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ABSTRACT

Global illumination solutions provide a very accurate representation of illumination. However, they are usually costly to
calculate. In the common case of quasi-static scenario, in which most of the scene is static and only a few objects move, most
of the illumination can be reused from previous frames, yielding increased performance. This article studies theoretically the
performance of global illumination algorithms for the case of interactive recalculation of quasi-static scenes, concentrating in
the Density Estimation on the Tangent Plane algorithm, although the study is applicable to other techniques. The results are
validated empirically with a test scene. Guidelines are given to choose the best algorithm for each case.

Keywords: Global Illumination, Density Estimation, Range Searching, Interactivity, Cost analysis.

1 INTRODUCTION

Global Illumination algorithms calculate a solution to
the rendering equation proposed by [Kaj86]. Monte-
carlo methods are very often used currently. However
comparing the performance of the different methods
taking into account the different variance and bias is
difficult. BART [LAMOQ] provides a compendium of
scenes with which the algorithms can be compared em-
pirically. The aim of this article is to provide a basis
for a theoretical comparison of these algorithms, taking
into account both variance and computation time.

In order to do this, the number of rays shoot is used
to calculate theoretically the variance of the method and
the computation time. Then the computation time ver-
sus variance link can be used to compare different algo-
rithms theoretically.

Sometimes different algorithms have the same under-
lying kernel for the Montecarlo integration, and there-
fore the same variance. In these cases, a study of com-
putation time suffices.

A theoretical study of incremental recalculation of
global illumination is presented in this paper, which in-
dicates the suitability of the different methods for the
different parts of the scene.

The following section has a review of Global Illumi-
nation algorithms. Section 2 contains an in depth anal-
ysis of global illumination using montecarlo methods.
Section 3.1 has a review and simplification of formulas
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from integral geometry which are used to estimate the
cost of different algorithms. In section 3.2 a study of in-
cremental recalculation of illumination for quasi-static
scenes is presented. Section 4 contains a practical study
which validates the theoretical results. Finally, conclu-
sions and some possible future work is presented.

1.1 Global Illumination

Interactive and Real-Time global illumination is
becoming increasingly important for many computer
graphics applications, such as building design and
games.

There have been many important algorithms which
attain high frame rates for medium-scale scenes. They
are based on highly parallel pathtracers and Photon
Maps derivatives. [BWS03], [WGS04] and [GWS04]
are examples of parallelism, whereas Density Estima-
tion on the Tangent Plane [LURMO2] and Ray Maps
[HBHSO05] are examples of extensions of Photon Maps
to increase performance.

These algorithms recalculate the illumination for ev-
ery frame, which is the best option for highly dynamic
scenes, since most of the illumination changes from
frame to frame.

However, in building design and games, the most
common scenes are a complex static scene and rela-
tively simple dynamic objects. In building design, the
designer will modify one object at a time to choose the
best configuration for a given, fixed, lighting setup. In
games, the user will control one small character im-
mersed in a large, mostly static, virtual world, while
the game controls other small characters.

Under these conditions, most of the illumination can
be reused from previous frames, since the small moving
objects change the illumination only slightly.

Selective Photon Tracing [DBMS02] recalculates in-
crementally the illumination by keeping the age of the
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photons and recalculating as many of the old and no
longer valid photons as time allows, every frame.

[GULT04] provides an algorithm which tests the
photons which are not valid and recalculates them. Old
valid photons are never discarded. The results are the
same as full recalculation of the frame for the Density
Estimation on the Tangent Plane algorithm. However,
for Photon Maps, while the result has no intrinsic bias,
it is different of the full recalculation, since obtaining
the same result means that adding the contribution of an
impact would require the removal of the contribution
of the photon further away from the point, and that
requires a photon map query. Recalculation in Ray
Maps remains an open topic [HBHSO05].

2 DENSITY ESTIMATION METHODS

In order to obtain a radiosity value at a point, an ap-
proximation of the integral of the incident radiance for
all the directions towards that point must be calculated.

The most basic method is described by Arvo in
[Arv86] and Patanaik in [PM92]. It computes the
impacts of the photons in the patches and calculates
the energy density in those patches. Then vertexes are
assigned a radiance which is the average of the patches
to which they belong.

