

Efficient acceleration structure layout for 64-bit

many-core architectures

Maxim Shevtsov

Intel Corporation
30 Turgeneva Street,

603024, Russia, Nizhny Novgorod

maxim.y.shevtsov@intel.com

Alexei Soupikov

Intel Corporation
30 Turgeneva Street,

603024, Russia, Nizhny Novgorod

alexei.soupikov@intel.com

Figure 1. 64-bit extension overheads for large (yet on-core) models. Models are ray traced with shadows

at 1024x1024 on a 2-way 3GHz Intel ®Core™2 Duo machine (4 cores, 1 thread/core), 8Gb RAM, Vista64

ABSTRACT
A lot of rendering solutions use an acceleration structure to reduce the complexity of solving geometric

proximity search problems. Although acceleration structures are well studied, data exceeding 32 bit address

space require an acceleration structure with special properties, such as compact memory layout, efficient

traversal capability, memory address space independence, parallel construction capability and 32/64 bit

efficiency.

We propose a specific memory layout for a kd-tree and methods of processing that data structure handling

massive models with the highest efficiency possible. The components of that are easily applied to other

hierarchical acceleration structure types as well.

Keywords
Rendering, acceleration structure, kd-tree, ray- tracing, proximity search.

1. INTRODUCTION
Rasterization or ray tracing of models with large

polygon counts usually rely on fast methods of

geometrical proximity search. A good quality

acceleration structure reduces complexity of the

search queries from O(N) to O(log(N)), where N is

the number of primitives [Hav01]. The most efficient

structures are based on non-balanced binary trees

like kd-tree, BVH, BIH [WK06] or BSP, refer to

[Hav01] for an overview. An acceleration structure

practical for high-speed parallel processing must

satisfy the following requirements:

• Efficient traversal capability – compact

representation do not slow down the traversal step

• Memory address space independence –the

acceleration structure is easy to save/load/transfer

a) Asian Dragon model, 7.2M triangles,
64-bit extension consumes only 2Mb of
1.3Gb acceleration structure,

extension processing time is <0.5% of

rendering time

b) Thai Statue model, 10.2M triangles,
64-bit extension consumes only 2.1Mb
of 1.4Gb acceleration structure,

extension processing time is <0.5% of

rendering time

d) Thai Statue model replicated 7 times

64-bit extension consumes only 4Mb
of 7Gb acceleration structure,

extension processing time is <0.5% of

rendering time

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

WSCG 2010 Poster papers 53

• Parallel construction - the acceleration structure

should support creation in multiple parallel threads

• 32 and 64 bit efficiency – the acceleration

structure size should not explode on 64 bit

architectures. The 32 bit mode acceleration structure

mode should have exactly the same binary

representation on 64 bit architectures.

In this paper we propose specific memory layout

solving the above problems. We use kd-tree as

example, but the solution we proposed is also

applicable to a wide range of partitioning hierarchies.

Furthermore it has a backward compatibility with

previous layouts one may have.

2. PREVIOUS WORK
Kd-tree is a binary tree in which each node

corresponds to a spatial cell. A kd-tree construction

proceeds in a top-down fashion using a cost metric to

determine split plane position in a current node until

some termination criteria is reached and the node

becomes a leaf. An inner node stores splitting plane

position and references to the two child nodes. Each

leaf node refers to a corresponding list of primitives.

The representation of a non-balanced kd-tree node

requires a flag indicating whether the current node is

an inner node or a leaf. The inner node stores a single

address offset. Adding the offset to the memory

address of a given node gives the memory address of

the two child nodes [WBWS01]. A kd-tree node

occupies eight bytes only. In combination with a

proper memory alignment, the layout allows storing

the split dimension in the two least significant bits of

the offset. The highest bit indicates inner node or

leaf, while the remaining 29 bits encode an unsigned

address offset (substituting a pointer) to either the

child nodes or to the list of primitive indices:

Figure 2. Basic eight byte kd-tree node layout.

Refer to [Ben06] or [Wal01] for details.

