PRE-PROCESSING OF CAR GEOMETRY DATA FOR
CRASH SIMULATION AND VISUALIZATION

N. Frisch, D. Rose, O. Sommer, T. Ertl

Visualization and Interactive Systems Group
Department of Computer Science
University of Stuttgart
Breitwiesenstr. 20-22
70565 Stuttgart, Germany
http://wwwvis. informatik.uni-stuttgart.de
{frisch, rose, sommer, ertl}@informatik.uni-stuttgart.de

ABSTRACT

In this paper we focus on a visualization tool for car crash simulations. By means of some
examples we show how various data pre-processing features can facilitate the engineer’s work. For
example, parts can be assembled, replaced, welded, bonded, or deformed. Data pre-processing
within the visualization tool means that some modifications can be done directly on the finite
element mesh which is the input for the crash simulation. Some of the features are new within a
crash visualization environment, and some operations needed new algorithms to be developed: We
present the generation of curved spotweld lines and adhesive bondings along flanges. Further we
show how modern hardware features like textures and alpha blending can be employed for efficient
visualization in the context of data pre-processing. The new features allow crash simulations in
an early development phase, they also allow to test the impact of a potential improvement or
to remove some shortcomings due to mesh generation out of CAD data. Thanks to these new
features, the crash simulation engineer needs no longer to return the model data back to the CAD
department for minor modification and re-meshing.

Keywords: visualization of car crash simulation, finite elements, pre-processing, CAD

1 INTRODUCTION

The increasing pace at which new industrial prod-
ucts are brought to the market requires appropri-
ate software tools. Automotive companies aim to
place new, enhanced car models on the market in
short time, in order to be competitive. Software
has a key role in car development; several software
tools are involved. Regarding car body design,
the passenger’s safety must be considered. Crash
tests are necessary and obligatory. Before per-
forming a real crash test, hundreds of crash wor-
thiness simulations are computed and analyzed.
The number of real tests is reduced to a mini-
mum, saving time and money.

In the car development process, the CAD data
from the construction department are trans-
formed into finite elements, a process called mesh-

ing. Meshing can be thought as a kind of tessel-
lation. Most finite elements are quadrilaterals for
numerical reasons. The mesh is the input for the
finite element solver which computes the crash
simulation. Mesh quality is a precondition for
the correctness of the simulation result. There-
fore, the mesh is verified and corrected if nec-
essary. A prototype named crashViewer was de-
veloped at the University of Stuttgart within the
BMBF! supported AutoBench project. The pro-
totype can be used for improving finite element
meshes as well as for visualizing the crash simu-
lation input and output data, see also [1]. Visual-
izing output data in the so-called post-processing
stage is necessary for analyzing the simulation re-
sults.

IGerman Ministry for Education and Research

The prototype is based on the OpenGL Opti-
mizer [2] high-level graphics API from Silicon
Graphics. It also has a CORBA and Java based
interface for the software integration platform
CAE-Bench as described in [3]. The integration
platform facilitates the control and data exchange
between the different applications involved in car
body development, leading to a significant in-
crease of productivity.

In the last years, a transition took place from
meshing car body as a whole towards indepen-
dent meshing of the car’s components. This tran-
sition required special link elements to be intro-
duced. Linking the car body components with
special elements like spotwelds permits an inde-
pendent meshing of each component. Otherwise,
each component’s mesh would need to match the
neighbouring part’s meshes at the contact ar-
eas. Changing, modifying or adding an assem-
bly part would require to re-mesh the adjacent
car body parts, too. In the past, this often en-
tailed expensive post-processing in the mesh gen-
eration process, especially when the mesh data
descended from inaccurate CAD models (see re-
lated work [4]). The new bonding elements re-
duce these shortcomings and therefore the devel-
opment time.

Based on the crashViewer software, we im-
plemented various new pre-processing features.
These features are useful for making corrections
and improvements to the simulation input deck.
The main pre-processing features we will describe
are the definition and modification of assembly
part connections, like spotwelds and adhesive
bondings. Further, we describe the mesh modifi-
cation with the purpose of penetrations removal
and the efficient visualization of potential flanges.

2 SPOTWELDS
2.1 Setting

Spotwelds are the prevalent link between car
body components. Spotweld information can al-
ready be defined in the CAD data. However, of-
ten additional spotwelds need to be set and some
spotwelds eventually need to be moved or deleted.