One method which has proved useful to obtain an es-
timate of the integral is the Density Estimation Method,
popularized by [WHSG97] and especially [Jen96]. The
original method by Shirley consists of three phases.
The first phase is based on the particle model of light,
and traces a number of photons from the light sources.
The second phase (Density Estimation proper) esti-
mates the radiance. The third phase, decimation, sim-
plifies the geometry after illumination has been calcu-
lated. This last phase is dropped often because it is con-
sidered to be outside the scope of density estimation.

Jensen [Jen96], devised the well known Photon Maps
method. It consists in finding the nearest n ray impacts
(n is predefined) to the point where radiance is being
estimated, adding their energy, and dividing it by the
area of the greatest circle of the sphere which contains
the n impacts.

The most known limitation of Photon Maps, is that
when radiance on a point is calculated, the surface in
the neighborhood should be relatively planar and large.
[HPO2] presents an algorithm which solves this limita-
tion by using geometry information near the point.

Another less known limitation of Photon Maps and
[HP02], mentioned in [LURMO2] and [HBHSO05], is
that if relatively very small surfaces exist in the scene,
these zones have a comparatively high variance, and
they tend to appear either too bright (in a few cases)
or too dark (which is more frequent) if the number of
photons is not large enough.

Ray Maps [HBHSO05] is a new method which uses a
lazily constructed kd-tree to store the ray trajectories.
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An efficient method to calculate rays which intersect
a given subset of the space, or nearest rays to a point
according to different metrics is given.

2.1 Density Estimation on the Tangent
Plane

A method to avoid the high variance of Photon Maps
mentioned in the previous section consists in storing the
rays in the scene and using a fixed size disc centered in
the point where radiance is being calculated, and con-
tained in the plane tangent to the surface. Rays inter-
secting a given disc are used to calculate the radiance at
the point on which the disc is centered [LURMO02]. The
algorithm is called Density Estimation on the Tangent
Plane (DETP). Note that this algorithm keeps track of
the trajectory of the photons (origin, direction and im-
pact point) unlike the original Photon Maps. See Fig-
ure 1. To avoid self-shadowing in concave surfaces, the
second intersection of the ray and the scene is used in-
stead of the first. This method uses discs of fixed radius
[LURMOZ2].

Figure 1. Density Estimation on the Tangent Plane.
The yellow dots on the disc represent the intersection
of the rays

The algorithm has optimum trade-off between accu-
racy and variance when the disc radius (which is a user
defined constant) is in the order of magnitude of half the
distance between irradiance calculations. If disc radius
were smaller, rays intersecting the tangent plane near
the middle point of two irradiance calculations would
be ignored. If it were larger, intersections would be
used for various calculations, hiding small illumination
features which otherwise could be reconstructed.

2.2 Averaging over photons versus aver-
aging over surface

Most of Density Estimation algorithms for global illu-
mination consider a fixed number of samples near the
point where radiance is calculated, and project the en-
ergy into a disc of minimum radius containing all the
samples. This approach averages the samples over con-
stant energy.

Density Estimation on the Tangent Plane, however,
takes a disc of fixed radius and uses all the samples con-
tained there. This approach averages the samples over
constant surface area.

Both approaches are statistically equivalent with re-
spect to the bias and noise involved, trading spatial ac-
curacy for energy accuracy.
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For fast incremental recalculation of illumination,
however, averaging over surface means photons can be
added and removed very efficiently, since the distance
between a photon and a point is the only data needed to
know whether the energy of the photon should be added
to the irradiance of the point. On the contrary, averag-
ing over energy means that adding the energy of one
photon requires finding the photon further away and re-
moving its energy.

This article concentrates therefore on DETP and pro-
vides a theoretical study of complexity which comple-
ments [GUR™06] when these algorithms are used for
recalculation.

2.3 Spherecache

The limitation of DETP is that the number of disc-ray
intersections is high, therefore increasing the computa-
tion time. To address this, the sphere cache [LURMO02]
was developed.

The sphere cache consists in creating a hierarchy of
spheres of decreasing radius and storing the rays which
intersect each sphere in order to decrease the number of
ray-disc intersection tests.

Firstly, a sphere tangent (i.e. circumscribed) to the
bounding box of the scene is built. This sphere inter-
sects all the rays.

Then, as Figure 2 shows, spheres of decreasing ra-
dius are built one inside the other (the ratio between
two consecutive spheres is a parameter called Q), un-
til the radius is just above the disc radius mentioned in
the previous section. However, spheres with less than a
given number of rays (usually 100) are not subdivided,
for efficiency reasons.

