AN IMPROVED REFINEMENT AND DECIMATION
METHOD FOR ADAPTIVE
TERRAIN SURFACE APPROXIMATION

Hélio Pedrini

Universidade Federal do Parana
Departamento de Informatica
Curitiba-PR, Brazil, 81531-990
helio@inf.ufpr.br

ABSTRACT

An improved method for adaptively constructing a terrain surface representation from a set of data points
is presented. Refinement and decimation steps are repeatedly applied to triangular meshes, incrementally
determining a better distribution of the data points, while a specified error tolerance is preserved. Even
though not asymptotically optimal or monotonically convergent, it produces approximations that are, ex-
perimentally, significantly better than those generated by straightforward greedy insertion algorithms.

A new local error metric is used to select points to be inserted into the triangulation, based on the maxi-
mum vertical error weighted by the standard deviation calculated in a neighborhood of the candidate point.
Conversely, a measure of angle between surface normals is used to determine whether a vertex should be
removed from the triangulation. The method has been implemented and tested on both synthetic test cases

and real terrain data sets.
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1 INTRODUCTION

The approximation of a bivariate function from a set
of data points occurs in a number of applications, such
as computer-aided design, computer vision, computer
graphics, finite element methods, and terrain model-
ing. In many of these applications, the surface rep-
resentation can be generally viewed as a 2%- dimen-
sional modeling problem, where a bivariate function
2z = f(=z,y) expresses the elevation z of the surface at
a point (z, y) of the Euclidean plane. Therefore, any
line parallel to z axis penetrates the surface at most
once.

In terrain modeling, our major interest, a common
method for approximating topographic surfaces is to
use regular grid digital elevation models (DEMs), in
which a set of sampled points representing measures
of altitude or elevation are stored at regular intervals.
A disadvantage of the DEM is its inherent spatial in-
variability, since the structure is not adaptive to the
irregularity of the terrain. This may produce a large
amount of data redundancy, especially where the to-

pographic information is minimal.

Alternatively, triangulated irregular networks (TINs)
represent the terrain surface as a mesh of adjacent tri-
angles, whose vertices are the elevation points. The
points need not lie in any particular pattern and the
density may vary over space. There are many ad-
vantages associated with TINs. First, terrain data are
commonly irregularly distributed in space, therefore,
the structure of the triangulation can be adjusted to
reflect the density of the data. Consequently, cells be-
come larger where data are sparse, and smaller where
data are dense. Second, terrain features can be in-
corporated into the model. For instance, vertices in a
TIN can describe nodal terrain features such as peaks,
pits or passes, while edges can represent linear terrain
features such as break, ridge or channel lines. Third,
TINs can be organized into a hierarchical model so
that they can represent a terrain in various levels of
detail. Finally, triangles are simple geometric objects
which can be easily manipulated and rendered.

The triangulation of a set of data points in the plane



can be defined in terms of a planar graph in which
pairs of vertices are connected by edges intersected
only at their endpoints, forming triangular faces. The
topology of the triangulation can be generally cho-
sen either using only the xy projections of the data
points or using the elevations of the points as well.
The latter approach is called data-dependent triangu-
lation [Dyn90, Quak90]. The most common triangu-
lation method that uses only the xy projections is the
Delaunay triangulation. The Delaunay triangulation
has the property that the circumcircle of any triangle
in the triangulation contains no other data points in its
interior, known as circle property. The Delaunay tri-
angulation generates the triangulation that maximizes
the minimum angle of all triangles. This property is
known as max-min angle property. In a Delaunay tri-
angulation, most of its triangles are nearly equiangu-
lar, which helps to minimize the occurrence of thin
and long triangles since they can lead to undesirable
behavior, affecting numerical stability and producing
visual artifacts. Another interesting property is that
Delaunay triangles define nearest natural neighbors
in the sense that the data points at the vertices are
closer to their circumcenter than is any other data
point. These circumcenters are the positions of ver-
tices in the geometrically dual Voronoi diagram, also
known as Dirichlet, Thiessen or Wigner-Seitz tessel-
lation. Other criteria can be used to construct triangu-
lations, for instance, the minimum weight triangula-
tion (MWT) is a triangulation that minimizes the sum
of the lengths of all the edges.

