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ABSTRACT

Detection of edge points of 3-dimensional physical objects in a 2-dimensional image is
one of the main research areas of computer vision. Object contour detection and object
recognition rely heavily on edge detection. In this paper, we present an edge detection
scheme using Gaussian Multi-resolution Theory based on a mimic Spiral Architecture.
The Spiral Architecture has been described in many papers. Although it has many ad-
vantages such as powerful computational features in image processing especially in image
edge detection, there is no available image capture device yet to support this structure.
Hence, we mimic the Spiral Architecture from the existing image structure. This mimic
structure inherits all computational features of the Spiral Architecture. The Gaussian
Multi-resolution Theory is used to reduce noise and unnecessary details of the image.
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1 INTRODUCTION

FEdge detection plays a key role in computer
vision, image processing and related areas. It
is a process which detects the significant fea-
tures that appear as large delta values in light
intensities. At an early stage of computation
in a large scale computer vision application,
an edge map is detected from the original im-
age. It contains major image information and
only needs a relatively small amount of mem-
ory space for storage. If needed, a replica im-
age can be reconstructed from its edge map.

In the past, various edge detection algorithms
were proposed (e.g. [Bergholm87], [Tian00]
and [Zhang94]). In this paper, we present a
method for edge detection. Our image alge-
bra is established on a mimic Spiral Architec-

ture and the detection algorithm is based on
Gaussian Multi-scale Theory [Lindeberg94].

Spiral Architecture described by Sheridan
[Sheridan96] is a relatively new data struc-
ture for computer vision. The image is repre-
sented by a collection of hexagons of the same
size (in contrast with the traditional rect-
angular representation) as displayed in Fig-
ure 1. The importance of the hexagonal rep-
resentation is that it possesses special com-
putational features that are pertinent to the
vision process.

Although the Spiral Architecture has many
advantages in image processing and com-
puter vision, it is not yet supported by any
available image capture device. Hence, it be-
comes necessary to construct or mimic the



Figure 1: Collection of hexagonal cells.

Spiral Architecture from the existing image
structure, on which the traditional image rep-
resentation is based. In this paper, we will
present the mimic Spiral Architecture using
the rectangular pixels.

The Gaussian Multi-scale theory introduced
by Koenderink [Koenderink84] is a tool to
remove image noise. The image brightness
function is parameterized. A large change in
image brightness over a short spatial distance
indicates the presence of an edge. The im-
age is blurred and noise is removed when the
parameter is positive. The change in image
brightness is described by the derivatives of
the brightness function in the gradient direc-
tions. The derivatives and the computation
of gradient vectors in the mimic Spiral Archi-
tecture will also be proposed in this paper.

The content of this paper is arranged as fol-
lows. We mimic the Spiral Architecture in
Section 2. In Section 3, an approach to the
Gaussian multi-scale theory for edge detec-
tion including edge definition in the mimic
Spiral Architecture is presented. This is fol-
lowed by an edge detection algorithm in the
mimic structure in Section 4. We compare
our results in this paper with the previous re-
sults derived by He [He99] in Section 5. We
conclude in Section 6.

2 THE MIMIC SPIRAL ARCHI-
TECTURE

Traditionally, an image is considered as a col-
lection of rectangular pixels of the same size.
Since the late 1990s, edge detection within a
relatively new data structure, called the Spi-
ral Architecture has been considered by He,
Hintz and Szewcow in their papers [HeH98]
and [HeHS98]. This significantly extends and
simultaneously makes practical the Spiral im-
age structure. In the Spiral Architecture, an
image is represented as a collection of hexago-
nal picture elements as displayed in Figure 1.
The distribution of cones on the retina (see
Figure 2) provides the basis of the Spiral Ar-
chitecture. In the case of the human eye,

Figure 2: Distribution of cones on the
retina.

these elements would represent the relative
positions of the rods and cones on the retina.

To construct the mimic Spiral Architecture,
we start with a collection of seven hexago-
nal pixels as show in Figure 3. These seven

X

Figure 3: Cartesian coordinates of a
cluster of 7 hexagons.

hexagonal pixels are mimiced by twenty-eight
(4 x 7) rectangular (square) pixels, as ar-
ranged and shown in Figure 4. A set of four
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Figure 4: Distribution of 7 pixels con-
structed from rectangular pixels.

rectangular pixels which are adjacent to each
other is used to mimic a hexagonal pixel. The
seven mimic hexagonal pixels are numbered
from 0 to 6 as shown in Figure 4. These
numbers are also called Spiral Addresses of
(mimic) hexagonal pixels according to Sheri-
dan [Sheridan96]. The grey level (or value)
at each mimic hexagonal pixel is computed
as the average of the grey values at the four
hexagonal pixels, which together form the
mimic hexagonal pixel. Figure 5 shows a
duck image represented in a mimic Spiral Ar-
chitecture with 7° pixels.

