
Generation of user interface from characterized code

Jaroslav Kadlec

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
 612 66, Brno, CR

kadlecj@fit.vutbr.cz

Pavel Zemcik

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
612 66, Brno, CR

zemcik@fit.vutbr.cz

ABSTRACT
Automatic generation of the user interface can simplify development of the computer applications. It can help in

the development for various target platforms or in simpler testing and algorithm debugging as the user interface

can be created for the actual code and platform taking into account many properties. Process of the automatic

generation of the user interface can be supported by the data and code characterization. In this paper, an

innovative approach using the data and code characterization is presented. The mechanisms and algorithms

describing how the data and code characteristics are loaded, the way how objects are transformed into abstract

and specific user interface elements, and the process of finalizing user interface is briefly described. As an

example, simple media player is described in every step of the user interface generation process.

Keywords
code characterization, user interface, automatic generation

1. INTRODUCTION
Most of the applications in these days are created as

one solution for one or more platforms. The

applications portable on a multiple platforms are

usually using some intermediate framework, such as

Java or .NET Framework [Ell06a]. Many devices

with the same or a different platform have very

much varying properties and capabilities, so that the

user interface created for an average system is not

always the best option.

Development of the applications for more platforms

simultaneously is a complex task and requires

developers to have knowledge of all the required

target platforms. Also applications developed for a

single platform are composed from heterogeneous

information about the algorithms, designs, and user

interface which fact can render the design difficult.

When the algorithms change, design and user

interface code has to change too (to get control over

the user interface elements).

For the above reasons, automatic generation of the

user interface can simplify application development.

The user interface elements can be generated to

reflect algorithm changes. Cross-platform

portability can benefit from the creation of user

interface considering capabilities and properties of

the executing system.

2. PREVIOUS WORK
Number of the systems exists from 1980’s that use

various techniques for generating of user interface.

A level of automation provided by these systems

varies from the programming abstraction (e.g.

UIML [Abr02a]) to design tools (e.g. ProcSee

[PSe05a]), through the mixed systems requiring

partial assistance from user interface designer

(TERESA [Pat08a]). Such systems that provide

some mechanisms to automatically generate user

interface often use simple rule-based approach

where every type is matched to the specific user

interface element (e.g. UBI [UBI05a]). Some

systems rely on the type-based declarative model of

the information exchanged through the user

interface called Abstract User Interface [Pat03a]. In

many cases, a user interface was specified explicitly

(e.g. UIML) or inferred from a code [Jel04a]. Some

systems include additional information about a high

level task or dialogue model (e.g. ConcurTaskTrees

[Pat97a] or the task models [Bod94a]). Other

systems generate the user interface using constraint

satisfaction and optimization (e.g. Supple

[Gaj08a]).

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Poster papers 9

Fig. 5 demonstrates the resulting AIO tree created

from the characterization tree. The main media

player object is represented by a container, playlist

as a collection, and seek-bar as a time measurement

(both are sub-objects of media player class).

The methods were linked together into three main

AIOs thanks to smart template. The Playlist entry

was placed separately during the collection

initialization because it is used for the internal

representation of a collection items and is not

explicit part of the media player interface.

Creating Specific Interface Objects
The specific interface objects (CIOs) contain

information about the specific user interface

element that will be used in the final user interface.

The AIO tree with a user interface structure is used

to choose the best CIO for every data or code

element. The presented process is generally

enumeration of all the possible ways of choosing

and inserting user interface elements. The best

solution with the smallest effort needed for the

interaction is chosen. This process is described in

Fig. 6. The first step is evaluation of a cost function

(1). The cost function evaluates the effort of the

user in the interaction with current user interface

objects in his current context and specified device.

When the current cost is worse than the best

solution found so far, conversion will not continue.

The second step is checking if all the AIOs were

converted to the CIOs and saving solution (2). The

third step enumerates all the CIOs available for the

concrete AIO (3). Each of these CIOs is applied to

the user interface without violating constraints. AIO

conversion is repeated for sub AIOs recursively (4).

AIOs with a higher importance are always placed

first. Finally, the CIO is removed from the user

interface because it can be replaced by other CIO in

the 4
th

 step of previous recursion.

Fig.7. demonstrates the result of the conversion to

the CIOs. Main class is represented by the Form

(window), containing ListView for the playlist,

track bar for the seek-bar and the smart templates

for categorized commands.

Instantiating
Instantiation creates instances of CIOs and is

responsible for generation and registration of

events. The instance of every CIO is created so that

instances have the same sub-objects as CIO nodes.

Then, the parameters of the CIO are set to the

instance. The CIOs representing a data register their

dependencies on other objects, events for value

Figure 6. Creation of CIO tree.

ConvertToCIOs(ChTree, AIO, Context, Device)

1. If (CurrentCost(ChTree, Context, Device) >=

 BestCost) return;

2. If (AllCIOsApplied())

a. BestCost = Cost;

b. BestCIOs = ChTree.CIOs;

c. return

3. CIOs = GetCIOs(AIO, Context, Device);

4. foreach(CIO in CIOs)

a. if(ApplyCIO(CIO, AIO, Device))

i. subAIOs = GetSubAIOs(AIO);

ii. SortByImportance(subAIOs);

iii. foreach(subAIO in subAIOs)

1. ConvertToCIOs(ChTree, subAIO,

Context, Device);

5. UndoLastCIO();

AIOsToCIOs()

1. foreach(SubTree in ChTree)

2. while(true)

a. ConvertToCIOs(SubTree, SubTree.AIO, Context,

Device)

b. if (ConversionComplete(SubTree)) break;

c. RegroupLowestImportanceContainer(SubTree);

Figure 4. Creation of AIO tree.