The visualization of spotwelds by means of small,
scalable red cuboids has proven good in practice.
Erroneous spotwelds, e.g. spotwelds with miss-
ing or inappropriately positioned assembly parts,
are visualized with different color and/or geom-
etry in function of the error type, see Figure 1.
Since a car contains thousands of spotwelds, it

Figure 1: Various valid and erroneous
spotwelds, visualized as cuboids and dodec-
ahedra.

can be tedious to edit spotwelds one by one. For
this reason, crashViewer provides the facility to
define an entire spotweld line at once, by speci-
fying the start and end point of the line with the
mouse pointer. This generates a set of spotwelds
along a straight line. The spotwelds are equidis-
tantly positioned on this line. If the assembly
part is curved, the straight line is projected onto
the surface to find spotweld positions.

Figure 2: Three curved lines of spotwelds
generated by our algorithm. One assembly
part is rendered as wireframe.

2.2 Curved spotweld lines

Obviously, not all spotweld lines on a car will be
straight, neither can each curved line be achieved
by projection of a straight line onto a car compo-
nent. Therefore, a feature for generating curved
spotweld lines was implemented. A first idea was
to achieve curved lines by means of spline curves.
Three-dimensional spline-curves are hard to posi-
tion exactly on the middle line of the flange. As
spotwelds are usually positioned along flanges, a
flange recognition algorithm was developed. Fig-
ure 2 shows an example application of our algo-
rithm.

In Section 5 we describe an approach for fast vi-
sualization of potential flanges based on distances
between components. The visualization gives the
user a hint where flanges could be, but it is not
an accurate flange detection. Flanges are special
regions on plate components with the purpose of
enhancing the connection between parts by in-
creasing the contact area.

The flange detection algorithm for curved
spotweld lines and bondings is done on a per-
element basis. Each finite element is either a
flange element or not, in function of the distance
and the angle of this element with regard to the
nearest element of the corresponding component.
Distances are computed using the bounding box
hierarchy described in Section 5. Finally, we ob-
serve that flanges have a considerable length but
only a limited width.To achieve a curved spotweld
line, the following steps are performed: first, the
finite elements containing the start and end point
of the desired line are determined. The next task
is finding a shortest element path between those
two. For each element on this path, the left and
right flange borders are sought in order to find
the mid-line. Finally, the spotweld positions on
the mid-line are computed in function of the de-
sired distance between spotwelds. The less trivial

Figure 3: Irregularities like corrugations
make flange detection difficult.

steps are finding the path and detecting the mid-
line. For path finding we adapted an iterative
algorithm from [5] originally designed for graph
traversal. A special goal is to find a path even if
the flange is interrupted by small gaps and cor-
rugations (Figure 3). The gaps and corrugations
can split the flange area and make it impossible
finding a path consisting exclusively of flange ele-
ments. In this case, the path should lead over or
beneath the obstacles. The algorithm performed
good in our tests, with respect to result quality
and computing time. Computing time is not no-
ticeable by the user even for large flanges. The
following pseudo code describes the path finding
procedure:

/*** method findPath **x/

list<Elements>

findPath(start, target) {
Element start, target, element;
fifoQueue<Elements> fifo;
list<Elements> reserve, result;
bool targetReached = false;
fifo.add(start);

while (not targetReached) {
element = fifo.retrieve();
for (all neighbour of element) {
if (element == target) {
targetReached = true;
neighbour.previous = element;
break;
}
if (neighbour.unvisited) {
neighbour.markVisited() ;
// remember the path we came
neighbour.previous = element;
if (neighbour.isFlange)
fifo.add (neighbour) ;
else
reserve.add (neighbour) ;
}
}
if (fifo.isempty)
fifo.consume(reserve) ;
}
// collect saved elements
for (element = target;
element != start;
element = element.previous)
result.append(element) ;
return result;

The algorithm above terminates in linear time
O(N) in function of the number of elements N.
Each element is treated at most once. The search
is a breadth-first search of the finite element
mesh, searching with increasing radius around the
start element. The problem of the small gaps and
corrugations is also solved. When the fifo queue
runs empty, this means we have checked all con-
nected flange elements without reaching the tar-
get. In this case we have to jump over non-flange
elements in order to reach the target. Therefore,
a list of the encountered non-flange elements is
built. The search continues from each of these
non-flange elements when all other possibilities
are exhausted. The shortest path we get in this
case therefore also contains non-flange elements.
These will be properly treated later when deter-
mining the mid-line.