Figure 5: Sample image of ‘the duck’
in mimic spiral space.

It is obvious that the mapping from a group
of four square pixels to a hexagonal pixel as
shown in Figure 4 is a one-to-one map. It
is easy to see that our mimic is consistent
with the important property of hexagon dis-
tribution that each such pixel has exactly six
surrounding pixels. This mimic Spiral Ar-
chitecture inherits all computational features

of the Spiral Architecture including the com-
putation of Spiral Addition and Spiral Mul-
tiplication which was proposed by Sheridan
in [Sheridan96] and then demonstrated to be
very powerful in image processing and com-
puter vision.

3 GAUSSIAN THEORY
IN THE MIMIC SPIRAL ARCHI-
TECTURE

The Gaussian Scale-space Theory!' was pro-
posed by Lindeberg [Lindeberg94] to explain
how certain aspects of image information can
be represented and analysed at the earliest
processing stages of a computer vision sys-
tem. This theory is one of the best under-
stood multi-resolution techniques available to
the computer vision and image analysis com-
munity [Sporring97]. Gaussian multi-scale
theory is used for our edge detection algo-
rithms as a tool to remove image noise. In
the following, the image brightness function
will be parameterized. A large change in im-
age brightness over a short spatial distance
indicates the presence of an edge. The im-
age is blurred and noise is removed when the
parameter is positive.

Let f : %2 — R be a brightness func-
tion of an image which maps the coordi-
nates of a pixel, (z,y) to a value in light
intensities. The scale-space representation
L : R? x [0,+00) — R is defined such that
the representation at ‘zero scale’ is equal to
the original signal, i.e.,

L(0) = f(-), (1)

and the representation at ‘coarser scales’ is
the convolution

L(st) = g(58) = £ (), (2)

where g : R2 x (0,4+00) — R is the Gaussian
kernel

1 2242
g(xay;t)=%e 2. (3)

Lindeberg defined edges from the continuous
grey-level image function L : %2 x [0, +00) —

Tt is a multi-scale theory.



R as the set of points for which the gradient
magnitude assumes a maximum in the gra-
dient direction [Lindeberg94]. This can be
further described as follows.

Let © be the gradient of L(z,y;t) at (z,y)
for a given t, and Ly(z,y;t) and Ly(z,y;t)
be the derivatives of L(x,y;t) with respect
to z and y. Denote L,(z,y;t) and Ly(x,y;t)
L, and L, respectively. Then v is paral-
lel to (L, Ly). Furthermore, the derivative
of L(x,y;t) in gradient direction at (z,y) is
/L2 + L. We denote this derivative by Ly

1.e.,
L@ZQ/L%"‘L%}. (4)

Hence, by Lindeberg’s definition, (z,y) is an
edge point (or edge pixel) if and only if Lj
assumes a maximum at (z,y).

Lindeberg’s work assumed a continuous
space. In this section, we give a discrete app-
proach within the mimic Spiral Architecture.

3.1 Approach to Gaussian operator

Given discrete data in the mimic Spiral Ar-
chitecture, if we assume that the distance be-
tween centres of two neighbouring rectangle
pixels on the same row or colum is 1 and the
Cartesian coordinates of the mimic hexagon
with Spiral Address 0 is (z,y) (Figure 4), the
hexagons with the spiral addresses 1, 2, 3, 4,
5 and 6 have Cartesian coordinates (x, y-2),
(X'27 y'1)7 (X'27 y+1)7 (X7 y+2)7 (X+27 y+1)
and (x+2, y-1) respectively. Let us denote
these points ag, a1, ao, a3, a4, a5 and ag re-
spectively as shown in Figure 6.

