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ABSTRACT

We propose in this paper a first step towards the creation of continuous, i.e. vectorial, repre-
sentations that are useful for image manipulation. Such pixel-free representations have many
advantages and are amenable to operations which are difficult or imprecise with pixels. For exam-
ple, they can readily be rendered at different resolutions and they are a better choice for ultra-high
resolution applications. We explore an approach in which images are decomposed into structural
regions that correspond to specified image characteristics. This is done using relaxation labelling.
Information taken at different stages during the relaxation is used to extract sub-pixel accurate
continuous structural contours. This accuracy is obtained by using snakes as well as the blur
present in images (because of the acquisition process). We propose solutions, adapted to our
context, to often mentioned problems of snakes, namely initialisation, parameter determination,
and instability. The interior of structural regions is represented to allow the rendering of images
as close as possible to the original ones. We propose here two schemes, one using a single colour
for each region, the second sampling the original image to allow smoothly varying colour in each

region.
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1 INTRODUCTION

When film special effects are created at the post-
production stage, they are often performed on
digitised versions of the movie frames. By “digi-
tised”, we mean “turned into pixels.” The re-
quired optical quality means that each frame
must be digitised at high resolution, when the
large number of frames involved combines to en-
sure that a great deal of processing is required.
Moreover, digitisation introduces its own prob-
lems. For example, one basic problem is How do
you remove an object when its boundary spreads
across several pizels in width because of the blur
introduced by the acquisition system?

We claim that special effects should be performed
using vectorial and sub-pixel representations of
the images. Indeed, such representations are
easy to transform or merge (the problems of
pixel alignment or differences in image resolu-
tion are not present [Froum00]) and can be ren-
dered efficiently at any resolution [Froum99] or
with continuous zoom, without special treatment

to preserve image events that must not be al-
tered (e.g. boundaries should remain sharp even
when increasing the resolution, which is not easy
when using traditional interpolation techniques).
Moreover, such representations are more robust
against object rotations and/or translations be-
tween consecutive images'. Sub-pixel informa-
tion is present in images in the form of blur in-
troduced either by the acquisition process or by
the anti-aliasing of synthetic images. Using that
information, we obtain as accurate a representa-
tion as the source data will allow.

We first decompose images into regions that cor-
respond to key parts of the images. This de-
composition is based on statistical properties: a
region will be a pixel group having a given av-
erage and variance of colour. This will allow a
structural decomposition of the image based on
colours and will lead to structural contours. We
then represent the interior of the structural re-

IThe representation of an object should not change
when built from two different images where the object is
present but rotated or translated, which is often the case
in a movie.



gions in order to allow image synthesis as close as
possible to the original image. We propose two
schemes, one using a single colour for each re-
gion, the second sampling the original image to
allow smoothly varying colour in each region.

We completely represent the image with a region-
based scheme requiring very limited and rough
human intervention. Other methods have to spec-
ify boundaries precisely, specify interesting con-
tours, group sparse edges, and/or only extract
one object from the image [Kass88, Morte95,
Elder98]. Moreover, only a few methods explic-
itly handle sub-pixel accuracy and even fewer
methods completely get rid of the pixel nature
of the data. We emphasise in our method the
sub-pixel accuracy at all stages of the contour ex-
traction. Structural contours are obtained using
improved snakes [Kass88] to get better sub-pixel
behaviour?. Our main contribution is that we
combine and improve known techniques to build
a fully continuous and sub-pixel representation of
the image thus allowing an aliasing-free manipu-
lation and synthesis.

In section 2, we will show how structural contours
are extracted while Section 3 will describe how we
represent the interior of structural regions. Fi-
nally, Section 4 will show some results.

2 STRUCTURAL CONTOURS

The image decomposition into structural regions
proceeds in two stages. The first is image segmen-
tation into homogeneous regions. The second is
structural contours extraction. The latter stage
uses information produced at different steps of
the former stage.

2.1 Segmenting an Image into Homoge-
neous Regions

To segment an image, we use relaxation labelling
[Rosen76, Humme83], which builds a mapping
from a set of objects to a set of labels by prop-
agating only local rules. In the case of image
segmentation, objects are pixels denoted by their
coordinates (z,y) and labels correspond to sets of
region attributes a;.

The relaxation labelling produces for each possi-
ble attribute set an image whose pixels are white
(or very light) if they belong to a region hav-
ing this attribute set, black (or very dark) if not,

2Snakes are, since their origin, sub-pixel. But this was a
side effect of the optimisation method and the convergence
stability of the original optimisation method was making
sub-pixel accuracy questionable. New methods have been
proposed that are not sub-pixel [Geige95, Willi92].

and with a grey transition from one value to the
other on the region boundary. That transition is
narrower than the blur in the original image be-
cause of the convergence properties of the relax-
ation labelling, which will remove small regions
and sharpen the transitions between regions.

