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Abstract: Interpolation or approximation of scattered data is very often task in engineering problems. The 
Radial Basis Functions (RBF) interpolation is convenient for scattered (un-ordered) data sets in k-dimensional 
space, in general. This approach is convenient especially for a higher dimension k > 2  as the conversion to an 
ordered data set, e.g. using tessellation, is computationally very expensive. The RBF interpolation is not 
separable and it is based on distance of two points. It leads to a solution of a Linear System of Equations (LSE) 
𝑨𝒙 = 𝒃. There are two main groups of interpolating functions: ‘global” and “local”. Application of “local” 
functions, called Compactly Supporting RBF (CSFBF), can significantly decrease computational cost as they 
lead to a system of linear equations with a sparse matrix.  

In this paper the RBF interpolation theory is briefly introduced at the “application level” including some 
basic principles and computational issues and an incremental RBF computation is presented and approximation 
RBF as well.  

The RBF interpolation or approximation can be used also for image reconstruction, inpainting removal, for 
solution of Partial Differential Equations (PDE), in GIS systems, digital elevation model DEM etc. 
 
 
Key-Words: - Radial basis function, RBF interpolation, image reconstruction, incremental computation, RBF 
approximation, fast matrix multiplication 
 
1 Introduction 
Interpolation and approximation are probably the 
most frequent operations used in computational 
techniques. Several techniques have been developed 
for data interpolation, but they expect some kind of 
data “ordering”, e.g. structured mesh, rectangular 
mesh, unstructured mesh etc. The typical example is 
a solution of partial differential equations (PDE) 
where derivatives are replaced by differences and 
rectangular or hexagonal meshes are used in the vast 
majority of cases. However in many engineering 
problems, data are not ordered and they are 
scattered in k -dimensional space, in general. 
Usually, in technical applications the scattered data 
are tessellated using triangulation but this approach 
is quite prohibitive for the case of k-dimensional 
data interpolation because of the computational cost. 

An interesting technique is k-dimensional data 
interpolation using Radial Basis Functions (RBF). 
The RBF interpolation is computationally more 
expensive because interpolated data are not ordered, 
but offers quite interesting applications at acceptable 
computational cost, e.g. solution of partial 
differential equations, image reconstruction, neural 

networks, fuzzy systems, GIS systems, optics and 
interferometry etc. 

 

2 Problem Formulation 
Interpolation is very often used and mostly linear 
interpolation is used in technical applications. Let us 
analyze first different types of data to be processed. 
Also there is a question whether the Euclidean space 
representation is the best for computing and 
engineering applications. It is well known that the 
division operation is very dangerous in numerical 
computations and causes severe problems in 
numerical methods. Also it is known that 
computations can be made in the projective 
extension of the Euclidean space [20] [21] [23] [27]. 
The projective formulation of numerical problems 
leads to very interesting questions, e.g. an explicit 
solution of LSE is equivalent to the cross-product, 
like why the division operation in the Gauss-Seidel 
or similar methods is needed [21]? The projective 
space representation and the principle of duality also 
help to solve some problems more efficiently [19] 
[20] [25]. Also Non-rational uniform B-Splines 
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(NURBS) are actually curves or surfaces defined 
using the projective extension of the Euclidean 
space. 

In the following we use the Euclidean space 
representation to explain the fundamental principles 
and we will explore incremental computation of 
RBF interpolation and approximation, as well. 
 
3 Data Classification 

Before analyzing methods for interpolation, it is 
reasonable to classify data to be processed. It seems 
to be simple, but let us explore it more deeply. 
Generally, the data can be represented by: 
1. Coordinates, e.g. by points {𝒙𝑖}1𝑀  in computer 

graphics, which forms triangular mesh in E2 or 
represent a surface of an object in E3. 

2. Coordinates and associated values  {〈𝒙𝑖 ,𝒉𝑖〉}1𝑀 , 
e.g. coordinates of points 𝒙𝑖  associated with 
vector values 𝒉𝑖  with each point or associated 
with scalar values (potential field), e.g. 
representing temperatures etc.. 
The dimensionality of a vector of 

coordinates  𝑑𝑖𝑚(𝒙𝑖) = k , i.e. 𝒙𝑖 = [𝑥1, … , 𝑥𝑘]𝑇 , 
while the dimensionality of a vector of values 
𝑑𝑖𝑚(𝒉𝑖) = 𝑝, i.e. 𝒉𝑖 = �ℎ1, … , ℎ𝑝�

𝑇
. 