Note that the distance square or the value of
2?2 + y? in Equation 3 is 4 between ag and a;
(or a4), 5 between ag and ay (or ag or as or
ag). Hence, for a given ¢, we implement the
Gaussian convolution at ag by

L(ao;t) = L(z,y;1)
1
57 1 L(a03 0)
eg_f[L(al;O) + L(ay4;0)]
eE_E[L(aQ;O) + L(as;0)
L(as;0) + L(as; 0)]}. (5)

+ + o+

Figure 6: Cartesian coordinates of a
cluster of 7 hexagons.

In order to involve more neighbours of ag in
the convolution, a more general implementa-
tion of the convolution is introduced as fol-
lows.

1. Choose an integer denoted by J as the
number of iterations of the following
loop;

2. For (j=0;5 < J;5++){

L(ao; 1)

5 {L00:0)

e‘_z_?[L(al;O) + L(a4;0)]

e [L(az;0) + L(a3;0)
L(as;0) + L(ae; 0)]};
L(a;;0) <= L(aj;t); (6)

+ + +

The above procedure means that

1. Use the simple convolution (Equation 5)
to get a convolved value L(-;t) for every
hexagon.

2. Use L(-;t) as a new value of L(-;0) at
every hexagon.

3. Repeat Step 1 above J times.

4. The newest value of L(-; t) is recorded as
the Gaussian convolution value at every
hexagon.



From now on, we use the general implemen-
tation shown above for the Gaussian convo-
lution, and J is assigned the value of 8 and ¢
is equal to 3.

3.2 Approach to derivatives

Denote a, the point in the middle of a5 and
ag and a; the point in the middle of ay and
az as shown in Figure 6. Assume that the
light intensity at a, is the average of the light
intensities at as and ag denoted by L,, and
the light intensity at a, is the average of the
light intensities at as and a3, denoted by L;.
Note that

e the distances between q; and ag, and be-
tween a, and ag are 2, and

e the distances between a; and ag, and
between a4 and ag are also 2.

Then we have the following implementation
of the derivatives of L with respect to  and

y.
L,—Lg + Lo—1L,
2 2
2
1
= Z(Lr - Ll)

Lz(5v7 Y; t) =

= {lL@+2y+ 10

+ L(z+2,y—1;1)]

@2y + 10

+ Lz-2,y—1¢t)] (7
and similarly

(L4 — Lo) + (Lo — L1)

= %[L(w,y + 1;1)
- L(z,y — 1;1)]. (8)

It is easy to see that the above representation
converges to the real derivatives of L with re-
spect to z and y respectively, as more and
more hexagonal pixels are collected. This is
because that a; and a4 are the only two pix-
els closest to ag in the y—direction, and ao,

a3, a5 and ag are the only four pixels closest
to ag in the xz—direction. The derivative in
the gradient direction at (x,y) can then be
obtained by applying Equation 4.

Our derivative approximation shown above
implies that the derivatives of L at a point or
pixel are only influenced by the light inten-
sities of its six neighbouring pixels. So, the
derivatives are defined locally. This is an im-
portant property which, together with some
other properties, leads to a parallel imple-
mentation for edge detection. This research
will be presented in the paper in preparation
by the authors.

3.3 Edge points based on gradient

Recall that v is the gradient vector of
L(z,y;t) at (z,y). Denote the values of Ly
at ag, ay, as, as, a4, as and ag by Lo, L1, Lo,
L3, Ly, Ly and Lg respectively.

As we are now considering the derivatives in
discrete space, the zero-crossing points of the
2nd derivative of L in the gradient direction,
denoted by Lz may not exist and the compu-
tation of the higher order derivatives is very
time consuming. Hence, we need a method
without using the 2nd order derivatives to de-
termine the points or pixels at which the Lj
has a maximum. Our approach is based on
the results of the first order derivatives and
the value of gradient in the mimic Spiral Ar-
chitecture.

We propose a procedure to determine
whether ag is an edge point or pixel as follows
refering to Figure 7. In Figure 7, T'1 cuts the
left-hand side edge of pixel 5 (or pixel as) at
one quarter potision from the top. Similarly,
we obtain T2, T4 and T'5.

e If the gradient direction (or v) at pixel
0 (or ag) is between T0 and T'1, or be-
tween T'3 and T4, then it is obvious that
pixels 2 and 5 (or as and as) among
the neighbouring pixels of ag contribute
the most to the change of brightness (or
grey value) at ag in the gradient direc-
tion. Hence,
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Figure 7: Gradient direction.