The algorithm just distinguishes between flange
and non-flange elements. A possible alternative
would be to rate the elements in function of their
flange properties. Then, a recursive algorithm
could find all possible paths rated in function
of their length and flange element quality. This
needs exponential time, and seems not being nec-
essary regarding the good results with the iter-
ative algorithm. Once a shortest or best path
has been found, it is necessary to compute the
flange’s mid-line in order to place spotwelds on it
(see Figure 4). Some algorithms for finding mid-

Legend:

R user clicks

@ clement path

middle line
spotweld

D positions

Figure 4: Path and mid-line example

lines of polygons can be found in the literature,
see [6] and the references there. However, none
of them seems to be perfect for our needs, either
because it handles just bitmapped, or just planar
polygons, and they require the conversion of the
finite element mesh into a proper polygon.

Instead, we developed another, more straightfor-
ward approach: For each element of the previ-
ously found path, search the left and right flange
border closest to the current element. Then add
the midpoint between the left and right border
as a new point of the polygon line that will be
the medial axis - or at least a sufficiently close
approximation.

It is not enough to find the two nearest flange
borders. The distance has to be measured on the
flange surface, which is not necessarily a plane.
Furthermore, the nearest two borders do not al-
ways define the mid-line, for example at flange
corners. And last but not least, parts of the path
may run cross to the flange and mid-line direc-
tion. Hence, for each flange element we search
for the border in all directions, i.e. left and right,
forward and backward, add the border distance
of the opposite directions and find the minimum:
Min(left + right, forward + backward).

Since finite elements on flanges are mostly aligned
along flange direction, the minimum above is the
flange width, the maximum would be the flange
length. Problems arise at triangular elements and
at flange corners containing triangular elements,
as these elements introduce irregularities in the
mesh. As these cases are not frequent, we can
skip those regions and interpolate the mid-line.
Also we skip non-flange elements of the previously

found path, since the mid-line there is undefined.
Interpolating such undefined areas with a straight
line gave good results in practice.

3 ADHESIVE BONDING

Another new bonding technique is the usage of
adhesives. In contrast to spotweld lines adhe-
sive bondings are surface links which entails a
completely different way of representation of the
bonding agent. However we kept the user inter-
action as simple as with spotweld lines.

3.1 Visualization of Adhesive Strips

The problem of all contact types is that they are
hardly visible from outside since they naturally
are comparatively small and are placed between
two or more assembly parts. There are three dif-
ferent ways to solve this problem:

Transparent components:
@ bonding agent easy to see
¢ counterpart can be seen
© confusing with lots of bondings due to many
transparent components (substantial argu-
ment against this solution)

Partially transparent components:
@ only in vicinity of bonding agent transparent,
© parameter mapping interferes with trans-
parency

[llustrate bonding by thickened representation:
@ easy locating the bonding agent because it
sticks out of the bonded component’s surface
& to see the bonding surface the representation
needs to be transparent, solution see below

All solutions have in common that they use trans-
parency in any form. In doing so the problem is
a shortcoming in the high level graphics API we
are using: The render action does not sort trans-
parent objects back to front. A workaround for
this problem will be shown below. We have cho-
sen the latter possibility: It minimizes difficulties
with this deficiency and it yields the best clarity
when visualizing many bonding structures.

There are two reasonable ways to thicken adhe-
sive bondings:

1: Constant thickness equal to the maximum al-
lowed distance of the assembly parts.

2: Variable thickness so that the adhesive repre-
sentation barely sticks out of the surfaces of the
two bonded components.

The advantage of the second way is that we might
as well represent the adhesive bond by textures on
the assembly parts stuck together, so we need no
extra geometry. On the other hand we cannot
use 1D parameter textures (Section 5) anymore,
since few workstations support multi-texturing.
The first solution has the benefit that the engi-
neer gets a feedback about the distance of the
assembled parts which finally led to the decision
in favor of the first possibility. There the thicken-
ing is achieved by creating two additional surfaces
shifted along the averaged node normal vectors.