Load AIO Database from repository.

CreateAIOs(char, prefs, context)

1. selectedAIO = EvalRuleSet(char, prefs, context);

2. selectedAIO.Initialize(char, prefs, context);

3. char.AIO = selectedAIO;

4. foreach(dch in char.Data)

a. CreateAIOs(dch, prefs, context);

b. selectedAIO.Add(dch.AIOs);

5. foreach(cch in char.Code)

a. if(cch has category && smart template exists)

i. cch.AIO = GetSmartTemplate(cch.category);

ii. cch.AIO.Link(cch);

b. else

i. cch.AIO = EvalRuleSet(cch, prefs, context);

ii. if (cch.Params > 0)

iii. dlg = CreateDialogAIO();

iv. foreach(param in cch.Params)

1. CreateAIOs(param, prefs, context);

c. cch.AIO.Add(dlg);

Figure 7. Created CIOs from the AIO tree.

Figure 5. AIOs generated from the

characterization tree.

WSCG 2010 Poster papers 11

changes of the data and the user interface instance.

CIOs representing a code register their

dependencies and implementing routines calls,

generate events to show asterisks and code to show

a dialog for input of the parameters if required.

Figure 8. The final user interface.

Fig. 8 shows final user interface generated from

CIO tree in Fig. 7. All CIOs were placed in the top-

bottom and the left-right order representing highest

to lowest importance.

4. CONCLUSION
The presented approach allows for automated

creation of the user interfaces from the

characterized code. It is based on rule-based

creation of the abstract user interface and constraint

satisfaction and optimization during creation of

specific interface elements. It can be used to create

a user interface for various modalities and user

contexts. The rule-based approach can quickly

reduce the set of the user interface elements for

given modality and context while constraint

satisfaction and optimization process can create

interface with low interaction effort with a device

and user capabilities in mind. It can be further

extended to consider adaptation to usage. In

situations, where the users are getting experienced

in time, importance can be changed to reflect the

most frequently used user interface elements. In

situations, in which the user changes the

environment, the current modality can be changed

to enable more comfortable interaction.

5. ACKNOWLEDGEMENT
This work was supported by the Security-Oriented

Research in Information Technology project

sponsored by CEZ MŠMT under Grant No.

MSM0021630528, and the Centre of computer

graphics sponsored by MŠMT LC under Code No.

LC06008.

6. REFERENCES
[Abr02a] Ali, M.F., Pérez-Quiñones, M.A.,

Abrams, M., Shell. E., Building Multi-Platform

User Interfaces with UIML. CADUI 2002,

France, pp. 255-266, 2002.

[Bod94a] Bodart, F., Hennebert, A.M., Leheureux,

J.M., Provot, I., Vanderdonckt, J., A Model-

Based Approach to Presentation: A Continuum

from Task Analysis to Prototype, in Proc. of

FIEW - DSVIS, pp: 25–39, 1994.

[Ell06a] Elliot, S. J2EE and .NET Applications:

Creating Value Through Integrated Cross-

Platform Management, IDC, 2006.

[Gaj08a] Gajos, K.Z., Wobbrock, J.O., Weld, D.S.,

Improving the performance of motor-impaired

users with automatically-generated, ability-

based interfaces, in Proc. of 26th SIGCHI Conf.

on HFCS, Italy, pp. 1257-1266, 2008.

[Jel04a] Jelinek, J., Slavik, P., GUI Generation

from Annotated Source Code, in Proceedings of

Tamodia’04, Prague, Czech Republic, 2004.

[Kad06a] Kadlec, J. Steps In Automated User

Interface Generation, in Proc. of SCCG 2006,

Bratislava, pp. 25-28, 2006.

[Kad07a] Kadlec, J., Code Characterization for

Automatic User Interface Generation, In:

Innovations and Advanced Techniques in

CISSE, Dordrecht, NL, Springer, s. 255-260,

2007.

[Nic04a] Nichols, J., Myers, B.A., Litwack, K.,

Improving Automatic User Interface Generation

with Smart Templates, In Intelligent User

Interfaces, Funchal, Portugal, pp. 286-288,

2004.

[Pat03a] Paternò, F., Santoro, C. A Unified Method
for Designing Interactive Systems Adaptable to

Mobile and Stationary Platforms, Interacting

with Computers 15, Elsevier, pp. 349-366,

2003.

[Pat08a] Paterno, F., Santoro, C., Mantyjarvi, J.,

Mori, G., Sansone. S., Authoring pervasive

multimodal user interfaces. Int. J. Web Eng.

Technol., Vol. 4, No. 2, pp. 235–261, 2008.

[Pat97a] Paterno, F., Mancini, C., Meniconi, S.,

ConcurTaskTrees: A Diagrammatic Notation for

Specifying Task Models”, in Proc. of the IFIP

TC13 Int. Conf. on HCI, Sydney, pp. 362-369,

1997.

[PSe05a] Randem, H.O., Jokstad, H., Linden, T.,

Kvilesjo, H., Rekvin, S., Hornæs, A., ProcSee -
The Picasso Successor, Enlarged Halden

Programme Group Meeting, Lillehammer,

Norway, 2005.

[UBI05a] Nylander, S., Bylund, M., Waern, A. The

Ubiquitous Interactor - Device Independent

Access to Mobile Services, CADUI 2004, Isle

of Madeira, pp. 271-282, 2005.

WSCG 2010 Poster papers 12

	!_Posters.pdf
	C37-full.pdf
	E67-full.pdf
	F71-full.pdf

	!_Posters-contents.pdf