Following [Garba86, Hanse97], we choose as re-
gion attributes the average colour g and the
colour variance o. The attribute set for the region
iis thus a; = {4, 0;}. Typical attribute sets must
be specified before the relaxation process begins.
This is done interactively by selecting parts in the
image to be segmented that are characteristic of
each region. The interactive scheme to specify re-
gions is acceptable in our application because we
want to analyse image sequences and because the
region attributes usually do not change dramati-
cally between two consecutive images. This is the
only required human intervention.

The region attributes are computed in the
CIE L*a*b* colour space because of its percep-
tual uniformity [Wysze82, Henri98, Meyer87]. In
image segmentation it is common to disregard lu-
minance because changes in luminance do not
usually represent object boundaries but rather
changes in lighting conditions (clouds, shadows,
lights, etc.). In our case, we are interested in
regions having homogeneous colour properties,
not in regions corresponding to physical evidence.
We thus consider all three coordinates of the
CIE L*a*b* space.

Given these region attributes, we use the Maha-
lanobis distance to measure the distance between
the value I of a pixel at position (z,y) and the
region whose attribute set is a;:
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This distance is used to compute the initial prob-
ability of each pixel being associated with each
attribute set:
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where m is the number of regions. Neighbouring
pixels, in an 8-pixels neighbourhood, are compat-
ible if they are associated with the same label. If
labels are different, pixels are neither compatible,
nor incompatible. Probabilities are updated as in
[Rosen76].

We stop the relaxation when the labelling does
not change anymore. Note that an early stop will
usually produce a great number of small regions.
In contrast, a late stop will remove all these small



regions but will also remove many details in the
images, in particular, it will round the corners.
This latter point is not really a problem since the
result of the labelling is only a starting point for
the sub-pixel extraction (snake potential fields are
made from probabilities well before the relaxation
ends, as we will now describe). Moreover, some
image details could be preserved as in [Richa81].

2.2 Sub-pixel Structural Contours

Snakes allow the extraction of linear events in
images. A snake, parametrically represented by
v(s) = (z(s),y(s)), has an energy that measures
how far from an ideal model the snake is:

B= / Ei(s)ds + / E.(v(s)ds, (1)

where E;(s) and E,(v(s)) are respectively the in-
ternal and external energy at the curvilinear ab-
scissa s.

The internal energy consists of a second-order
(rigidity) term?:
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where 3(s) controls the importance of the rigid-
ity at the corresponding snake point in the total
energy E.

The external energy is the value of a potential
field at the corresponding snake point. The field
can take into account different kinds of sources:
springs, repulsors, and lines, edges, or line termi-
nations detectors [Kass88].

To make the snake fit its ideal model, its energy
must be minimised. For this end, the original
method, primarily used in [Kass88] uses a vari-
ational approach. Basically, (1) can be trans-
formed into:

OE,

Av; + v = —’}/(Vt - Vt—l) (3)

V=Vi_1

obtained by introducing a damping over time
[Terzo87], by linear abscissa discretisation (which
decomposes the snake into control points), and
with time derivatives approximated by finite dif-
ferences. vy is a control point at time ¢, A is
a penta-diagonal banded matrix depending only
upon fs, and 7 is the damping factor. Because of
the properties of A, we can efficiently solve (3).

31In [Kass88], a first-order (continuity) term is also used,
which tends to shrink the snake, which will make it go
inside the true sub-pixel boundary. We have moreover
noticed that this term is not useful if the snake is already
continuous, which is the case here.

Since we want sub-pixel snakes, we use the min-
imisation proposed in [Kass88] and not other
schemes proposed, e.g., by [Geige95, Willi92] that
overcome instabilities and convergence problems
but give a solution at the pixel level. One major
problem with the method used is that the snake
must initially be close to its final position. We
thus use the regions produced by the segmenta-
tion (Section 2.1) to initialise the snakes. The
boundary (at the pixel resolution) of each re-
gion will constitute a snake at its initial position.
Then, the minimisation of the snake’s energy will
produce the sub-pixel boundary.