Each sphere has an associated data structure which
contains the rays which the aforementioned sphere in-
tersects. These rays are calculated by the intersection
of the sphere with the rays in the immediately enclos-
ing sphere.

The first point at which radiance is to be calculated is
the center of the spheres of decreasing radius. There-
fore, the first disc is contained in the inner sphere. Ir-
radiance can be calculated by checking which rays in
the inner sphere intersect the disc as well, and adding
their energy. The number of ray-disc intersection tests
is clearly reduced.

For the rest of the points, if the disc centered in the
point is contained in the inner sphere, the disc is in-
tersected against the rays in this sphere. Otherwise, the
sphere is discarded, and the rest of the spheres are tested
in order, until one is found to enclose the disc. Then the
hierarchy of spheres is recalculated, using this point as
center. See Figure 2 right.

Finally, the disc is intersected against the rays in the
innermost sphere, in the same way as when no recalcu-
lation of spheres is needed.
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Cache 1s used

Cache fault New sphere

Figure 2: Sphere cache. If a disc lays partially out of
a sphere, the sphere is discarded and a new one is
created.

Lastra et al. [LURMO2] demonstrated that the use
of space filling curves to reorder the points increments
spatial coherence, and therefore reduces computation
time. This approach is called point sorting.

24 Discindexing

The disc indexing technique creates a spatial index-
ing of the discs in the scene. This is accomplished by
considering the discs as real geometry, and applying a
space partitioning method to them. The discs are ini-
tialized with a radiance value of zero. Then the rays
traverse the spatial index adding their contribution to
the discs they intersect. See Figure 3. The ray need

ol

515 O

o e
!

Figure 3: Disc indexing. The rays traverse the index-
ing, adding their contribution to the discs they intersect

only be followed until the first intersection with the real
scene (or the second if concave surfaces exist). The spa-
tial indexing should be able to store discs and to calcu-
late efficiently all the intersections with a segment (the
endpoints of this segment are the origin of the ray and
the intersection with the real scene). All the published
algorithms meet this criterion.

After radiance has been calculated, each disc con-
tains an estimate of the radiance according to the DETP
scheme. The data structure can be considered a sort
of irradiance cache [WRC88]; therefore new irradiance
values can be estimated using the same interpolation
which that paper proposes, or by using Irradiance Gra-
dients from [WH92].

Some work [HPO03] has been done on studying
characteristics of the scene which make some indexing
techniques more efficient than others. Other studies
[HPPOO][RLMCO3] use a fast simulation with few rays
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to choose the most appropriate indexing method. Since
the disc position follows the surface of the objects, this
research is applicable for this technique as well.

This method has higher performance than the orig-
inal sphere cache intersection method when the discs
have a radius which is in the order of magnitude of the
mean distance among the points in which radiance is
being calculated. In other situations, the performance
of the sphere cache is higher. Details are provided in
[GURT08].

3 TIME COMPLEXITY OF INCRE-
MENTAL CALCULATION OF ILLU-
MINATION

[GUL"04] described an incremental method for the
recalculation of global illumination in a quasi-static
scene. In this type of scene, there is a static scenario,
which contains most of the geometry complexity of the
scene, and a dynamic object or objects, which are rela-
tively simple. When the objects move, most of the radi-
ance information can be reused from previous frames.

In the static scene, only rays which intersect the dy-
namic object in the previous frame or in this frame can
change their contribution to the static scene. Dynamic
objects, on the other hand, must have their whole ra-
diance estimate recalculated taking into account all the
rays in the scene.

The static scene can have the spatial indexing of disc
indexing reused for the whole simulation. The dynamic
scene, on the contrary, needs to have it rebuilt on each
frame, since it moves and rotates.

With respect to sphere cache, the dynamic scene is
very localized in space; therefore the sphere around the
bounding box of the moving objects will reject most of
the rays. Since objects move smoothly, sphere cache
can be very efficient for these objects.

These reasons suggest using sphere cache for the
dynamic scene, and choosing the most appropriate
method, according to the characteristics of the scene,
to the static scene.

The results presented in [GUR™06] were used to
study the performance of such a system. The time
needed to construct the spatial index produces higher
time in the first recalculations, but after 180 frames
(the first seven seconds of the animation), the cost has
been amortized for a small radius and number of pho-
tons. This time raises to 7000 frames when the ra-
dius grows and the number of photons increase. Then
Sphere cache becomes more efficient and the indexing
cannot be amortized.