To improve the conspicuousness of the bonding
layer we use a checkerboard look alike texture
alternating opaque white and full transparency.
Through the transparent parts the joined com-
ponents can easily be seen. Unfortunately we
cannot use the alpha test feature of OpenGL [7]
to avoid drawing into the depth buffer as this
may result in a performance problem on some
machines. Therefore, we need a workaround for
the mentioned Cosmo3D transparency problem.
We simply append all bonding related shapes
at the end of the scene graph, even after the
spotweld representations. Thus, it is guaranteed
that spotwelds are visible in combination with ad-
hesive bondings, which happens very often.

Figure 5 shows that we closed the outside of the
adhesive strip so we get a better impression of
the boundaries of the bonding surface which is
the topic of the following section.

Figure 5: Example of an adhesive bonding
in combination with spotwelds

3.2 Detecting Boundaries

The search for the boundaries is based on a sim-
ple algorithm: For each edge we count the num-
ber of conjoint finite elements. In the internal

crashViewer data structure we have already given
the neighbourhood relations of the elements and
we also know the nodes which build up a finite
element. For each adhesive type element we ex-
amine its edges. All edges with two common fi-
nite elements are within the material, all edges
which belong to only one element lie at an outer
boundary (Figure 6). Three or more common el-

1 1
1 2 2
1 1
2
2
2 1
1
/ 2 1
2 2
2
1 1 1
)’

Figure 6: Finding the boundary edges

ements for one edge are also possible, for exam-
ple at T-joints (Figure 7). We call this an inner
boundary and treat it like outer boundaries of all
three (or more) elements. This is both a simple
as obvious solution since we can achieve exactly
the same when using independent bondings. This
is valid since it produces the same numerical re-
sults. Now, we have a list of pairs of node IDs,

|)(3 2 2

Figure 7: Special boundaries, e.g. T-joint

a stack of edges. We must merge them to get a
continuous polygon line, the boundary. Of course
there can be more than one boundary line. At ad-
hesive strips with a hole for example, we get two
boundary lines, an outer one and another one for
the hole (Figure 6).

One can think of the node ID pairs as domino
stones. We start with a random stone and
add matching stones to the ends of the forming
domino queue. If we cannot find matching stones
anymore this boundary line is complete. Because
we have non-manifold surfaces, the two ends of
the queue must match also, we get a closed line
stroke. If we used up all stones (no edges are
left) the job is done. Otherwise we start another
boundary queue with one of the unused ’stones’.

For speed-up purposes we may keep the node
ID pairs sorted in two lists (one for each side)
and do a binary search on them. The algorithm

is fast without this optimization (10 seconds for
about 500 different materials consisting of nearly
200,000 elements on an RS10k at 250 MHz). It
would be a nice feature to reduce the order of
O(n?) to O(n - logy n) (where n is the number of
boundary edges).

3.3 Creation of Adhesive Strips

When creating adhesive strips we use the same
techniques as for spotweld lines. Both, user in-
teraction and internal algorithms are similar or
inherited. The engineer picks one assembly part
and defines the length of the bonding on the sec-
ond component with just three mouse clicks over-
all. The initial width of the adhesive strip is de-
termined by a scalable maximum distance from
the prior mentioned mid-line of the flange. All
elements within that area meeting the flange cri-
teria are used to build up the mid-surface of the
actual bonding agent. Therefore, we project the
eligible nodes of the first on the corresponding el-
ements of the second component. The averaged
coordinates of original and projected nodes define
the mid-surface.

One problem is left: the shape of the adhesive
strip around the start and end point. We need to
find a rule to get a straight termination. Thus,
we take the vector p built from the first two coor-
dinates of the mid-line as initial clue (Figure 8).
Then we project all four (or three) nodes of the

,/’/ ==
D A
,”/ IV [~ -~
A= i
o ¢ B
o

\

Figure 8: Calculation of the limiting planes

nearest element onto this vector. The two nodes
which lie farthest from the mid-line (these have
the smallest dot-products) define the terminat-
ing edge for this element. To obtain a limiting
plane for the whole adhesive strip we simply take
the midpoint of this edge and the center of the
element (average of all four or three node coordi-
nates) to define the normal vector 7 of this lim-
iting plane. In the same manner we specify the
termination of the other end of the bonding strip.

