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ABSTRACT 
 

This paper presents a fast disparity analysis approach based on a hybrid block- and pixel-recursive 
matching scheme. The key idea is to choose efficiently a small number of candidate vectors in order to 
reduce the computational effort by simultaneously achieving spatial and temporal consistency in the 
resulting disparity map. The latter aspect is very important for 3D videoconferencing applications, where 
novel views of the conferee have to be synthesised in order to provide motion parallax. For this 
application a processing of video in ITU-Rec. 601 resolution is required. Our algorithm is able to provide 
dense disparity vector fields for both directions (left-to-right and right-to-left) in real-time at one Pentium 
III, 800 MHz processor in reasonable quality.  
 
Keywords: disparity analysis, recursive block-matching, pixel-recursive matching, real-time, epipolar 
geometry, rectification. 
 
 
 

1. INTRODUCTION 
 
Due to the fast progress in display and processor 
technology as well as in leading-edge signal 
processing related to computer vision and video 
coding, immersive tele-presence systems, which are 
known for some time from the experimental 
laboratories, become more and more applicable at 
reasonable costs for daily use in tele-communication. 
The crown jewels of this evolution are immersive 
tele-conferencing systems where conferees can meet 
in a shared virtual environment under similar 
conditions as in the real world [Schäfer00]. Here, 
immersive tele-presence means that the conferees 
will have the impression of being immersed in a 
virtual meeting room, sitting around a shared virtual 
table next to each other, and collaborating in the 
most effective and natural manner (see Figure 1).  
 

To achieve this goal, 3D images of the 
conferees are captured and positioned consistently 
around the shared virtual table as shown in Fig. 2 
(top).  

 
 

Vision of immersive tele-conference 
Figure 1 

 
This virtual 3D scene is then rendered onto 

the 2D display of the terminal by using a virtual 
camera. The position of the virtual camera coincides 
with the current position of the conferee's head. For 
this purpose the head position is permanently 
registered by a head tracker and the virtual camera is 
moved with the head. Thus, supposing that all 
geometrical relations of capturing, compositing and 
rendering are well fitted, it is ensured that all 
conferees always see the scene under the same 



 

 

realistic conditions, especially while changing 
knowingly the view in order to watch the scene from 
another perspective, to look behind objects or to 
look at a previously occluded object - an aspect 
which is called parallax viewing and which is one 
main key issue of immersive tele-presence.  

  

 
 

Virtual Camera 

 
 

3D capturing (top) and rendering (bottom) for  
immersive tele-conference systems  

Figure 2 
 

To generate realistic 3D video objects, the 
conferees are captured by a multi-view camera set-up 
and disparities, which represent the depth of the 
video objects, are estimated between corresponding 
images. The virtual views can then be synthesised on 
the basis of disparity vector fields. A lot of disparity 
estimation algorithms have been proposed for this 
purpose in context with stereo applications. 
Historically, we can distinguish between two 
different methods, hierarchical block matching 
[Faugeras93] and optical flow algorithms 
[Barron94]. While block matching usually generates 
sparse disparity vector fields on block basis, using 
the minimisation of a certain cost function as a 
matching criterion, the optical-flow principle 
exploits the continuity between spatial gradients and 
differences of intensities between corresponding 
pixels in the two images. It usually produces dense 
vector fields. 

 
However, most of these approaches do not 

meet the requirements of the immersive tele-
conference scenario. This is mainly because of the 
following three reasons. First of all, the algorithms 
must be able to process full resolution video 
according to ITU-Rec. 601 in real-time - most 
desirable as pure software solution running on 
available processors without any support from 
dedicated hardware. Secondly, the disparity 

estimator should provide dense vector fields of high 
accuracy in order to guarantee a virtual view 
synthesis of adequate quality. And - last but not least 
- immersive tele-conference systems obviously have 
to use strongly convergent camera configurations 
due to the large size of immersive displays and the 
short distance between conferee and display. 
Therefore, real-time algorithms, known from 
literature and optimised for the simplified geometry 
of parallel or weakly convergent cameras 
[Bertozzi98], [Ohm98], can not be utilised for this 
application scenario. 

