Successive steps searching for black V (512x512). DIST=1,4,16,64,256. 

Red - NextV, Blue – Color.
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IsShadow(P) 
  // advance to integral V 
  d0 = fract(P.v); 
  T = P-L*d0; 
  
  lookupU=GetU(Tu,Tv) 
  lookup = SMap[lookupU,Tv] 
  if lookup.Color = White 
    // advance to next black V 
    T = T -L*(lookup.NextV-Tv)  
   
  while(Tu,Tv inside heightmap) 
  { 
    h = height [Tu,Tv] 
    if(h>Tw) 
      return true; 
    // advance to next black V 
    lookupU=GetU(Tu,Tv) 
    lookup = SMap[lookupU,Tv] 
    T = T -L*(lookup.NextV-Tv) 
  } 
  return false; 

9. OPTIMIZATIONS 
The following additional optimizations were done to 
improve the performance of the algorithm. 

Choosing better NextV values 
Instead of choosing closest black V actual 
implementation performs more complex analysis 
when setting NextV value of SMap. If silhouette 
point is found, it is not stored to NextV if the 
silhouette cannot shadow the segment ab being 
analyzed. Additionally, NextV value is overwritten 
when another silhouette that completely shadows 
currently stored NextV is found. This greatly reduces 
the number of points to check when performing scan 
in IsShadowed function. 

Parallel computation of NextV 
FindNextV algorithm was rewritten to calculate 4 
neighboring points by encoding the information into 
RGBA channels of the texture and using GLSL 
functions that handle vec4 data. 

10. RESULTS 
The algorithm was tested with DEM and LandSat5 
data of Hawaii Island 2048x2048. Two resolutions of 
data were used – original 2048x2048 and resized 

512x512. The tests were conducted on AMD Athlon 
64 3500+, 1GB RAM, NVidia GeForce 7900 GTX. 
To get consistent results, all measurements were 
done using fly-by camera path consisting of 1000 
frames. Table 1 presents the actual results of our 
algorithm. 
First row shows the performance of underlying 
terrain renderer without any shadow-related work 
being performed. Full scan is brute-force ray-casting 
performance. Binary and quad search modes 
illustrate performance gains of optimization 
described in section “Finding Black V”. Performance 
boost of quad search with bigger data sets can be 
explained by minimized memory footprint of 
intermediate structures. Parallel computation of 
NextV reduces memory and calculations 
requirements even further. 
A test with precomputed SMap shows performance 
of the rendering stage only with SMap for static light 
source generated before the rendering. 

11. CONCLUSIONS AND FUTURE 
WORK 
We have presented an algorithm that achieves the 
precision of brute-force ray-casting in a fraction of 
time. This enables rendering big terrain models at 
real-time and achieves interactive frame rates even 
for large data sets.  
It is a hybrid approach that scales much better than 
pure shadow-map solutions with increasing screen 
resolution. Proposed object space parameterization 
for a shadow-map does not depend on camera and 
light relation, giving consistent results from all 
viewing angles.  
Current algorithm deals with directional light as it 
assumes constant unit length cross-section between 
beams of light and height-map grid lines. Although 
color detection for SMap element is more difficult 
with variable length cross-sections, the rest of the 
algorithm is suitable for point light sources as well. 
 
 

Terrain size 512x512 2048x2048 
Algorithm Min Fps Max Fps Avg Fps Min Fps Max Fps Avg Fps 
No shadow 57.49 80.82 69.08 28.64 37.29 30.94 
Full scan 4.13 15.63 8.18 1.25 4.70 2.32 

Binary search V 31.08 39.29 34.53 2.10 2.14 2.12 
Quad search V 32.45 40.00 35.80 5.04 5.21 5.10 
Parallel quad V 37.85 47.72 42.61 9.27 10.57 10.02 

Precompute SMap 50.44 65.05 58.65 21.07 35.18 26.24 
Table 1. Performance results.
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