Storing offsets instead of pointers makes the data

structure independent of its base address, thus no

pre-processing is required for storing/loading. The

31st (sign) bit of the offset field as leaf indicator

results in efficient leaf/node test if offset are always

non-negative. However, a 29 bit offset limits the

displacement to 2
29 bytes, which becomes

insufficient for models larger than 10M triangles.
Naïve replacement of 4 bytes with 8 bytes to get 61

bit offset on 64 bit machine leads to explosive

growth of the memory footprint.

We propose to address that problem with a 64 bit

extension mechanism that uses 32 bit offset field for

the majority of nodes extending the offset to 64 bits

for only a small fraction of nodes. Also a kd-tree

fitting into 32-bit address space will have exactly the

same binary layout on a 64 bit machine as it had on a

32-bit machine.

Positive offset ([Wal01]) assumes that child nodes

are always located at higher addresses than their

parents, which limits choices of memory allocation

strategies, especially for multi-threaded builds.

Construction threads usually allocate memory by

continuous chunks. Once chunk is full a thread

requests a new region from memory allocation

system [SSK07]. A multi-threaded memory

allocation system cannot guarantee positive offsets

between branches of kd-tree constructed with

multiple threads. So using positive offsets require

additional transformation pass (similar to

 [ZHWG08]). We propose using negative offsets and

that enables building using multiple regions rather

than a single continuous array. To the best of our

knowledge in-place construction of a kd-tree in

multiple threads has never been done using offset-

based representation.

As in [Wal01] we store both children of a node next

to each other, both nodes are stored in the same

cache line, so they're always fetched together

automatically. However we noticed that less care was

paid to the leaf/internal node test. As traversing a

BSP node is by far the most frequent operation in a

ray tracer, it has to be implemented with extreme

care. Our leaf node test needs exactly one instruction

before branch.

In a compiler field there is an intensive research on

automatic pointers compression for 64-bit address

space [LA05]. In our case only small number of

nodes is really compressed/decompressed. As a

result, even for high memory regions granularity the

slowdown of rendering is less than 0.5% in compare

to having 32-bit offsets only.

3. SOLUTION
A solution we propose still uses only eight bytes for

kd-tree node layout. What is really new is how

information is encoded and the amount of additional

/* basic 8-byte layout for a kd-tree node */

struct KDTreeNode {

union{

//position of axis-aligned split plane

float split_position;

// or number of primitives in the leaf

unsigned int items;

}

unsigned int dim_offset_flag;

//’dim_offset_flag’ bits encode multiple data:

// bits[0..1]: encode the split plane dimension

// bits[2..30]: encode an unsigned address offset

// bit[31]: encodes whether node is an inner node or a leaf

};

// macros for extracting node information

#define DIMENSION(n) (n->dim_offset_flag & 0x3)

#define ISLEAF(n) (n->dim_offset_flag & (UINT)(1<<31))

#define OFFSET(n) (n->dim_offset_flag & 0x7FFFFFFC)

WSCG 2010 Poster papers 54

information we manage to store within the same

bytes, refer to Figure 3.

Since nodes and leaf data arrays are naturally aligned

by 4-byte boundary, an offset between any two of

them has 2 least significant bits available to store

additional information:

• values 1, 2, 3 indicate internal node and

split plane orientation (correspondingly X, Y, Z axis)

• value 0 is leaf indicator.

Our kd-tree node layout uses least significant bits for

node/leaf flag, thus allowing for negative offsets.

The changes in layout are highlighted in red below.

 Efficient leaf/node test
During traversal the leaf/internal node test is

executed at each traversal step, so its performance is

critical. Having 0 as a leaf indicator (Fig.3) allows

reducing the test to exactly 1 instruction before

branch:

and Node, 0x03

jz ProcessLeaf

Our experiments with the proposed test demonstrated

rendering performance improvement of ~5% on

average (in compare to Fig.2 layout).

32 and 64 bit efficiency
To handle an unpredictability of a kd-tree size a

construction algorithm allocates memory by

reasonably sized continuous regions. The algorithm

continues construction in the current region until it’s

full and then requests a new region from memory

allocation system, Figure 4. As a result each such

region contains a large connected portion of a

constructed tree (one or more sub-trees). The number

of links between those sub-trees is relatively small

(<<1% of total number of links), thus the number of

nodes pointing to children located in another memory

region is also small.

