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Figure 1. 64-bit extension overheads for large (yet on-core) models. Models are ray traced with shadows 

at 1024x1024 on a 2-way 3GHz Intel ®Core™2 Duo machine (4 cores, 1 thread/core), 8Gb RAM, Vista64 

 

ABSTRACT 
A lot of rendering solutions use an acceleration structure to reduce the complexity of solving geometric 

proximity search problems. Although acceleration structures are well studied, data exceeding 32 bit address 

space require an acceleration structure with special properties, such as compact memory layout, efficient 

traversal capability, memory address space independence, parallel construction capability and 32/64 bit 

efficiency. 

We propose a specific memory layout for a kd-tree and methods of processing that data structure handling 

massive models with the highest efficiency possible. The components of that are easily applied to other 

hierarchical acceleration structure types as well. 

Keywords 
Rendering, acceleration structure, kd-tree, ray- tracing, proximity search. 

1. INTRODUCTION 
Rasterization or ray tracing of models with large 

polygon counts usually rely on fast methods of 

geometrical proximity search. A good quality 

acceleration structure reduces complexity of the 

search queries from O(N) to O(log(N)), where N is 

the number of primitives [Hav01]. The most efficient 

structures are based on non-balanced binary trees 

like kd-tree, BVH, BIH [WK06] or BSP, refer to 

[Hav01] for an overview.  An acceleration structure 

practical for high-speed parallel processing must 

satisfy the following requirements:  

• Efficient traversal capability – compact 

representation do not slow down the traversal step 

• Memory address space independence –the 

acceleration structure is easy to save/load/transfer 

a) Asian Dragon model, 7.2M triangles,  
64-bit extension consumes only 2Mb of 
1.3Gb acceleration structure, 

extension processing time is <0.5% of 

rendering time 

b) Thai Statue model, 10.2M triangles,  
64-bit extension consumes only 2.1Mb 
of 1.4Gb acceleration structure, 

extension processing time is <0.5% of 

rendering time 

 

d) Thai Statue model replicated 7 times 

64-bit extension consumes only 4Mb 
of 7Gb acceleration structure, 

extension processing time is <0.5% of 

rendering time 
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•    Parallel construction - the acceleration structure 

should support creation in multiple parallel threads 

•   32 and 64 bit efficiency – the acceleration 

structure size should not explode on 64 bit 

architectures. The 32 bit mode acceleration structure 

mode should have exactly the same binary 

representation on 64 bit architectures. 

In this paper we propose specific memory layout 

solving the above problems. We use kd-tree as 

example, but the solution we proposed is also 

applicable to a wide range of partitioning hierarchies. 

Furthermore it has a backward compatibility with 

previous layouts one may have. 

2. PREVIOUS WORK 
Kd-tree is a binary tree in which each node 

corresponds to a spatial cell. A kd-tree construction 

proceeds in a top-down fashion using a cost metric to 

determine split plane position in a current node until 

some termination criteria is reached and the node 

becomes a leaf. An inner node stores splitting plane 

position and references to the two child nodes. Each 

leaf node refers to a corresponding list of primitives. 

The representation of a non-balanced kd-tree node 

requires a flag indicating whether the current node is 

an inner node or a leaf. The inner node stores a single 

address offset. Adding the offset to the memory 

address of a given node gives the memory address of 

the two child nodes  [WBWS01]. A kd-tree node 

occupies eight bytes only. In combination with a 

proper memory alignment, the layout allows storing 

the split dimension in the two least significant bits of 

the offset. The highest bit indicates inner node or 

leaf, while the remaining 29 bits encode an unsigned 

address offset (substituting a pointer) to either the 

child nodes or to the list of primitive indices: 

Figure 2. Basic eight byte kd-tree node layout. 

Refer to [Ben06] or [Wal01] for details. 

Storing offsets instead of pointers makes the data 

structure independent of its base address, thus no 

pre-processing is required for storing/loading. The 

31st (sign) bit of the offset field as leaf indicator 

results in efficient leaf/node test if offset are always 

non-negative. However, a 29 bit offset limits the 

displacement to 2
29 bytes, which becomes 

insufficient for models larger than 10M triangles. 
Naïve replacement of 4 bytes with 8 bytes to get 61 

bit offset on 64 bit machine leads to explosive 

growth of the memory footprint. 

We propose to address that problem with a 64 bit 

extension mechanism that uses 32 bit offset field for 

the majority of nodes extending the offset to 64 bits 

for only a small fraction of nodes. Also a kd-tree 

fitting into 32-bit address space will have exactly the 

same binary layout on a 64 bit machine as it had on a 

32-bit machine.  

Positive offset ( [Wal01]) assumes that child nodes 

are always located at higher addresses than their 

parents, which limits choices of memory allocation 

strategies, especially for multi-threaded builds. 