Most triangulation methods produce poor approxima-
tions in regions of discontinuity or poor vertex selec-
tion in the presence of noise. This occurs because
there is no obvious strategy for determining the opti-
mal vertex locations in advance, and vertices inserted
(or deleted) early in the refinement (or decimation)
process may later become unnecessary by better ver-
tices. Since the insertion of additional vertices can re-
sult in a nonsmoooth surface approximation or in an
inadequate data distribution, an approach that might
be useful is to alternate refinement and decimation
steps, inserting several vertices with an incremental
triangulation algorithm, and then removing a few ver-
tices that appear the least important.

An example caused by the short-sightedness of most
incremental triangulation algorithms is given by Gar-
land and Heckbert [Garla95], where the object to be
approximated contains a step discontinuity or cliff
(Figure 1). The left half of the grid has constant height
0 and the right half has constant height 1. From a
100x 100 grid, 99 vertices were selected to achieve
zero error. Since only 8 vertices suffice, the triangula-
tion algorithm generated several unnecessary vertices.

Agarwal and Suri [Agarw94] prove that the problem

Figure 1: Redundant triangulation generated by incremental
triangulation algorithm. Figure adapted from Garland and
Heckbert (1995).

of approximating surfaces while minimizing the num-
ber of vertices for a given accuracy is NP-hard. Prac-
tical solutions found in the literature are often based
on heuristics that attempt to produce an approximate
model by either iteratively adding new vertices to
a coarse triangulation or iteratively removing points
from an initial triangulation built over the entire data
set.

This paper presents a method for adaptively approxi-
mating surfaces through repeated refinement and dec-
imation passes, providing higher quality triangula-
tions with great flexibility. The method, analogous in
some aspects to other approximation techniques such
as stepwise linear regression techniques, incremen-
tally improves the triangulation by determining a bet-
ter distribution of the data points, while maintaining
a specified error tolerance. Although the method is
not necessarily optimal or monotonically convergent,
it produces approximations that are significantly bet-
ter than those generated by straightforward greedy in-
sertion algorithms. A Delaunay triangulation is used
to create the sequence of triangulations whose ver-
tices lie at a subset of the data points. Section 2
reviews the main methods for simplifying polygonal
surfaces. Section 3 describes our new model, which
generates a sequence of triangulations based on a set
of refinement and decimation operations. In Section
4, some experimental results are presented and dis-
cussed. Section 5 concludes with some final remarks
and directions for future research.

2 RELATED WORK

Although many surface representations have been
proposed in the literature, polygonal surfaces are
the most common choice for representing three-
dimensional data sets in computer graphics, scientific
visualization, digital terrain, modeling, planetary



exploration, rapid prototyping, and computer-aided
design. Polygonal surface data are widely available
and supported by the vast majority of modeling and
rendering packages. Hardware support for polygon
rendering is also becoming more popular.

Most polygonal surface representation methods found
in the literature can be classified as refinement and
decimation methods. Refinement methods start with
a minimal initial approximation of the surface and
repeatedly add new points to the triangulation until
the model satisfies a specified approximation crite-
rion. Decimation methods start with a triangulation
containing the entire set of data points and iteratively
simplify it, until the desired approximation criterion
is achieved.

The concept of multiresolution modeling is generally
associated with the possibility of representing a ge-
ometric object at different levels of detail [Linds96]
and accuracy. For a given application, a coarse repre-
sentation can be used to describe less relevant areas,
while high resolution can be focused on specific parts
of interest.

Several surface simplification approaches [Cohen96,
Hoppe93, Hoppe96, Schro92, Turk92] have been
proposed in recent years, a survey of the relevant
work is this field is given by Heckbert and Gar-
land [Heckb97]. Our focus here is on those methods
that are more related to simplification of height fields.

3 NEW METHOD

We propose a new method for adaptively approximat-
ing terrain surfaces through repeated refinement and
decimation passes, incrementally determining a better
distribution of the data points, while a specified error
tolerance is preserved. Initially, a minimal approxi-
mation consisting of two triangles is constructed. This
mesh is then incrementally refined until either a spec-
ified error is achieved or a given number of points is
reached. Once the desired level of accuracy has been
satisfied, the approximation is simplified by eliminat-
ing a small number of points based on a vertex re-
moval criterion. Finally, the approximation is again
refined to the given error tolerance and partially res-
implified. This alternate refinement and decimation
process is repeated until no further improvement in
the accuracy of the approximation can be achieved.

As described above, the first step of our method is
to generate a coarse piecewise linear approximation
of the surface according to a predefined error toler-
ance. This initial triangulation is then refined by iter-
atively adding new points, updating it after each point

is inserted. The Delaunay triangulation is used to in-
crementally construct the mesh from a large number
of points, reducing the occurrence of thin and long
triangles since they can lead to undesirable behavior,
affecting numerical stability and producing visual ar-
tifacts.