3.1 Theoretical study of computing time
Table 1 provides a summary of the symbols used in
this section. The formulas presented in [GUR™06] for
the complexity of the different algorithms are reviewed,
and then they are applied to the case of interactive re-
calculation of quasi-static scenes.

Short Communication papers

Sphererelated quantities

S={Si} Set of Spheres

ri=ri_1Q =roQ" | Radius of S;

[15) Radius of the sphere enclos-
ing the mobile object

mj Number of recalculations of
sphere S; with point sorting.

tj = tnrQ?4 2 Cost of recalculation of
sphere S; with point sorting

k Number of spheres

Ray related quantities

R Set of Rays

nr=#R Number of rays

iR = nR% Number of rays which touch

the mobile object
Timerelated quantities

u Ray Disc intersection time
t Ray Sphere intersection time
Tr Time to recalculate the

spheres with point sorting
T Time to intersect the disc
against the inner sphere

Other symbols

0<Q«1 Ratio of the radii of two
spheres

P={R} Set of Irradiance samples

Np Samples in dynamic objects

Ns Samples in static objects

np =#P =np+ng | Irradiance samples

d Disc Radius

Table 1: Symbols used in this article
The basis of the study comes from the fact that the
probability that a ray (with uniform distribution) which
intersects a convex body, intersects a second convex
body located inside the first is the ratio of the areas of
the bodies. This result can be derived from results of
integral geometry from Santalo [San02].

Theorem 1 The performance estimates of [GUR'06]
can be simplified to:

e Sphere cache: T = %”5 ( %71> + 3 unryMp

1-Q
e Disc Indexing: T =u ngrdnp

Proof
Spherecache [GUR™06] provides the following for-
mulas for the performance of sphere cache:

T=Ti+Tr 1)

where T is the total time to calculate sphere cache,
formed by T, the cost of the inner sphere, and Tg, the
cost of the rest of the spheres.

2

T|:UnPnRr—2 2
)
K tng / Mp—1
TRZiZmitiZQ—2R<\/1_PQ ) (3)
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Proposition 1 The optimal value of Q is 2/3.

Proof To calculate the optimum value of Q, the
derivative of Equation 1 with respect to Q is calcu-
lated, and dT /dQ = 0 is solved, yielding Q = 2/3.
(d?T /dQ?)(2/3) > 0 means this is the minimum of the
function.

Since the disc radius d should be the distance between
irradiance samples to decrease variance (Section 2.1),
Equation 3 can be simplified. Let’s suppose the points
are distributed in a regular grid. The distance between
the points is d and there are ¥/np points in a side of the
grid. The radius of the sphere circumscribed to the grid
is

V3d.gn
ro = YCVIP @
Solving in d: . 216 5
V3R
and expanding d in Equation 2 results in
T = g u HRW (6)

DiscIndexing [GUR™06] gives the following cost for
Disc Indexing:

T =uknrnp/4 (7)
If the data structure is balanced, and the cost of going to
the neighbor node is negligible with respect to the cost
of doing the ray-disc intersections, the cost is:

T =ungrnp/4 (8)
Again, taking into account that the node should not

be subdivided when the size of the side of the voxel
reaches the distance between samples:

2= mp — k=log, IMp )
Substituting k in Equation 8 yields:

unrnp unrnp
= 3 = =u nR\?’/np
41092 ¥Mp 2/3
Np

(10)

These formulas are used in the following section to
study quasi-static scenes.

3.2 Application To Quasi-Static Scenes
Previous results can be used to guide the design of hy-
brid algorithms for global illumination. Here a study of
quasi-static scenes is presented.

A quasi-static scene is a scene in which most of the
geometry is static; dynamic objects are relatively few
and small. [GUL™04] provides an empirical study of
these scenes. Illumination in these scenes can be up-
dated efficiently by using the following approach: the
first frame is calculated, and the rays are stored. Rays
which intersect mobile objects are marked. On subse-
quent frames, the mobile object is located in a different
location. Rays which intersected the mobile object in
the previous frame or now do so are recalculated, and
stored in two lists of "old” and "new’ rays, respectively.
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e Static points: Radiance is updated by subtracting the
contribution of old rays and adding that of new rays.
e Dynamic points: The old radiance value is discarded
and all the rays are used to calculate the new value.

A theoretical study of this algorithm follows.