 
To overcome these shortcomings, a new fast 

disparity estimator (FDE) which meets the above 
requirements is presented in this paper. It is based on 
a hybrid recursive matching algorithm which has 
already been applied successfully to fast motion 
estimation in format conversion and MPEG coding 
[Ohm97],[Smolic98],[Kauff00]. The main idea of 
this baseline algorithm is to unite the advantages of 
block-recursive matching and pixel-recursive optical 
flow estimation in one common scheme, leading to a 
fast hybrid recursive estimation algorithm, which 
will be explained in more detail in the next sections. 
To utilise this baseline algorithm for disparity 
estimation and to exploit the well-known epipolar 
constraint of stereo application in this context, the 
algorithm has been modified in such a way that it is 
able to search correspondences along epipolar lines. 
Alternatively, it can be used in combination with a 
preceding rectification which generates parallel 
views by applying a 2D transform to the convergent 
views [Fusiello97],[Robert97],[Schreer00].  

 
In the next paragraph, we briefly review the 

epipolar geometry and the process of rectification. A 
short description of the new FDE algorithm follows. 
Then, we explain the details of the FDE algorithm 
such as block- and pixel-recursion as well as post-
processing. Finally, experimental results will be 
presented and discussed. 
 
2. REVIEW ON EPIPOLAR GEOMETRY 
 
Starting from a 3D point M and its projections m1 
and m2  onto the two image planes I1 and I2 of a 
stereo rig, the epipolar geometry tells us that the 
optical ray passing through m1 and M is mapped 
onto a corresponding epipolar line l2 in I2  and that 
therefore m2 must lie on l2 if it is visible and not 
occluded in the second view (see Figure 3). Vice 
versa - m1 necessarily lies on the complementary 
epipolar line l1. This basic relation is described by 
the well-known epipolar equation where F denotes 
the fundamental matrix [Zhang96]. 
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Hence, the matching of corresponding 
points m1 and m2 can always be reduced to a 1-
dimensional search along epipolar lines which are 
calculated as follows for each of the two available 
views: 
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Supposing a general stereo set-up with 
strongly convergent cameras, the 1-dimensional 
search can be implemented in a twofold manner 
[Schreer00]. The first procedure is a 1-step solution 
where the 1-dimensional search is directly carried 
out along arbitrarily oriented epipolar lines. The 
second one is a 2-step solution where both cameras 
are at first virtually rotated until they would 
represent a system with parallel stereo geometry. 
This pre-processing step is called rectification and 
generates pre-warped images with horizontal 
epipolar lines. Hence, point correspondences in the 
rectifying image planes can be searched along 
horizontal scan lines (see m1R and m2R in Figure 3). 
This clearly simplifies the implementation of the 1-
dimensional search algorithm, but it also costs some 
extra computational load for the rectification itself.  
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Epipolar geometry and rectified image planes 

Figure 3 
 

The image warping process representing the 
virtual camera rotation of rectification requires the 
derivation of two transformation matrices T1 and T2 
from the camera geometry. To obtain these 
transformation matrices, a number of supplementary 
conditions are defined, leading to an unique solution 
of a homogenous system of equations [Fusiello97], 
[Robert97]. The resulting matrices can then be used 
to transform each pixel of the original view into a 
point in the rectified view. 
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Figure 4 shows an example for this 
rectification process. The two top images depict the 
two original views of a strongly convergent camera 
set-up which fits into the tele-conference scenario 

sketched in Figure 2 (cameras in right and middle 
position). The corresponding images of the rectified 
views are shown at the bottom.  