It can be seen that those two cases are quite 
different cases if an interpolation is to be used. Also 
data can be: 

• hierarchical 
• non-hierarchical 

or 
• adaptive to some physical phenomena 
• non-adaptive 

and  
• static 
• dynamic (t-variant) in coordinates 𝒙𝑖  or in 

values 𝒉𝑖 or both! 
In a selection of an interpolation technique we 

have to respect if they are “ordered” or “un-ordered” 
as well. Then the data sets can be classified as 
follows. 

 
• Un-ordered - Scattered 

- Clustered 
 

• Ordered - Unstructured 
- Structured 

- Non-regular 
- Semi-regular 
- Regular  

  

Table 1: A simple classification of data 
 

In the case of un-ordered data, mostly some 
tessellation techniques like triangulation in the E2 
case or tetrahedronization in the E3 case are used 
and generally an unstructured mesh is obtained.  

The semi-regular mesh is obtained just in the 
case when data are ordered in a rectangular grid and 
Delaunay triangulation is used. It should be noted 
that this is a very unstable situation, as due to some 
small shifts in coordinates, the tessellation can be 
totally changed. 

Interpolation techniques on “ordered” data sets 
are well known and used in many packages.  

Let us explore how to interpolate values 𝒉𝑖 in the 
given un-ordered  {〈𝒙𝑖 ,𝒉𝑖〉}1𝑀  data set. Of course, 
there is a theoretical possibility to use a tessellation 
in order to get an ordered unstructured mesh, but 
this process is computationally very expensive as 
the computational complexity of the tessellation 
grows with the dimension k non-linearly and 
complexity of the implementation grows as well.  

On the other hand, there are interpolation 
techniques applicable for un-ordered data sets. One 
of such technique is based on Radial Basis 
Functions (RBF) which is especially convenient for 
the interpolation in the k-dimensional space, 
especially if 𝑘 > 2. The RBF interpolation based on 
radial basis functions is quite simple from a 
mathematical point of view.  

For an explanation of the RBF interpolation let 
us consider the case, when ℎ𝑖 are scalar values. The 
RBF interpolation is based on computing of the 
distance of two points in the k -dimensional space 
and is defined by a function [2], [3] 

𝑓(𝒙) = �𝜆𝑗  𝜑��𝒙 − 𝒙𝑗��
𝑀

𝑗=1

= �𝜆𝑗  𝜑�𝑟𝑗�
𝑀

𝑗=1

          

𝑟𝑗 = �𝒙 − 𝒙𝑗�  
It means that for the given data set  {〈𝒙𝑖 ,ℎ𝑖〉}1𝑀, 

where ℎ𝑖  are associated values to be interpolated 
and 𝒙𝑖  are domain coordinates. We obtain a linear 
system of equations 

ℎ𝑖 = 𝑓(𝒙𝑖) = �𝜆𝑗  𝜑��𝒙𝑖 − 𝒙𝑗��
𝑁

𝑗=1

          𝑖 = 1, … ,𝑀 

where: 𝜆𝑗   are weights to be computed. Due to some 
stability issues, usually a polynomial 𝑃𝑘(𝒙)  of a 
degree k is added to the form, i.e. 

ℎ𝑖 = 𝑓(𝒙𝑖) = �𝜆𝑗  𝜑��𝒙𝑖 − 𝒙𝑗��
𝑀

𝑗=1

 + 𝑃𝑘(𝒙𝑖) 

 𝑖 = 1, … ,𝑀 
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For a practical use a linear polynomial 
 𝑃1(𝒙) = 𝒂𝑇𝒙 + 𝑎0 

in many applications. So the RBF interpolation 
function has the form:  

𝑓(𝒙𝑖) = �𝜆𝑗  𝜑��𝒙𝑖 − 𝒙𝑗��
𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0

= �𝜆𝑗  𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0  

where 
ℎ𝑖 = 𝑓(𝒙𝑖)           𝑖 = 1, … ,𝑀  

and additional conditions are applied: 

�𝜆𝑖 = 0
𝑀

𝑗=1

            �𝜆𝑖𝒙𝑖 = 𝟎
𝑀

𝑗=1

    

It can be seen that for k-dimensional case a 
system of (𝑀 + 𝑘 + 1) LSE has to be solved, where 
M is a number of points in the dataset and k is the 
dimensionality of data.  