—if (LO > Ly and Ly > L5) or (LO > Lo
and Lo > Ls),
we record ag as an edge pixel.
This is because that Lg in these cases
is either largest or smallest among the
Ly values along the gradient direction
at ag.

e Similarly if the gradient direction is be-
tween T'1 and T2, or between T4 and
T5

—if (LO > Ly and Ly > L4) or (L() > Ly
and LO Z L4)
record ag as an edge pixel.

e And if the gradient direction is between
T2 and T3, or between T'5 and T0

— if (LO > Lz and Ly > L6) or (L() > Ls
and LO Z L6)
record ag as an edge pixel.

The above procedure implies that if ag is an
edge pixel, then Ly is a maximum in the gra-
dient direction.

4 EDGE DETECTION FOR ‘THE
DUCK’

The edge algorithm essentially consists of the
following steps:

1. Blur the initial sample image using the
Gaussian convolution approach intro-
duced in the previous section. One may

use the Edge Focusing Technique de-
scribed in [HeH98] to obtain the Gaus-
sian scale (a value of parameter ¢) used
for the Gaussian convolution.

2. Threshold? the Edge Map obtained in
the previous step at a pre-determined
grey level.

We use ‘the duck’ image as displayed in Fig-
ure 5 to demonstrate the above algorithm.

When we use the edge definition in the mimic
Spiral Architecture as shown in Section 3, a
figure containing the edge map of this image
is Figure 8.

Figure 8: The edge map of ‘the duck’.

Blurring this image using the Gaussian con-
volution defined in Section 3 with the number
of iterations .J = 8 and the resolution level
t = 3, the image of ‘the duck’ (Figure 5 at
this coarser resolution level is shown in Fig-
ure 9.

Figure 10 is the corresponding edge map of
the Gaussian blurred image (Figure 9).

Figure 9 is thresholded at grey level of 32. Its
edge map after the thresholding is shown in
Figure 11.

It is obvious that the edge map at the coarser
resolution level (¢ = 3) is clearer than that of

2Thresholding an image at a grey level [ is to set
the grey values to be [ x n if they are between nl and
(n+1)Il(n=0,1,2,---, 255



Figure 9: The Gaussian blurred image
of ‘the duck’.

Figure 10: The edge map of the Gaus-
sian blurred ‘duck’.

the original image (with ¢ = 0). This is be-
cause some less critical edge pixels have been
removed by the Gaussian filter.

If we are not interested in the details of ‘the
duck’, a rough sketch of it, which is Figure 11,
may be more applicable.

5 A COMPARISON

In this section, we compare our experimental
results displayed in the previous section with
the results shown in [He99].

Figure 12 is the edge map of the sample image
(Figure 5) obtained in [He99]. It is found
that the edge map we obtain in this paper
as displayed in Figure 8 contains less edge

Figure 11: Edge map by thresholding
the Gaussian blurred image at level 32.

Figure 12: Edge map of Figure 5.

points and is a bit clearer than Figure 12.

Figure 13 is the edge image of the Gaussian
blurred image of ‘the duck’ with J = 30
and t = 3 as shown in [He99]. Comparing
this with our edge map as displayed in Fig-
ure 10, one will find that our edge map is
much clearer than the map in Figure 13. Note
that we put J = 8 and ¢ = 3 to obtain our
edge map shown in Figure 10 comparing with
J =30 and t = 3 used in [He99]. This im-
plies that our Gaussian convolution speed is
much faster than the one used in [He99].

6 CONCLUSION

In this paper, we have done the following:



Figure 13: Edge image of the blurred
image with J = 30 and ¢ = 3.

1. We defined the Gaussian convolution
operator with discrete data in a mimic
Spiral Architecture. This adaption and
significant extension to the convolution
was first defined in this paper. Its im-
plementation is simple. Its computa-
tional speed is fast as it is defined lo-
cally.

2. Derivatives of functions defined on the
mimic Spiral Architecture were con-
structed. These derivatives converge.

3. Edge points were defined using only the
1st order derivatives based on the mimic
Spiral Arcitecture. The traditional edge
detection derived from the zero-crossing
points of 2nd order derivatives requires
much more time to complete. Further-
more, there is not an easy way to find
the zero-crossing points with discrete
data.

4. A sample image called ‘the duck’ was
used to demonstrate the efficacy of the
edge detection algorithms proposed.

5. A comparison between our algorithm
shown in this paper and the one pro-
posed in [He99] is made. This indicates
a better resolution using our algorithm.
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