The vertex selection criterion is crucial during the tri-
angulation process since it determines the degree of
fidelity between the original data and the approxima-
tion. The magnitude of the error can be estimated by
using the L,, function norm, defined as

Ln(¢) = ll¢lln = ’\L/L |¢(z,y)|["dedy (1)

where ¢ is a function defined over domain ®.

When used to characterize the error of an approxi-
mation, ¢(z,y) represents the difference between the
original and approximate surface. The norm can be
computed over a limited region to estimate local er-
ror or over the entire domain to measure global error.
Global error measures usually produce better approx-
imations, however, the resulting algorithms are sig-
nificantly slower than those using local metrics. The
most commonly used norms are the Ly, Lo, and Ly,
norms. The L; norm of the approximation error, €,
corresponds to the volume between the surfaces. The
Ly norm provides a measure of the average root mean
square (RMS) error between the original and the ap-
proximation. Another common measure is based on
the maximum difference between the actual elevation
data and the surface approximation (Figure 2), known
as L., norm.

Figure 2: Maximum vertical error.

A variation to the conventional maximum vertical er-
ror measure is proposed as the vertex selection cri-
terion, which is based on the maximum vertical er-
ror weighted by the standard deviation calculated in a
neighborhood of the candidate point, given by

h(p) — 2(p)

¢= a(p)

)

where h(p) is the height value of point p, z(p) is the
height value of the interpolated surface at point p, and



o(p) is the standard deviation calculated in a 3x3
neighborhood of the candidate point p.

The idea is to associate greater importance to the
points in regions where the local variability of the
data is high, allowing the surface to conform to the lo-
cal trends in the data. Our experiments have demon-
strated that this vertex selection criterion is slightly
superior to the vertical error measure. In other words,
to minimize the maximum error, it is better not to re-
fine the triangle with the maximum error, but rather to
refine triangles where the curvature is high.

A priority queue stores the sequence of vertices used
to refine the triangulation, ordered by increasing ap-
proximation error. For each refinement step, only
those vertices affected by the insertion process need
to have their approximation error recalculated.

Since this strategy for determining the vertex loca-
tions is based on a local heuristic, suboptimal inser-
tions can eventually be performed by the refinement
process. The approach proposed to deal with this
problem is to identify and remove those points that
may have become unnecessary by later insertions.

A decimation algorithm is then defined to produce a
sequence of triangulations through a set of vertex re-
moval operations. At each iteration, the vertex with
the smallest error is removed and the area affected by
its removal is retriangulated. This process is repeated
until a specified error tolerance is achieved.

The criterion for removing a vertex v is computed by
averaging the surface normals n; of the triangles sur-
rounding v weighted with their areas A; (see Figure 3)
and taking the maximum angle, ayax, between the
averaged normal, n, and the surrounding triangles,
that is
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Figure 3: Criterion for vertex removal.

The area around the removed point is retriangulated,
which requires careful consideration, in particular

when such area is not a convex polygon. The edges
that form the triangulation of the polygon surround-
ing the vertex v must be checked to determine if they
do not intersect one another. Figure 4, for instance,
illustrates an invalid retriangulation.

Figure 4: An invalid retriangulation.

Similarly to the refinement algorithm, for each ver-
tex affected by the local retriangulation, the approxi-
mation error is recalculated and stored in the priority
queue. The algorithm stops when the smallest retri-
angulation error of a vertex becomes larger than error
tolerance e.

Another important aspect of our method is that a pri-
ori information about topographic characteristics of
the terrain can be incorporated into the triangulation.
This information can describe nodal features (such as
peaks, pits, or passes) and linear features (such as
ridges, rivers, roads, channels, or cliffs). These nodal
and linear features are inserted in the triangulation as
constrained vertices and edges, respectively, in a such
way that subsequent operations will preserve them.

Heller [Helle90] describes an algorithm where linear
features (breaklines) are inserted in an existing trian-
gulation. The reorganization of the mesh to adjust
such breaklines, however, produces regions of long
and thin triangles.

In our approach, the constraints are included as the
first elements of the triangulation, then reducing the
number of edge swaps necessary to update the mesh
each time a new breakline needs to be inserted.
Breaklines are positioned along the edges of triangles,
which is another surface behavior that cannot be eas-
ily handled by grid-based methods. Additionally, new
points can be added on the constrained edges to guar-
antee that the final triangulation satisfies the Delaunay
criterion.