The potential field is made from an edge image
that is the gradient modulus of an image I’ built
from the original image. The image I' is bright in
the region whose boundary has made the snake,
dark outside of that region, and has a smooth
transition between the bright and dark regions
that reflects the image blur. It is made of the
probabilities at some point during the relaxation.
We do not use the final probabilities because they
are too sharp and the edges in these do not repre-
sent correctly the edges in the original image. On
the other hand, the initial probabilities lead to
edges that are not well defined (as with the origi-
nal image). Moreover, it is important to have the
same region topology for the initial snakes (taken
from the region boundaries at the end of the re-
laxation) and the edges in the potential fields.
Indeed, if they are different, then the snakes will
be initially far from their final position and holes
can remain between regions (where small regions
have disappeared). When the number of labelling
changes gets small (with respect to the labelling
changes after the first iteration), then changes be-
come very small in terms of regions and we can
use the probabilities at that stage to extract the
edges to create the potential fields. Moreover,
probabilities at that stage are still smooth. Typ-
ically, we use the probabilities when the labelling
changes cross the threshold of one tenth of the
first labelling change. Figure 1 shows an image
of a goose and the image I' corresponding to the
dark parts. The edge image is then interpolated
using bicubic Bézier patches to get a smooth ana-
lytic surface which makes the potential field. The
term E.(v(s)) in (1) becomes:

Ec(v(s)) = Ec(x(s),y(s)) (4)
—Interp(|VI' (z(s), y(s)) ).

In the original implementation of the snakes
[Kass88], all parameters are manually set. We
propose an automatic way of choosing them. The
B parameters in (2) are set to allow angles at some
control points in the snake. They are first ini-
tialised to 1 for each control point. Then, control
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Figure 1: An image of a goose, the image
I' for the dark regions, and a close-up of I’

points making angles are sought along the initial
snake configuration?. At these control points, 3
is set to the negated, then clamped to 0, cosine of
the angle. Finally, all 8s are normalised so that
the amplitudes of the snake rigidity and external
energy are equal. The rigidity is assumed to lie
between its initial value and 0 (all control points
are roughly aligned at the end, except where a
discontinuity has been allowed, in which case the
contribution is small). The external energy is
assumed to lie between its initial value and the
value found by adding the minimum contribution
of each control point in its 3 x 3 neighbourhood
(with increments of 0.5 pixels). This latter value
is close to the minimum value since the snake con-
trol points are initially at less than one pixel from
their final position.

The parameter v in (3) is automatically and dy-
namically determined. It is initially computed
so that a given average displacement (typically
a quarter of a pixel) of the control points is al-
lowed. Basically, (3) gives n vectorial equations
from which we can extract n values for v given the
required average step-size, where n is the number
of control points. The initial value is taken as the
average of these m values. Then ~ is increased
(the step-size reduced) until the snake becomes

4An angle is detected at a control point when the min-
imum cosine of the angle made from the control point and
neighbouring ones is higher than all neighbouring cosines.

still. The increase happens when the energy’s
derivative (averaged over time) falls below a given
threshold. Using this method, the energy ends up
at a slightly higher value than with a fixed -y, but
we have seen no lower quality of the result. The
result is insensitive to the amount of increase of
the damping factor as well as to the value of the
energy derivative threshold.

Though inspired by [Fua90], our approach is dif-
ferent because our context is different. For exam-
ple, we cannot assume that the initial estimate of
the snake is close to the final answer (even if this
is true in terms of distance) since this is exactly
that difference that makes the contour reaching
sub-pixel accuracy.

When the snakes have converged, we use their
control points as control points of interpolating
curves, e.g. NURBS curves, to produce the struc-
tural contours.

3 STRUCTURAL REGIONS

Once the structural contours are extracted, we
need to represent their interior. Two basic
schemes are proposed here. Others (based on tex-
ture representation and isochromatic contours)
are currently under investigation. More details
can be found in [Labro00].

The first scheme (flat colours) is particularly
appropriate for “simplified” rendering for non-
photorealistic applications such as cartoon-like
rendering or technical illustration. A unique
colour is associated with the region: the average
colour of the corresponding image part that was
selected by the user.

The second scheme is more suited to realistic
rendering where continuous varying colours are
needed: smooth colours are computed inside the
regions from the original image. Each region is
triangulated using a quality conforming Delaunay
triangulation, where the area and angles of the
triangles can be controlled [Shewc96]. A colour is
then associated with each vertex of the triangu-
lation, as a function of the colour of the nearest
pixel in the original image. This function can be
described as follows. The average and variance
of the colour specified by the user define an ellip-
soid in the colour space. The function is the iden-
tity for colours inside that ellipsoid. For colours
that fall outside the ellipsoid, the colour is taken
on the line from the colour towards its projec-
tion onto the ellipsoid (typically, the new colour
is at half distance between the pixel’s colour and
its projection). By using this function, colours
still reflect what was initially in the image but



are closer to the region properties. This prevents
colours which are very different from the ones in-
side the region spreading into it.