 

  
 

     
 

Original (top) and rectified (bottom, down-scaled) 
views of a strongly convergent camera set-up 

Figure 4 
 
3. OUTLINE OF THE FDE ALGORITHM 
 
The main idea of the FDE algorithm is to use 
neighboured spatial/temporal candidates as input for 
a block-recursive disparity estimation. It is motivated 
by the assumption that most likely at least one of 
these candidate vectors will provide a good predictor 
or even the correct value for disparity at the current 
pixel-position. Apart from a considerable reduction 
of computational load this method also leads to 
spatio-temporally consistent disparity vector fields. 
The second aspect is that it is particularly important 
to avoid temporal inconsistencies in disparity 
sequences, which may cause strongly visible and 
very annoying artefacts in virtual views synthesised 
on the basis of these disparities. However, taking 
into account the case that none of the candidates 
delivers a suitable vector, a further update vector is 
tested against the best candidate. This update vector 
is computed by applying a local pixel-recursive 
process to the current block. It uses the best 
candidate of block-recursion as a start vector. As 
shown in Figure 5, the whole algorithm can be 
divided into the following three stages:  

1. Three candidate vectors (two spatial and one 
temporal) are evaluated for the current block 
position by using recursive block matching. 

2. The candidate vector with the best result is 
chosen as the start vector for the pixel-recursive 
algorithm which yields an update vector. 

3. The final vector is obtained by comparing the 
update vector from the pixel recursive stage with 
the start vector from the block-recursive one. 
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Outline of the fast hybrid recursive  

disparity estimator 
Figure 5 

 
Further details are described in the 

following sections. 
 
4. BLOCK-RECURSION 
 
The block recursion is performed in spatial and 
temporal direction on the grid of a sparse disparity 
vector field - usually with block sizes of 8x8 or 4x4 
pixels. To determine the spatial candidate vectors in 
the most isotropic way, the video frames are scanned 
in two interleaved meander paths changing their 
order from frame to frame. Moreover, as the FDE 
algorithm is able to cope with arbitrarily shaped 
video objects (e.g.: the segmented portrayal of a 
conferee to be integrated seamlessly into a virtual 
conference room), the interleaved meander is 
adapted to the binary shape of the video object. In 
even frames the first run scans the grid in meanders 
from top to bottom at odd lines and, then, in the 
second run in meanders from bottom to top at even 
lines. Vice versa, in odd frames the scan starts with 
bottom-to-top followed by top-to-bottom. Intensive 
experiments have proven that this alternating and 
interleaved meander scan path lead to a better (i.e. 
faster) convergence of disparity estimation, 
especially at moving edges where depth 
discontinuities and occlusions occur. The complete 
scanning scheme is shown in Figure 6 (solid and 
dashed scan lines refer to first and second run). 

 

   
Meander scan for arbitrarily shaped video  

objects (left: even frames; right: odd frames) 
Figure 6 

 
Following this scan path, three candidates 

are tested to select the best one for the current block-
vector position (see Figure 7):  

• A vertical predecessor, which is chosen from 
the block above or below, depending on whether 

the vertical scan-direction is top-to-bottom or 
bottom-to-top. 

• A horizontal predecessor, which is taken from 
the left- or the right-neighboured block, 
depending on the current horizontal scan 
direction of the meander. 

• A temporal predecessor, which is taken from 
the previous reference frame. 
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Spatial and temporal candidates for left and right 

scan directions in the case of a top-to-bottom scan (a 
and b) and a bottom-to-top scan (c and d) 

Figure 7 
 
The three candidates from Figure 7 are 

compared to find the best match between the current 
pixel position in the left image and the 
corresponding pixel position in the right image. The 
following shape-driven displaced block difference 
(DBD) using absolute values is taken as criterion for 
this purpose. For boundary blocks it may happen that 
some of the three candidate vectors are not available 
because they are out of the binary mask of the 
current or previous video object. In addition, some 
candidate vectors may not be usable because they 
point to transparent blocks outside the binary mask. 
In both cases only valid predecessors are used. If all 
three predecessors are non-valid, the output vector of 
block-recursion is set to a default value. 
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Notice that no local search around the 

candidate vector is applied in the block-recursive 



 

 

stage. Thus, if the block-recursive stage is used alone 
without any other matching technique, the "best 
match vector" would always be chosen from the 
same triple of candidates. This condition is not bad 
as long as the algorithm works in an area with 
homogeneous or spatio-temporally consistent 
disparities. However, it fails as soon as the matcher 
has to cope with changes or discontinuities in the 
disparity map. Therefore, to be able to escape from 
the candidate triple in such a situation, the output of 
the block-recursive stage ("start vector" in Figure 5) 
has to be updated permanently. This update of the 
start vector is delivered by the pixel-recursive stage 
which is explained in more detail in the next section.  
 