Construction threads usually allocate memory by 

continuous chunks. Once chunk is full a thread 

requests a new region from memory allocation 

system  [SSK07]. A multi-threaded memory 

allocation system cannot guarantee positive offsets 

between branches of kd-tree constructed with 

multiple threads. So using positive offsets require 

additional transformation pass (similar to 

 [ZHWG08]). We propose using negative offsets and 

that enables building using multiple regions rather 

than a single continuous array. To the best of our 

knowledge in-place construction of a kd-tree in 

multiple threads has never been done using offset-

based representation. 

As in  [Wal01] we store both children of a node next 

to each other, both nodes are stored in the same 

cache line, so they're always fetched together 

automatically. However we noticed that less care was 

paid to the leaf/internal node test. As traversing a 

BSP node is by far the most frequent operation in a 

ray tracer, it has to be implemented with extreme 

care. Our leaf node test needs exactly one instruction 

before branch. 

In a compiler field there is an intensive research on 

automatic pointers compression for 64-bit address 

space [LA05]. In our case only small number of 

nodes is really compressed/decompressed. As a 

result, even for high memory regions granularity the 

slowdown of rendering is less than 0.5% in compare 

to having 32-bit offsets only.  

3. SOLUTION 
A solution we propose still uses only eight bytes for 

kd-tree node layout. What is really new is how 

information is encoded and the amount of additional 

/* basic 8-byte layout for a kd-tree node */ 

struct KDTreeNode { 

union{ 

//position of axis-aligned split plane 

float split_position; 

// or number of primitives in the leaf 

unsigned int items; 

} 

unsigned int dim_offset_flag; 

//’dim_offset_flag’ bits encode multiple data: 

// bits[0..1]: encode the split plane dimension 

// bits[2..30]: encode an unsigned address offset 

// bit[31]: encodes whether node is an inner node or a leaf 

}; 

// macros for extracting node information 

#define DIMENSION(n) (n->dim_offset_flag & 0x3) 

#define ISLEAF(n) (n->dim_offset_flag & (UINT)(1<<31)) 

#define OFFSET(n) (n->dim_offset_flag & 0x7FFFFFFC) 
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information we manage to store within the same 

bytes, refer to Figure 3. 

Since nodes and leaf data arrays are naturally aligned 

by 4-byte boundary, an offset between any two of 

them has 2 least significant bits available to store 

additional information: 

• values 1, 2, 3 indicate internal node and 

split plane orientation (correspondingly X, Y, Z axis) 

• value 0 is  leaf indicator. 

Our kd-tree node layout uses least significant bits for 

node/leaf flag, thus allowing for negative offsets. 

The changes in layout are highlighted in red below. 

 Efficient leaf/node test 
During traversal the leaf/internal node test is 

executed at each traversal step, so its performance is 

critical. Having 0 as a leaf indicator (Fig.3) allows 

reducing the test to exactly 1 instruction before 

branch:  

and  Node, 0x03  

jz ProcessLeaf 

Our experiments with the proposed test demonstrated 

rendering performance improvement of ~5% on 

average (in compare to Fig.2 layout). 

32 and 64 bit efficiency 
To handle an unpredictability of a kd-tree size a 

construction algorithm allocates memory by 

reasonably sized continuous regions. The algorithm 

continues construction in the current region until it’s 

full and then requests a new region from memory 

allocation system, Figure 4. As a result each such 

region contains a large connected portion of a 

constructed tree (one or more sub-trees). The number 

of links between those sub-trees is relatively small 

(<<1% of total number of links), thus the number of 

nodes pointing to children located in another memory 

region is also small.  

The typical region size is way smaller than 4GBs. So 

inside a continuous region the nodes can use 32-bit 

offsets as far as they reference children within the 

same region. The only nodes that potentially need 

64-bit offsets are the nodes having children located 

in another memory region. A node needing 64-bit 

offset is encoded as a special extension of a regular 

node. To avoid frequent checks if a node is extended 

we extend leaves rather than internal nodes.  

Multi-threaded construction 
The tree is usually constructed in top-down manner 

from parent nodes to children nodes. When the tree is 

constructed in multiple threads each thread builds 

some sub-tree [SSK07]. Thus different threads may 

create a parent node and its children nodes. So when 

a parent is created the offset to children nodes may 

be unknown. That fact prevents from allocating 64-

bit offset data next to a node (when 32-bit offset is 

insufficient). The actual data of 64-bit extended node 

is stored in a special per-thread relocation table: 
continuous memory region i 

 

64-bit nodes table tbl_n 

continuous memory region j 

 64-bit nodes table tbl_m 

Figure 4. Mem. allocation by continuous chunks 

As described in previous section, 64-bit extension 

node is a special type of leaf: 

a) -(entry+1), where entry is a table entry 

number, is stored in items field (see Figure 

3). Negative value indicates special leaf. 

Adding 1 distinguishes from empty  leaf; 

b) (tbl)<<2 where tbl is a per-thread table 

number, is stored in dim_offset_flag field. 

The shift is required to zero 2 least 

significant bits, indicating a leaf. 