As for the segmentation, colour projections are
made in the CIE L*a*b* space. Indeed, these
projections are not feasible in the RGB colour
space since the results (as well as the Euclidean
distance) do not correspond to any psychophys-
ical reality, and would create colours that were
visually wrong.

4 RESULTS

We present some results of the extraction of struc-
tural contours in simple images to assess the pre-
cision of the sub-pixel extraction (Section 4.1).
We also show structural contours on a real im-
age as well as the steps leading to these contours
and the representation of the structural regions
(Section 4.2).

Results of image synthesis as well as some special
effects can be seen in [Froum00].

4.1 Precision of the Sub-pixel Extraction
in Structural Contours

The close-ups showing the boundaries display the
region (in grey) as it is in the original image, the
original NURBS curve used to generate the re-
gion (dashed line), the snake at its initial posi-
tion (jagged continuous line), and the snake at
its final position (smooth continuous line). They
show typical maximum local errors. Errors be-
tween the reconstructed shape and the original
shape are given as a percentage of the area of
the shape for the parts that are outside, inside,
and both outside and inside of the original shape.
These quantities are measured as follows. We ren-
der on the same image at very high resolution
and with anti-aliasing (as was the original image)
the true shape and the reconstructed shape with
two different colours and with appropriate mixing
rules such that pixels belonging to one shape or
the other are of the corresponding colour. Then
we count the number of pixels having one or the
other colour and the number of pixels in the true
shape to obtain the percentages shown. Since
we count pixels having any amount of one or
the other colour as being inside or outside, the
percentages we get are over-estimated. In fact,
Figure 2 shows the total error depending on the
image resolution at which it has been measured
for the CARDIOID image. All the values shown
are measured at a resolution of 4000 pixels (in
fact 4000 x 4000 pixels, the original images hav-
ing 200 x 200 pixels).
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Figure 2: CARDIOID: image. boundary, and
errors

Image CARDIOID. The first image shows a con-
vex shape having a sharp angle. Figure 2 shows
that the extracted contour is very close to the
original curve, as the error curve attests. We can
see that the sharp angle is detected (an angle is
present in the final curve) but inside the original
shape. The problem comes from the natural ten-
sion in the snake. Note however that the error is
only around half a pixel at the resolution of the
original image.
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Figure 3: Y: boundary

Table 1: Errors of sub-pixel contours

Image Out (%) | In (%) | Total (%)
CARDIOID 0.07 0.19 0.26
Y 0.17 0.25 0.42
BLOB 0.07 0.11 0.18

Image Y. In this experiment (Figure 3), we use a
shape having no sharp angles but high curvatures
and concavities. The final total error is 0.4% of
the shape area. Figure 3 shows that the concav-
ities are no problem. We can see that the high
curvature parts are still inside the original shape,
but much less than in the case of a sharp angle.

Table 1 gives the errors for the two previous im-
ages as well as for the BLOB image shown on Fig-
ure 4. Note that the error for the Y image seems
to be more important compared to the others.
This comes from the fact that the curve to sur-
face ratio is greater in the Y image than in the
others.

4.2 Image Representation

We show in this section results for the GOOSE im-
age (Figure 1). Figure 5 shows the parts in the
image that the user has drawn to specify the re-
gion attributes (see Section 2.1). Figure 6 shows

Figure 4: The BLOB image

Figure 5: The image parts used to compute
the region attributes

the structural contours corresponding to the re-
gions. As can be seen, the contours follow the
boundaries in the image. The close-up at the bot-
tom of the neck, however, shows that the bound-
ary of the white part is towards the black of the
neck. This is because the white colour is part of
a region including the light and dark (brown in
the image) parts of the body (see Figure 5) thus
having a large value for its variance, thus includ-
ing colours between the white and the black in
the “white-brown” region.

Figure 7, shows the triangulation for one of the
regions: the neck of the goose.

Figure 8 shows all the stages as well as the type
of information used and created to extract the
sub-pixel boundaries of an image and to create
its vectorial representation.

5 CONCLUSION

We have proposed in this paper a first step to-
wards the creation of continuous image represen-
tations to allow special effects for cinema and
many other applications. We have shown that
images are decomposed into structural regions,
the interior of which being characterised either



Figure 6: Structural contours extracted
with the region attributes selected as in Fig-
ure 5

Figure 7: The triangulation of the goose’s neck
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Figure 8: The whole process of the image
representation

with a single colour or with a set of colours linked
by a triangular mesh. The contours are smooth,
continuous, and at sub-pixel accuracy. We have
shown that the structural region contours ex-
tracted from controlled data are very close to the
original data. It has been shown in [Froum99]
that such representations can be rendered at very
high resolutions in affordable computing times.
Moreover, an extensive range of different render-
ings from such representations has been described
in [Froum00].
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