The typical region size is way smaller than 4GBs. So

inside a continuous region the nodes can use 32-bit

offsets as far as they reference children within the

same region. The only nodes that potentially need

64-bit offsets are the nodes having children located

in another memory region. A node needing 64-bit

offset is encoded as a special extension of a regular

node. To avoid frequent checks if a node is extended

we extend leaves rather than internal nodes.

Multi-threaded construction
The tree is usually constructed in top-down manner

from parent nodes to children nodes. When the tree is

constructed in multiple threads each thread builds

some sub-tree [SSK07]. Thus different threads may

create a parent node and its children nodes. So when

a parent is created the offset to children nodes may

be unknown. That fact prevents from allocating 64-

bit offset data next to a node (when 32-bit offset is

insufficient). The actual data of 64-bit extended node

is stored in a special per-thread relocation table:
continuous memory region i

64-bit nodes table tbl_n

continuous memory region j

 64-bit nodes table tbl_m

Figure 4. Mem. allocation by continuous chunks

As described in previous section, 64-bit extension

node is a special type of leaf:

a) -(entry+1), where entry is a table entry

number, is stored in items field (see Figure

3). Negative value indicates special leaf.

Adding 1 distinguishes from empty leaf;

b) (tbl)<<2 where tbl is a per-thread table

number, is stored in dim_offset_flag field.

The shift is required to zero 2 least

significant bits, indicating a leaf.

Each construction thread creates its own 64-bit node

table. So there is no contention between threads for

updating or reallocating (when full) the tables. Since

each table is small its usage does not affect

construction performance. Tests on models with up

to 70M polygons demonstrated that 256-entry per-

thread tables were never full. Storage or transmission

of a tree located in multiple memory regions requires

relocation of cross-region offsets. Since 64-bit node

tables are exactly nodes with cross-region references,

/* 8-byte layout for a kd-tree node */

struct KDTreeNode {

union{

float split_position;

unsigned int items;

}

int dim_offset_flag;

// ’dim_offset_flag’ bits encode data in a new way

// bits[0..1] : indicate either

// • a leaf(if set to 0)
 // if ‘items’ field is >=0 it is true leaf

 // otherwise it is 64-bit extension

// • an inner node with split plane dimension
// (if set to 1,2,3 for x,y,z axis corresp.)
// bits[2..31] : encode a signed

};

 address offset

Figure 3. The proposed kd-tree node layout.

Changes in layout are highlighted in red.

 -(entry+1) tbl_n<<2

left child

right child

…

entry

offset node

…

WSCG 2010 Poster papers 55

the relocation operation is a simple update of nodes

in the tables rather than a scan and update of the

whole tree.

Figure 5. Kd-tree layout+64-bit extensions macros

Modifications of traversal algorithm
The conventional 32-bit tree can be rendered by 64-

bit code without any modifications. For the specific

64-bit extensions of the traversal algorithm, refer to

Figure 6, Figure 7. Since the probability of traversing

leaf is way smaller than probability of traversing

internal node, the additional 64-bit extension test is

performed at a very small fraction of traversal steps.

Figure 6. 64-bit extensions for traversal algorithm

modification (in red).

4. Performance impact
 Tests on large models demonstrated that with the

proposed layout memory, footprint of trees
constructed on 64-bit machine have almost the same
size as the ones constructed on 32-bit machine (i.e.
using 32-bit offsets only). Managing per-thread 64-
bit node tables in our measurements demonstrated
that construction slowdown is <1% and thus is
negligible. We also performed tests for 2-128
construction threads with wide range of models (1-
100M polygons). For all the tests, 64-entry per-
thread tables are more than sufficient to connect
portions of a tree constructed with different threads.

The performance of rendering using new layout
supporting 64-bit extensions is the same as of
rendering the efficient layout supporting 32-bits only
(see Figure 1 for examples). Even on complex
models and high memory region granularity the
slowdown using the proposed layout was less than
0.5% comparing with 32-bit only offsets and one
continuous memory region for the whole tree.