Theorem 2 The best method for DETP depends on
whether the points are static or dynamic:

e Static: Disc Indexing is faster than Sphere Cache.

e Dynamic: Sphere Cache is faster than Disc Index-
ing for objects smaller than 35 % of the scene.

Proof Section 3.1 shows that the probability that a ray
which intersects a convex body, intersects a second
convex body located inside the first is the ratio of the
areas of the bodies.

If we call rp the radius of the spherical bounding of
the dynamic object, it can be seen that the number of
recalculated rays is:

2
Id > ~
Y ~ ng¢ ~ NR-—5 =def fIR (11)
0

If we call ngthe number of static points and np the num-
ber of dynamic points (np = ng+ np), the different pos-
sibilities can be studied.

Static points
The cost of sphere cache in this case is (from Equations
1, 3and 6)

Ao .3 —

:tQLZR 1nin+g U firy/Ns
where the first summand corresponds to cache misses
and the second to the cost of the inner sphere. Taking
into account that the ray-disc and ray-sphere intersec-
tion time are similar (t & u) and the fact that in the limit,
for large ng, ¥Ns— 1~ 3/ng, and using Q = 2/3 as rec-
ommended above, the cost is

T =8.08t iR YMs

(12)

(13)

Disc Indexing traverses the index for old rays and
new rays, so using Equation 10 for 2 fir rays gives a
cost of

T =2t ArIns (14)

Disc Indexing is clearly the fastest option.

Dynamic points
Taking into account the previous results, the cost of
sphere cache is
2
~ r
8.081t firdMp = 8.08t nRr—gF’/_nD (15)

and that of disc indexing ist ng¥Np. If the two costs are
used as the sides of an equation, and then solved with
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respect to np, the values of np on which each algorithm
is optimal can be deduced.

rZ
8.08t nRr—gé/—nD =t nr¥Np (16)
Simplifying, (dividing by tng3/Np)
3
8.08? =1 @an
0
Taking a square root and solving for rp yields
ro =0.351p (18)

This means that if the dynamic objects’ size is
35% of the scene, both algorithms are equally fast
in average. Checking the cost of the methods for
objects of size smaller and bigger than 35% of the
scene shows that sphere cache is faster for smaller
objects; while disc indexing is faster for larger objects.

Therefore, an optimal recalculation algorithm should
use disc indexing for static points and ray cache for
dynamic points, which by the definition of quasi-static
scenes, are smaller than 35% of the scene.

4 VALIDATION OF THEORETICAL
ASSUMPTIONS

This section contains a study of the error of the theoret-
ical study for real scenes, in which the distribution of
the rays is not uniform.

Two medium scale scenes were used to test the the-
oretical results. The first one, Atrium, can be seen in
Figure 4. The second one, Expo, can be seen in Fig-
ure 5.

Figure 4: Atrium scene

4.1 Mean number of raysin the spheres

In the theoretical study, the assumption that the distri-
bution of the rays was uniform was made. However, in
real scenes the distribution depends on the position and
intensity of the light sources and the objects. In prac-
tice, the light sources are located in order to provide
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Figure 5: Expo scene

a sufficient illumination of the interesting part of the
scenes. This increases the density of the photons in the
zones where we are calculating the radiance. Two tests
were performed with the Expo scene. The results can
be seen in Figures 6 and 7. Even though the theoretical
study underestimates the number of rays, the prediction
is quite close to the real value in the middle and low lev-
els of the sphere list, which corresponds to most of the
time of the algorithm. Even though the rays are not uni-
formly distributed, as the spheres become smaller, the
density of the rays becomes more uniform, and there-
fore the error decreases.

In order to increase the accuracy of the estimate for
scenes in which the distribution of the rays is not uni-
form, a hybrid approach can be made. The algorithm
can be run with only the upper levels of the sphere list,
taking into account only cache misses and no density
estimation. Then, the lower levels can be estimated ac-
curately by the theoretical approach, since rays tend to
be more uniform over smaller volume. In addition one
may divide the number of rays by a large constant, and
then multiply the results by this constant to decrease
computation time of the estimate, as [RLMCO03] sug-
gests.

70

Error in the prédictioﬁ
60

50
40 r
30
20 r

10

0

0 2 4 6 8 10 12 14
Figure 6: Percental error in the theoretical prediction of
the Atrium scene, for each level

4.2 Sphere cache misses for uniform dis-
tributions

A program was designed which created a set of rays
distributed uniformly in the surface of the unit sphere.
Then a set of points distributed uniformly inside the
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Figure 7: Percental error in the theoretical prediction of
the Expo scene, for each level

unit sphere was created, and finally a set of normals
distributed uniformly was assigned to each point.