4 INITIAL
DLING

PENETRATION HAN-

By means of the meshing step parametric sur-
faces of the CAD data will be transformed into a
discretized finite element mesh. Since the whole
car body model consists of hundreds of indepen-
dently meshed car body parts, this process may
include ’initial penetrations/perforations’. Fig-
ure 9 points out the initial penetrations as points,
where one discretized surface is closer to another
surface than the specified material thickness (left
and right circle). Areas where elements intersect
each other are called perforations (mid circle).
Initial penetrations will cause initial forces in the
simulation task, and this will falsify the simula-
tion results. Therefore, it is important to detect
and remove initial penetrations during the pre-
processing of the simulation input data deck.

C Part A

perforation
FE mesh

penetration

Figure 9: The assembly of independently
meshed car body parts may cause ’initial
penetrations’ which will influence the sim-
ulation results in an undesirable way. Even
perforations (mid) could occur where the
finite element meshes interpenetrate each
other.

In order to detect those vertices which are po-
sitioned too close to an element of another car
component, the minimal distance of each vertex
to each finite element has to be calculated. This
task can only be efficiently solved by using some
kind of hierarchical substructuring.

Gottschalk et al. [9] presented bounding volume
hierarchy algorithms which have been developed
to enable real-time collision detection. Their
approach compares the effectiveness of different
bounding objects and introduces a fast overlap
test for oriented bounding boxes. Their results
have shown that object oriented bounding boxes
perform better for collision detection than axis-
aligned boxes because they need quite less inter-
ference tests.

Since we have to calculate point-to-polygon dis-
tances, which is cheaper than polygon-to-polygon
tests, we use an axis-aligned bounding box hierar-
chy for the detection of initial penetrations. This

requires less time for the bounding volume tree
generation and saves any transformations of point
coordinates during testing.

First of all we specify the maximum distance of
interest which should be at least as thick as the
maximal car component thickness. In the initial-
ization phase this value is stored as the current
minimal distance. During the test of one vertex
with another sub-mesh, first the distance between
the vertex and the bounding volume is computed.
Only if it is smaller than the currently stored min-
imal distance, the children of the bounding object
will be tested next. A child can be a set of more
bounding volume instances or one or more finite
elements, if the bounding object was a leaf node
in the hierarchy.

During the distance calculation this approach
eliminates nearly all car components except the
direct neighbours at the top level of the bounding
volume hierarchy. Just a small number of tests
are applied until the point is tested on a per ele-
ment basis. There the minimal distance is calcu-
lated by the slightly modified algorithm proposed
by Campagna [8] which considers each projection
case and computes values only if they are needed
for that particular case. For example, the compu-
tation of the minimal point-to-polygon distances
for a car model with more than 600 components
consisting of about 200,000 elements/nodes takes
17 seconds on an SGI R12k at 300MHz. After-
wards, the values are mapped into coordinates
of a one-dimensional texture that is used for dis-
tance visualization [1].

After detecting all initial penetrations
the engineer can mark car parts as
’(un-)modifiable’ before the removal algo-
rithm is started which moves each node of the
modifiable meshes along the calculated force
vector in a number of iterations unless the
initial force is larger than null. The selection
of modifiable car parts is very important for
the replacement of individual components by
variants here, the node coordinates of the
variants should be adopted while the rest of the
car body model stays fixed.

Before detecting and removing any initial pene-
trations all initial perforations have to be elimi-
nated. For the detection of initial perforations,
oriented bounding boxes perform better than
axis-aligned ones because the task is similar to
a collision test. Until now the elimination is done
manually. In future work the nodes of the per-
forating mesh could be projected on the correct
side of the corresponding element. Then, there

exists an initial penetration instead of a perfora-
tion. In a second pass this penetration could be
removed as already described above.

5 FLANGE VISUALIZATION

During the assembly of a simulation input deck
it is important to properly define the constraints
between car parts, for example, with spotwelds
or adhesive bondings. Generally, such contacts
are placed at flanges. Since the simulation mod-
els become more and more complex it is helpful
for the engineer while connecting adjacent compo-
nents to restrict the visualization of the car body
to those flanges. In crashViewer this can be done
interactively without generating new geometry in
the underlying scene graph API.