Each construction thread creates its own 64-bit node 

table. So there is no contention between threads for 

updating or reallocating (when full) the tables.  Since 

each table is small its usage does not affect 

construction performance. Tests on models with up 

to 70M polygons demonstrated that 256-entry per-

thread tables were never full. Storage or transmission 

of a tree located in multiple memory regions requires 

relocation of cross-region offsets. Since 64-bit node 

tables are exactly nodes with cross-region references, 

/* 8-byte layout for a kd-tree node */ 

struct KDTreeNode { 

union{ 

float split_position; 

unsigned int items; 

} 

int dim_offset_flag; 

// ’dim_offset_flag’ bits encode data in a new way 

// bits[0..1] : indicate either  

// • a leaf(if set to 0) 
    // if ‘items’ field is >=0 it is true leaf     

    // otherwise it is 64-bit extension 

// • an inner node with split plane dimension  
//   (if set to 1,2,3 for x,y,z axis corresp.) 
// bits[2..31] : encode a signed

}; 

 address offset 

Figure 3. The proposed kd-tree node layout. 

Changes in layout are highlighted in red. 
 

 -(entry+1)    tbl_n<<2 

left child 

right child 

… 

entry 

offset   node 

… 
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the relocation operation is a simple update of nodes 

in the tables rather than a scan and update of the 

whole tree.  

 

Figure 5. Kd-tree layout+64-bit extensions macros 

Modifications of traversal algorithm 
The conventional 32-bit tree can be rendered by 64-

bit code without any modifications. For the specific 

64-bit extensions of the traversal algorithm, refer to 

Figure 6, Figure 7. Since the probability of traversing 

leaf is way smaller than probability of traversing 

internal node, the additional 64-bit extension test is 

performed at a very small fraction of traversal steps.  

 

Figure 6. 64-bit extensions for traversal algorithm 

modification (in red). 

4. Performance impact 
 Tests on large models demonstrated that with the 

proposed layout memory, footprint of trees 
constructed on 64-bit machine have almost the same 
size as the ones constructed on 32-bit machine (i.e. 
using 32-bit offsets only). Managing per-thread 64-
bit node tables in our measurements demonstrated 
that construction slowdown is <1% and thus is 
negligible. We also performed tests for 2-128 
construction threads with wide range of models (1-
100M polygons). For all the tests, 64-entry per-
thread tables are more than sufficient to connect 
portions of a tree constructed with different threads. 

The performance of rendering using new layout 
supporting 64-bit extensions is the same as of 
rendering the efficient layout supporting 32-bits only 
(see Figure 1 for examples). Even on complex 
models and high memory region granularity the 
slowdown using the proposed layout was less than 
0.5% comparing with 32-bit only offsets and one 
continuous memory region for the whole tree.  

5. Future Work 
 Transparent support of multiple continuous 

memory regions that we proposed, allows 
implementing simple and efficient paging/caching 
mechanisms in spirit of [YM06]. 
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Figure 7. Pseudo-code for handling of 64-bit 

extensions in the traversal algorithm (in italic/bold) 

struct TableEntry{// relocation table entries  

      //actual leaf/node but with zero offset in dim_offset_flag  

 KDTreeNode node;  

      //true offset  

 __int64 offset; 

}; 

#define NOTLEAF(n) (n.dim_offset_flag&0x3)  

#define DIMENSION(n) ((n.dim_offset_flag&0x3)-1) 

#define IS_64BIT_EXT(n) (n.items<0) 

#define MAKELEAF(n,its,ofs) n.items = its; \ 
n. dim_offset_flag = ofs; 

 

#define ENCODE64BIT_EXT(n,table_id,entry_id) \  

MAKELEAF(n,-(entry_id+1),table_id<<2) 

#define DECODE64BIT_EXT(node, newadr) \ 

   int tab_id = (node.dim_offset_flag)>>2; \ 
   int entry_id = -node.items-1; \ 

   TableEntry e = m_tables[tab_id][entry_id]; \ 
   newadr = &node + e.offset;   node = e.node;  

 

 

YES 
NO 

YES 

NO 

YES 

NO 

node:=load (nodeadr) 

Is node 

internal? 

Process internal node 

Process leaf 64-bit 

ext? 

Empty leaf? 

Process 64-bit 

 

register KDTreeNode node = m_root; 
// ADRINT is  int or __int64 (32/64-bit architectures)  

ADRINT newadr = &node; 
traverse_loop: 

while (NOTLEAF(node)){ 

       //get dimension, traversal order, etc 

        const ADRINT adr0 = newadr+…;//front child 

         const ADRINT adr1 = newadr+…;//back child 

        //traverse of either back/front child or both 

        //… 

} 

//processing leaves 

if(node.items >0){ 

       //... 

} 

#ifndef _M_X64 

else if(IS_64BIT_EXT(node)){ 

//64-bit extensions processing: 

//newadr is patched using relocation table 

   DECODE64BIT_EXT(node, newadr); 

      goto traverse_loop; //another option is to duplicate 

traversal/leaf- processing code here 

 } 

#endif// _M_X64 
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