This set of points was tested against the rays using
Sphere Cache.
Uniform distribution of linesin a sphere  To gen-
erate a ray following this distribution, two points dis-
tributed uniformly in the surface of the sphere must
be generated. We use the method presented in [Sbe]
and [TNSP98]. Then, the line which joins the two
points follows a uniform distribution in the sphere, as
[RWCSO05] shows. The algorithm can be seen in Fig-
ure 8.

Algorithm 4.1:

Z—U[-1,1]
¢<——U[O,27ﬂ

0 — arcsin(z)

X «— cos(6)cos(p)

Y « cos(8)sin(@)
return (Point(X,Y,Z))

POINTONSPHERESURFACE ()

Algorithm 4.2: LINEINSPHERE ()

a — POINTONSPHERESURFACE()
b <« POINTONSPHERESURFACE()
return (Ray(a,b—a))

Figure 8: Pseudocode which generates rays uniformly
in the unit sphere

Results  Figure 9 gives a graph with the number of
cache misses at each level. The Lebesgue sorting is
used, with a radius factor of 0.6, and the default 100
rays subdividing limit. 1024*1024 rays were used. The
graph shows a steady increase in cache misses as the
level increases, until level 9 is reached. Then there is
a sharp decrease. According to theory, level 9 has 94.6
rays in average, so the probability of subdivision is very
small (it is not zero because of the non-zero variance of
the distribution of rays). The sharp decrease in cache
faults in Figure 9 at level 10 is due to the fact that the
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mean number of rays is so small that few spheres are
being subdivided.

800000

Lebesgde, Cache‘ faults
700000 r

600000 r
500000 r
400000
300000 r
200000 r
100000 f

0

0 2 4 6 8 10
Figure 9: Cache Misses at each level. Lebesgue sort-
ing.
Graph details In order to study in detail the graph, the
radius factor was increased to obtain more data points.
Figure 10 shows the cache misses at each level for a
radius factor of 0.9, for both the Lebesgue sorting and
the Hilbert sorting. It can be seen that Hilbert has much
smaller peaks. This is due to Hilbert having more spa-
tial coherence than Lebesgue. In this graph a series of
nearby local maxima followed by local minima. These
points are located at sphere levels which correspond to
a size of 27X of the scene (k=1,2,...), and are caused by
the interaction between the sphere cache and the space
filling curve sorting.

35000

Lebésgué, Cache faults
Hilbert, Cache faults

30000 r

25000 r

20000 r

15000 r

10000 r

5000 r

0 L L L L L
0O 10 20 30 40 50 60 70 80 90

Figure 10: Cache Misses at each level for different
sorting methods. Q = 0.9

5 CONCLUSIONS AND FUTURE
WORK

A framework for the theoretical comparison of different
montecarlo-based global illumination algorithms has
been presented.

A theoretical study of the complexity of incremen-
tal recalculation of illumination has been performed for
quasi-static scenes, using Sphere Cache and Disc In-
dexing. The study suggests a hybrid method which
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combines the benefits of both, using Disc Indexing
for the static scene and Sphere Cache for the dynamic
scene.

The ratio of the size of the bounding boxes of the
mobile objects and the scene should be used to choose
the method. If the dynamic objects have a size of less
than 35% of the scene (rp/ro < 0.35), Sphere cache
should be used. (Theorem 2 in Section 3.2).

After some simplifications, the optimum value of
the ratio of spheres in sphere cache has been obtained
(Proposition 1 in Section 3.1), yielding Q = 2/3.

The error in the theoretical approach has been tested
with real scenes, showing less than 5 % in most of
the cases, even with non-uniform distribution of rays.
Cache faults have also been studied numerically for a
uniform distribution of rays, showing the interaction be-
tween sphere cache and space filling sortings.

5.1 Futurework

Finding distributions of rays which model real scenes
better would reduce the differences between the esti-
mated number of rays and the practical results for the
first levels of the sphere cache.

The shape of the graphs of the cache misses at each
level shows that the interaction between sphere cache
and space filling curves has an inner structure. Mod-
eling this interaction is our next step in this research
topic.

Other interesting future work is applying this study
to Havran’s Ray Maps. It is noteworthy that Ray Maps
can be used in DETP mode, therefore making the study
easier.
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