5. PIXEL-RECURSION 
 
Pixel-recursive disparity estimation is a low-complex 
method to calculate dense displacement fields using 
the optical-flow principle. Following this principle, 
the update vector is calculated with respect to spatial 
gradients in the current frame and the displaced 
difference given by corresponding points in the left 
and the right image. The displaced pixel difference 
(DPD) computation is dependent on an initial 
displacement vector di . The updated displacement 
vector d is obtained as follows:  
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where ε describes a so-called convergence factor. 
 

Strictly speaking, eq. (6) has to be 
performed iteratively until a minimum DPD is 
reached while using the output of the previous 
iteration step as initial displacement vector for the 
next one. However, as the pixel-recursive stage is 
only used for finding an update vector, the following 
approximation is applied here 
 

[ ]Tyxii uuyxDPDyx ,),,(),( ⋅−= ddd   (7) 

with 



















Θ<
=
















Θ<
=

−

−

else
y

yxf
y

yxfif
u

else
x

yxf
x

yxfif
u

y

x

,),(

),(,0

,),(

),(,0

1

1

δ
δ

δ
δ

δ
δ

δ
δ

      (8) 

and 

2
)1,()1,(),(

2
),1(),1(),(

−−+≈
∂

∂

−−+≈
∂

∂

yxfyxf
y

yxf

yxfyxf
x

yxf

    (9) 

 
Experiments have shown that there is no 

notable difference between the original optical flow 
relation from eq. (6) and its approximation in eq. (7). 
The threshold value in eq. (8) is usually set to a 
value of two or three. It decreases the sensitivity of 
pixel-recursion to noise in unstructured image 
regions.  
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Outline of pixel-recursion scheme  
Figure 8 

 
Multiple pixel-recursion processes are 

started at every first pixel position of the odd lines in 
the block under inspection (this is shown in Figure 8 
for an example of 4x4 block). Each recursion works 
over two lines using left-to-right scan for odd and 
right-to-left scan for even lines. Thus, the total 
number N of recursions per block depends on the 
size of the block. It is given by its vertical length 
divided by two (i.e. N=2 in the example from Figure 
3, N=4 for 8x8 block, etc.). 
 

If a rectification process has previously 
been applied to the original views, pixel recursion is 
only used for the x-component of the disparity vector 
in eq. (7), eq. (8) and eq. (9), respectively, because 
the epipolar lines always coincide with the horizontal 
lines of the frame (see section 2). However, in the 
case of arbitrarily oriented epipolar lines (direct 
method without rectification, see section 2) pixel- 
recursion is carried out for both components of the 
disparity vector. Here, the x-and y-components are 
processed independently from each other and, as a 
consequence, the resulting update vector does not 
necessarily meet the epipolar constraint, although the 
initial vector is exactly at the corresponding epipolar 
line or at least very close to it. Therefore, the update 
vector is clamped to the closest pixel position at the 
current epipolar line after each recursion step.  

 
Subsequently, the vector with the smallest 

DPD from all pixel-recursion processes is taken as 
final update vector. After pixel-recursion, the DBD 



 

 

is calculated for this selected update vector and 
compared to the DBD of the start vector. If the DBD 
of the update vector is smaller than the one of the 
start vector, the update vector is chosen as final 
output vector, otherwise the start vector from the 
block-recursive stage is retained (see Figure 5). 
 
6. CONSISTENCY & POST-PROCESSING 
 
The previously described matching procedure is 
performed twice, once for the Left!Right disparity 
analysis and then for the Right!Left disparity 
analysis. These two disparity fields allow the use of a 
very efficient consistency check. In the case of 
correct disparities the difference between two 
corresponding vectors should be close to zero. 
Otherwise, the estimated correspondence is 
obviously wrong due to occlusions, homogeneous 
regions or other reasons for mismatches like 
periodical structures. Therefore, if the difference 
between the Left!Right and the Right!Left 
disparity is greater than a predefined threshold, the 
disparity vector is rejected and has to be interpolated 
by the surrounding disparity vectors surviving the 
consistency check. 
 