After the minimal point-to-closest-element dis-
tance has been computed for each mesh node,
a previously specified distance range is mapped
into the texture coordinate range [0.0,1.0]. If
these coordinates are used together with a one-
dimensional (RGB)a-texture map and the alpha
test is employed, the visibility of geometry is in-
fluenced in correspondence to the mapped param-
eters. Additionally, modern graphics hardware
supports efficient, transfer functions by means of
texture color lookup tables. So if we map the
distance values into indices of such a table, the
visibility of geometry can be controlled interac-
tively by modifying the transfer function of the
a-channel. Now, it depends on the texture en-
vironment settings: GL_DECAL restricts the col-
ored distance visualization to those areas where
the entry of the alpha-channel pass the alpha test
(Figure 10, mid). GL_.MODULATE allows the re-
striction of geometry rendering to those regions.
(Figure 10, right)

If the user has found a satisfying threshold and
wants to restrict the rendering to the correspond-
ing regions, crashViewer determines which nodes
of the finite element mesh fulfill the specified
range limitation. Then an indexed geometry is
generated that includes all elements which refer-
ence at least one of those nodes. The indexed
geometry is used to share the coordinate set with
the original scene graph in order to minimize
memory allocation.

6 CONCLUSIONS

We introduced a set of techniques which reduces
the workflow paths in the car development pro-
cess. The switch to independently meshed car

Figure 10: These images show parts of the back compartment of a car. The illustration in the
middle visualizes the minimum distance from each node to the closest surface of another car body
part up to 50 mm. On the right the same values are mapped to hide all geometry where this distance
is more than 2 mm using the texture subsystem and the alpha test. The rendered geometry show
potential flanges.

body parts required efficient algorithms for the
interactive definition, modification, and deletion
of assembly part connections like spotwelds and
adhesive bondings. The presented visualization of
such constraints and the rendering restriction to
potential flanges supports the engineer in the pre-
processing step. Furthermore, the algorithms for
the detection and the controlled removal of initial
penetrations allow the testing of multiple com-
ponent variants. The described tools have been
developed in cooperation with the BMW Group
and some of them are in productive use at the
crash simulation department.

REFERENCES

[1] O. Sommer, T. Ertl: Geometry and Ren-
dering Optimizations for the Interactive
Visualization of Crash-Worthiness Simula-
tions, in Proc. of SPIE: Visual Data Ex-
ploration and Analysis VII, vol.3960, pp.
124-134, January 2000.

[2] Silicon Graphics, Inc.: OpenGL Opti-

mizer Programmer’s Guide: An Open
API for Large-Model Visualization,
at http://www.sgi.com/software/

optimizer/tech_info.html

[3] N.Frisch, T.Ertl: Embedding Visualiza-
tion Software into a Simulation Environ-
ment, in Proceedings of the Spring Confer-
ence on Computer Graphics, pp. 105-113,
Bratislava, 2000

[4] G.Barequet, S.Kumar: Repairing CAD
Models, in IEEE Visualization 97 Con-

[5]

[8]

ference Proceedings, pages 363 370, IEEE
Computer Society Press

R. Sedgewick: Algorithms in C++, Parts
1-4, Addison-Wesley 1998.

F. Chin, J. Snoeyink, and C. A. Wang;:
Finding the Medial Axis of a Simple Poly-
gon in Linear Time, Proc. 6th Ann.
Int. Symp. Algorithms and Computation
(ISAAC 95), Lecture Notes in Computer
Science 1004, pp. 382-391, 1995.

R. Kempf, Ch. Frazier: OpenGL Reference
Manual, second ed., Addison-Wesley, 1998.

Swen Campagna: Polygonreduktion zur
effizienten Speicherung, Ubertragung und
Darstellung komplezer polygonaler Mod-
elle, PhD thesis, University of Erlangen-
Nuremberg, Germany, 1998.

Stefan Gottschalk, Ming Lin, and Dinesh
Manocha: OBB-Tree: A hierarchical struc-
ture for rapid interference detection, in
Holly Rushmeier, editor, SIGGRAPH 96
Conference Proceedings, Annual Confer-
ence Series, pages 171 180. ACM SIG-
GRAPH, Addison Wesley, August 1996,
held in New Orleans, Louisiana, 04-09 Au-
gust 1996.