For k=2 vectors xi and a are given as 
𝒙𝑖 = [𝑥𝑖 ,𝑦𝑖]𝑇  and 𝒂 = �𝑎𝑥 ,𝑎𝑦�

𝑇
. Using the matrix 

notation we can write for 2-dimensions: 
 

⎣
⎢
⎢
⎢
⎢
⎡
𝜑1,1 . . 𝜑1,𝑀 𝑥1 𝑦1 1

: ⋱ : : : :
𝜑𝑀,1 . . 𝜑𝑀,𝑀 𝑥𝑀 𝑦𝑀 1
𝑥1 . . 𝑥𝑀 0 0 0
𝑦1 . . 𝑦𝑀 0 0 0
1 . . 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜆1
:
𝜆𝑀
𝑎𝑥
𝑎𝑦
𝑎0 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
ℎ1
:
ℎ𝑀
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

 

 

� 𝑩 𝑷
𝑷𝑇 𝟎� �

𝝀
𝒂� = �𝒇

𝟎
� 𝑨𝒙 = 𝒃 

 

𝒂𝑇  𝒙𝒊 + 𝑎0 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 
 

It can be seen that for the two-dimensional case 
and M points given a system of (𝑀 + 3)  linear 
equations has to be solved. If “global” functions, e.g. 
TPS (𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟  ), are used the matrix B is 
“full”, if “local” functions (Compactly supported 
RBF – CSRBF) are used, the matrix B can be sparse. 

The radial basis functions interpolation was 
originally introduced by [5] by introduction of 
multiquadric method in 1971, which he called 
Radial Basis Function (RBF) method. Since then 
many different RFB interpolation schemes have 
been developed with some specific properties, e.g. 
Thin-Plate Spline function  𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, which is 
called TPS [4], a function 𝜑(𝑟) = 𝑒−(𝜖𝑟)2  was 
proposed by [9] and [12] introduced Compactly 
Supported RBF (CSRBF) as  

𝜑(𝑟) = �(1 − 𝑟)𝑞  𝑃(𝑟), 0 ≤ 𝑟 ≤ 1
 0,                      𝑟 > 1

�  , 

where: 𝑃(𝑟)  is a polynomial function and q is a 
parameter.  

Theoretical problems with stability and 
solvability were solved by [6] and [13]. Generally, 
there are two main groups of the RBFs: 

• “global” – a typical example is TPS function 
• “local” –  Compactly supported RBF (CSRBF)  
If the “global” functions are taken, the matrix A 

of the LSE is full and for large M is becoming ill 
conditioned and problems with convergence can be 
expected.  

On the other hand if the CSRBFs are taken, the 
matrix A is becoming relatively sparse, i.e. 
computation of the LSE will be faster, but we need 
to carefully select the scaling factor and the final 
function tends to be “blobby” shaped. 

 
“Global“ functions 𝜙(𝑟) 

Thin-Plate Spline (TPS) rr log2  
Gauss function ( )( )2exp rε−  

Inverse Quadric (IQ) ( )( )211 rε+  
Inverse multiquadric 

(IMQ) ( )211 rε+  

Multiquadric (MQ) ( )21 rε+  
 

Table 1 Typical examples of “global” functions” 
 

ID Function 
1 +− )1( r  
2 )13()1( 3 +− + rr  
3 )158()1( 25 ++− + rrr  
4 2)1( +− r  
5 )14()1( 4 +− + rr  
6 )31835()1( 26 ++− + rrr  
7 )182532()1( 238 +++− + rrrr  
8 3)1( +− r  
9 )15()1( 3 +− + rr  

10 )1716()1( 27 ++− + rrr  
 

Table 2 Typical examples of “local” functions - 
CSRBF [13]  

 
Tab.2 presents typical examples of CSRBFs. They 
are defined for the interval (0, 1), but for the 
practical use a scaling is used, i.e. the value r is 
multiplied by a scaling factor α, where 0<α<1. Fig.1 
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shows behavior of selected CSRBF; on the x axis is 
a radius value r (negative part is just for illustration 
of the symmetry properties). 
 