5. Future Work
 Transparent support of multiple continuous

memory regions that we proposed, allows
implementing simple and efficient paging/caching
mechanisms in spirit of [YM06].

6. REFERENCES
[Ben06] C. Benthin, “Realtime Ray Tracing on current CPU

Architectures”, PhD thesis, Saarland University, 2006.

[Hav01] V. Havran: “Heuristic Ray Shooting Algorithms”. PhD

thesis, Czech Technical University in Prague, 2001.

[LA05] C. Lattner and V.Adve: "Transparent Pointer

Compression for Linked Data Structures". In Proceedings of the

ACM Workshop on Memory System Performance (2005).
[SSK07] M. Shevtsov, A. Soupikov, and A. Kapustin.: “Highly

parallel fast kd-tree construction for interactive ray tracing of

dynamic scenes”. In Proceedings of Eurographics (2007).

[Wal01] I. Wald, “Realtime ray tracing and interactive global

illumination”, PhD thesis, Saarland University, 2004.

[WBWS01] I. Wald, C. Benthin, M. Wagner, and P. Slusallek,
“Interactive Rendering with Coherent Ray Tracing”. Computer

Graphics Forum, 20(3) (2001).

[WK06] C. Wächter, A. Keller.: “Instant Ray Tracing: The

Bounding Interval Hierarchy”. In Proceedings of 17th

Eurographics Symposium on Rendering (2006).

[YM06] S.-E. Yoon, D. Manocha: “Cache-Efficient Layouts of

Bounding Volume Hierarchies”. Computer Graphics Forum 25(3)

(2006).

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, Baining Guo:

“Real-time KD-tree construction on graphics hardware” In

Proceedings of ACM SIGGRAPH Asia (2008).

Figure 7. Pseudo-code for handling of 64-bit

extensions in the traversal algorithm (in italic/bold)

struct TableEntry{// relocation table entries

 //actual leaf/node but with zero offset in dim_offset_flag

 KDTreeNode node;

 //true offset

 __int64 offset;

};

#define NOTLEAF(n) (n.dim_offset_flag&0x3)

#define DIMENSION(n) ((n.dim_offset_flag&0x3)-1)

#define IS_64BIT_EXT(n) (n.items<0)

#define MAKELEAF(n,its,ofs) n.items = its; \
n. dim_offset_flag = ofs;

#define ENCODE64BIT_EXT(n,table_id,entry_id) \

MAKELEAF(n,-(entry_id+1),table_id<<2)

#define DECODE64BIT_EXT(node, newadr) \

 int tab_id = (node.dim_offset_flag)>>2; \
 int entry_id = -node.items-1; \

 TableEntry e = m_tables[tab_id][entry_id]; \
 newadr = &node + e.offset; node = e.node;

YES
NO

YES

NO

YES

NO

node:=load (nodeadr)

Is node

internal?

Process internal node

Process leaf 64-bit

ext?

Empty leaf?

Process 64-bit

register KDTreeNode node = m_root;
// ADRINT is int or __int64 (32/64-bit architectures)

ADRINT newadr = &node;
traverse_loop:

while (NOTLEAF(node)){

 //get dimension, traversal order, etc

 const ADRINT adr0 = newadr+…;//front child

 const ADRINT adr1 = newadr+…;//back child

 //traverse of either back/front child or both

 //…

}

//processing leaves

if(node.items >0){

 //...

}

#ifndef _M_X64

else if(IS_64BIT_EXT(node)){

//64-bit extensions processing:

//newadr is patched using relocation table

 DECODE64BIT_EXT(node, newadr);

 goto traverse_loop; //another option is to duplicate

traversal/leaf- processing code here

 }

#endif// _M_X64

WSCG 2010 Poster papers 56

	!_Posters.pdf
	E67-full.pdf
	F71-full.pdf
	G13-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. PREVIOUS WORK
	3. SOLUTION
	 Efficient leaf/node test
	32 and 64 bit efficiency
	Multi-threaded construction
	Modifications of traversal algorithm

	4. Performance impact
	Future Work
	6. REFERENCES

	!_Posters-contents.pdf