The sequence of local modifications generated dur-
ing the refinement and decimation steps is applied
to a triangulation until no further improvement in
the accuracy of the approximation can be achieved.
The repeated application of these steps can be viewed
through the diagram shown in Figure 5.

Pseudocodes for the refinement and decimation steps
are presented in Figures 6 and 7, respectively.
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Figure 5: Refinement and decimation steps.

// refinement process
construct initial triangulation using
domain boundary;
if 3 constrained vertices and edges
include them in the triangulation;
compute approximation error for each vertex;
while (maximum error > error tolerance €) {
find vertex v with maximum error;
insert w;
update triangulation;
recompute error for vertices affected
by the local update;

o+~

Figure 6: Pseudocode for refinement step.

The extraction of a representation of the terrain at a
given tolerance level is obtained by using a coarse tri-
angulation and iteratively inserting vertices into the
triangulation until the desired precision is satisfied. If
a given triangulation already guarantees a smaller er-
ror tolerance, then vertices are removed from the tri-
angulation, starting with the vertex with the smallest
error.

4 EXPERIMENTAL RESULTS

Our combined refinement and decimation method has
been tested on a number of data sets in order to il-
lustrate its performance. Due to space limitations,
only one sample is presented here. The algorithms
were implemented in C++ programming language on
UNIX platform.

Figure 8 shows the digital elevation model of Crater
Lake, where elevations range from 1533m and
2478m, standard deviation of 162.6m, and 30- by
30-meter data spacing. The sample consists of
336x459 elevation points.

Figures 9a-b show approximations obtained by apply-
ing our method and a greedy insertion algorithm, re-
spectively, to the Crater Lake DEM. The triangulation
produced by our method has 126 vertices and 230 tri-
angles, whereas the other triangulation contains 140
vertices and 263 triangles. The corresponding root
mean square error (RMSE) for both approximations
is 29m. Figure 10 shows an approximation for the

// decimation process
while (maximum error < error tolerance €) {
find vertex v with minimum error;

find vertices w; = wi,...,w, adjacent to wv;
if v satisfies decimation criteria {
remove v;

delete all triangles connected to wv;
retriangulate polygon defined by
vertices w;;

recompute error for each w;;

modify list of vertices;

=~

Figure 7: Pseudocode for decimation step.

Figure 8: The USGS Crater Lake West DEM.

digital elevation model of Crater Lake using 5.0% of
the original points.

Our method has also been tested on several other ter-
rain data sets, including non-terrestrial terrains. The
results have demonstrated a good balance between
speed and ability to process large terrain data sets.
In the refinement step, the algorithm is able to se-
lect 55,000 points in approximately 60 seconds (mea-
sured on an SGI O2 workstation (IRIX 6.5, R5000
with a 200MHz MIPS processor and 64 Mbytes of
main memory).

5 CONCLUSIONS

We have described a method for the simplification
of triangulations approximating a bivariate function.
The simplification of the triangulation is performed
by a hybrid refinement and decimation approach. A
new local error metric is used to select points to be
inserted into the triangulation, which is based on the
maximum vertical error weighted by the standard de-
viation calculated in a neighborhood of the candidate
point. Conversely, a measure of angle between sur-
face normals is used to determine whether a vertex
should be removed from the triangulation. Our com-
bined refinement/decimation method produces locally
optimal approximations, which are significantly bet-



Figure 9: Approximations of Crater LLake DEM constructed by using (a) our combined refinement/decimation method (230

triangles) and (b) greedy insertion algorithm (263 triangles).

ter than those generated by greedy insertion algo-
rithms.

Some ideas for future research include the use of more
sophisticated techniques for evaluating the accuracy
of the approximation, which can incorporate relevant
features of the objects. In the context of terrain mod-
eling, for instance, ridge lines, valley lines, measures
of visibility [Frank94], or drainage networks [Yu96]
might be used to guide the triangulation process. In-
deed, preservation of these properties in the approxi-
mated surface is more important than just minimizing
the maximum error.

Finally, superior quality representations can be ob-
tained by constructing a curved approximation of the
original triangulation through higher-order approxi-
mating surfaces, instead of piecewise-planar subdivi-
sions. It’s possible that merely fitting a C! spline to
the existing triangulation might tend to reduce the er-
ror, even though it adds no information. Additional
work is needed to establish practical merits of such
techniques, particularly in cartographic applications.
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