 
Fig.1 Geometrical properties of CSRBF [13] 

 
4 Matrix Inversion and Multiplication 
Matrix multiplication, inversion and solution of a 
linear system of equations (LSE) are probably the 
most frequent operations used in computations. RBF 
interpolation leads naturally to a system of linear 
equations to be solved. However in the case of 
“global” RBF the matrix is full, large and ill 
conditioned. In the case of scalar and static values 
an iterative methods can be used to obtain a solution. 
Nevertheless for a multidimensional data 
represented by 

 𝒉 = [ℎ1, … , ℎ𝑘]𝑇 

for static data or for dynamic data, i.e.  

 𝒉(𝑡) = [ℎ1(𝑡), … , ℎ𝑘(𝑡)]𝑇 

increment methods cannot be used and the system of 
linear system of equations representing RBF 
interpolation has to be solved by an inverse matrix 
computation due to time and computational stability. 

Let us consider some operations with block 
matrices again (we assume that all operations are 
correct and matrices are non-singular in general etc.). 
The matrix inversion is defined as follows: 

�𝑨 𝑩
𝑪 𝑫�

−1

=  � (𝑨 − 𝑩𝑫−1𝑪)−1 −𝑨−1𝑩(𝑫 − 𝑪𝑨−1𝑩)−1

−(𝑫− 𝑪𝑨−1𝑩)−1𝑪𝑨−1 (𝑫− 𝑪𝑨−1𝑩)−1 � 

Let us consider a matrix M of (n+m)×(n+m) and a 
matrix A of n×n in the following block form: 

𝑴 = � 𝑨 𝑩
𝑩𝑇 𝑫� 

Then the inverse of the matrix 𝑴  applying the rule 
above can be written as: 

� 𝑨 𝑩
𝑩𝑇 𝑫

�
−1

= 

 � (𝑨 − 𝑩𝑫−1𝑩𝑇)−1 −𝑨−1𝑩(𝑫− 𝑩𝑇𝑨−1𝑩)−1

−(𝑫 −𝑩𝑇𝑨−1𝑩)−1𝑩𝑇𝑨−1 (𝑫− 𝑩𝑇𝑨−1𝑩)−1 � 

where the matrix 𝑨−1 is known and matrices 𝑨, 𝑨−1, 
𝑫  and 𝑫−1  are symmetrical and semi-positive 
definite. 

Computation complexities are as follow: 
 

𝑸 = 𝑨−1𝑩 O(mn2) 
𝑻 = 𝑩𝑇𝑸
= 𝑩𝑇𝑨−1𝑩 

O(m2n) 

𝑫−1 O(m3) 
𝑹 = 𝑫−1𝑩𝑇 O(m2n) 
𝑾 = 𝑩𝑹 O(mn2) 
𝒁 = 𝑫− 𝑻 O(m2) 

 
Table 3 : Computational complexity  

 
By definition and symmetry 

𝑻 = 𝑻𝑇  𝑸𝑇 = 𝑩𝑇𝑨−1  𝒁 = 𝒁𝑇 
We can further simplify the matrix inversion. Then 

�𝑨 𝑩
𝑪 𝑫�

−1

=  �
(𝑨 − 𝑩𝑹)−1 −𝑨−1𝑩(𝑫 − 𝑩𝑇𝑸)−1

−(𝑫− 𝑩𝑇𝑸)−1𝑩𝑻𝑨−1 (𝑫 −𝑩𝑇𝑸)−1
� 

= � (𝑨 −𝑾)−1 −𝑨−1𝑩(𝑫− 𝑻)−1

−(𝑫− 𝑻)−1𝑸𝑇 (𝑫− 𝑻)−1 � 

= �
(𝑨 −𝑾)−1 −𝑸 𝒁−1

−𝒁−1𝑸𝑇 𝒁−1
� 

Finally we get 

𝑴−𝟏 = �𝑨 𝑩
𝑪 𝑫�

−1
= �

(𝑨 −𝑾)−1 −𝑸 𝒁−1

−(𝑸 𝒁−1)𝑇 𝒁−1
� 

In the worst case of n = m .  
 