The resulting holes in the sparse field are 
firstly filled by a 3x3 median filter. This procedure 
also smoothes the sparse vector field and filters out 
outliers. But, obviously, it is not possible to apply 
the median filter to those holes which are larger than 
the filter mask itself. Therefore, to fill large holes, a 
linear interpolation filter is applied in the horizontal 
direction. Subsequently, a bilinear filter is used to 
generate a dense disparity vector field out of the 
sparse field. 

 
7. EXPERIMENTAL RESULTS 
 
Table 1 presents results of measurements on the 
computation time of the FDE algorithm for one 
video frame in full ITU-Rec. 601 resolution. The 
measurements have been carried out with 
professional profiling tools on a state-of-the-art 
processor (PIII, 800 MHz). The whole FDE 
algorithm concerning the sparse disparity vector 
field including Left!Right and Right!Left 
matching, consistency check and post-processing 
have been taken into account during the 
measurements. The up-conversion from sparse to 
dense vector fields, however, has been excluded, 
because this part represents a standard process (i.e. 
bilinear filtering) which can be implemented more 
efficiently by specialised processors or dedicated 
hardware. 
 

A comparison of the two methods under 
study shows that their computation times are in the 
same order of magnitudes. In principle, the 

horizontal matching in rectified images is a little bit 
faster. This has two reasons. Firstly, the clamping 
onto epipolar lines at the pixel-recursive stage (see 
Figure 5) is not needed in this case and, thus, the 
corresponding computation time can be saved. 
Secondly, pixel-recursion is only carried out for the 
x-component of the disparity vector and, as a 
consequence, the computational amount of pixel-
recursion is halved.  

 

Grid size of the 
sparse field 

horizontal 
matching in 

rectified images 

matching along 
arbitrary epi-

polar lines 
4x4 128 ms 145 ms 
8x8 35 ms 37 ms 

 
Computation time of FDE algorithm for one 

ITU-Rec. 601 frame at Pentium III, 800 MHz 
Table 1 

 
However, the rectified images are usually 

much larger than the original ones - at least for 
camera configurations related to the application 
scenario sketched in Figure 2. This can also been 
seen in Figure 4. Notice that the rectified images 
have been down-scaled here for illustration purposes. 
Supposing a comparable spatial resolution of the 
video objects, the rectified images obviously become 
much larger than the original ones and, therefore, 
much more pixels have to be processed. Clearly, this 
increases the computation time and, as it can be seen 
from the numbers in Table 1, it almost compensates 
the savings in algorithmic complexity discussed 
before.  

 
Moreover, the numbers in Table 1 do not 

include the computation time for the rectification 
process itself. Related measurements have shown 
that this pre-process needs 80 to 240 ms per frame at 
a Pentium III, 800 MHz for video in ITU-Rec. 601 
resolution. The exact figure depends on the quality 
of the interpolation filter used during rectification. 
Most likely, this amount can be decreased by using 
special tools for standard warping applications.  
Nevertheless, summarising all pros and cons, it can 
be concluded that horizontal matching in rectified 
images is rather more than less complex compared to 
direct matching along the arbitrarily oriented 
epipolar lines, due to the extra processing required 
by the rectification. Therefore, it was decided to 
concentrate further work on the direct matching 
method along arbitrarily oriented epipolar lines. 

 
For real-time processing of video with full 

ITU-Rec. 601 resolution the computation time for 
one frame must fall below 40 ms. Thus, following 
the numbers in Table 1 real-time processing can be 
achieved for sparse fields with block sizes of 8x8 
pixels. For 4x4 pixel resolution, however, a further 



 

 

reduction by a factor of 3 to 4 is has to be achieved. 
Nevertheless, it can be stated that the algorithm is 
quite fast and that is suitable for the application 
under consideration. There is a lot of potential for 
further run-time optimisations, especially at the 
pixel-recursive stage. Thus, envisaging further 
optimisations as well as next processor generations, 
a real-time implementation of a FDE algorithm with 
4x4 block sizes seems to be realistic in near future.  
 

In this context the experiments have also 
shown that a sparse field resolution of 4x4 pixels is 
absolutely sufficient to provide a good quality 
whereas a 8x8 block size represents an acceptable 
trade-off making real-time processing feasible with 
today's processor technology. The quality at 4x4 
resolution is indeed excellent for typical head-
shoulder scenes which represent more or less a 
convex object with limited amount of occlusions and 
discontinuities in depth. This is shown in Figure 9 
and Figure 10 for the test sequences CLAUDE 
(weakly convergent set-up) and PUPPET (strongly 
convergent set-up), respectively.   
 

  

  
Top: original left and right view of CLAUDE 

Bottom left: virtual view at middle of baseline 
Bottom right: virtual view from bottom-left  

Figure 9 
 

In addition, Figure 11 presents results of a 
ground truth test, which is more realistic for the 
immersive tele-conference scenario. The comparison 
between the reference image captured at the ground 
truth position and the corresponding virtual view 
synthesised on the basis of the original views from 
Fig. 4 (top) show that the FDE algorithm works well 
in object areas with continuous depth. However, 
problems occur in regions with occlusions and 
discontinuities (arms in front of body). This is not 
surprising at all, because the only part of the FDE 
algorithm that is able to cope with discontinuities is 
the pixel-recursive stage and, in fact, it is not very 
accurate in this sense. Nevertheless, the disparity 
vector fields from Figure 12 demonstrate that the 
front layers (i.e. the arms) can at least be detected 
with high robustness and reliability. Thus, the 
problem is mainly a question of refinement and 

accuracy at the segmentation border. Several 
approaches to solve this refinement problem are 
currently under study and the first results are 
promising. 
 

  

  
Top: original central and right view of PUPPET 
Bottom: virtual views from different directions 

Figure 10 
 
 

  
Reference and virtual view for ground truth test 

Figure 11  
 

    
Horizontal and vertical component of  

sparse disparity vector field (Left!Right) 
Figure 12  

 
 
8. CONCLUSION AND OUTLOOK 
 
The disparity estimator presented in this paper is 
based on a recently proposed matching algorithm 
which has originally been developed for fast motion 
estimation in fields of standards conversion and 
MPEG coding. To exploit this approach for fast 
disparity estimation in high quality applications like 
immersive tele-conferencing, the algorithm has been 
modified such that it respects the epipolar constraint. 
Hence, it is able to match point correspondences 
between strongly convergent stereo images by 
searching along arbitrarily oriented epipolar lines. 



 

 

Experiments have shown that pure software 
implementations of this algorithm process video 
images with full ITU-Rec. 601 resolution in real-
time on state-of-the-art processors (PIII, 800 MHz) 
and that virtual views can be synthesised with 
reasonable quality on the basis of the resulting dense 
disparity vector fields. 
 

The future work will therefore be 
concentrated on the following two items. The first 
one is a further improvement of the pixel-recursive 
stage. Here, it might be very interesting to introduce 
a λ-parameterisation as it has been proposed in 
[Alvarez00] in the framework of an anisotropic 
diffusion approach for disparity estimation. A 
potential advantage of this method is given by the 
fact that the pixel-recursion runs only one λ-
parameter along the epipolar line instead of the two 
independent x- and y-components which have then 
again to be clamped onto the epipolar line. Thus, the 
intention of such an extension is to stabilise the 
matching results and to halve the computational 
amount of pixel-recursion. The second point is an 
improvement of the dense disparity vector field in 
areas with depth discontinuities. Here it is foreseen 
to develop a segmentation driven refinement which 
detects discontinuities implicitly by exploiting results 
of the consistency check and by analysing the sparse 
disparity field. In critical regions the filling of holes  
in the sparse disparity vector field is then adapted to 
results of a local and implicit texture segmentation.  
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