𝒁−1 O(m3) 
(𝑨 −𝑾)−1   O(n3) 

𝑸 𝒁−1 O(m2n) 
 

Table 4: Computational complexity  
 
It means that we have a formula to solve a 

system of linear equations for the special case when 
the matrix is symmetrical. According to the RBF 
interpolation definition above, the matrix 𝑨 defines 
RBF interpolation of 𝑛 − 3 points in the 𝐸2 case and 
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𝑛 − 4 points in the 𝐸3 case. Other matrices express 
the 𝑚 points added to the interpolation. 

As the inversion and matrix multiplication 
operations are 𝑂(𝑁3)  complexity then for 𝑚 = 𝑛 
the complexity of the matrix 𝑴−𝟏  computation 
is  𝑂(𝑁3) , while sub-matrix operations are of 
𝑂((𝑁

2
)3) complexity, i.e. the TOTAL cost expected 

is O( (2n)3 ) = 8 O(n3), if the inverse of  𝑴  is 
computed and the computation will be slightly faster 
and inversion operation will be slightly more stable 
as well.  

From the efficiency point of view, the worst 
case is for  𝑚 = 𝑛 . For the case of m ≠ n  the 
efficiency of computation will be higher. Total 
computational complexity for 𝑚 ≠ 𝑛 given as 

 
No of operation with the given 
complexity 

O(mn2) 2 
O(m2n) 2 
O(m3) 2 
O(n3) 1 
O(n2) 1 

 
Table 5: For m=1, i.e. for one point insertion, the 
complexity is O(n2) only. 
 
It can be seen that there are the following critical 

operations: 
 
Matrix storing – as we expect to process many 
points, i.e. number of points 

𝑛 ∈< 103, 106 >,  
and memory requirements grow with 𝑂(𝑛2) 
complexity, i.e. memory consumption will be 

𝑂𝑚𝑒𝑚 ∈< 106, 1012 > 
which is becoming prohibitive also from the 
stability issue. As the matrices  𝑴 ,  𝑫 ,  𝑨  are 
symmetrical we can save approx. ½ of memory 
requirements. 
 
Matrix multiplication – this operation seems to be 
simple as the standard formula 

𝑐𝑖𝑗 = �𝑎𝑖𝑘𝑏𝑘𝑗

𝑝

𝑘=1

 

𝑖 = 1, … ,𝑛  𝑗 − 1, … ,𝑝  is used. However this 
operation is of 𝑂(𝑛3)  in general. There are some 
more effective algorithms for special cases, e.g. 
Strassen’s algorithm [30], [W2] with computational 
complexity  𝑂(𝑛2.81) , but matrices must be of 
2𝑘 × 2𝑘  sizes, or Coopersmith-Winograd’s 
algorithm [29] with 𝑂(𝑛2.38) complexity. However 

it should be noted that algorithms are based on 
recursion, time for memory allocation for matrices 
and for data transmissions are not considered.  

It should be noted, that umerical precision due 
to many matrix operations is weakly stable [W3]. 

Experiments made recently showed that those 
factors significantly decrease the efficiency of the 
Strassen’s algorithm. 

The Strassen’s algorithm for matrices 
multiplication is actually based on the observation 
that 

𝑏𝑐 + 𝑎𝑑 = (𝑎 + 𝑏)(𝑐 + 𝑑) − 𝑎𝑐 − 𝑏𝑑 

so instead of having 4 multiplications we need only 
3 multiplications as follows (it is expected that all 
operations are valid). Let us consider  

�𝑨11 𝑨12
𝑨21 𝑨22

� × �𝑩11 𝑩12
𝑩21 𝑩22

� = �𝑪11 𝑪12
𝑪21 𝑪22

� 

Then 
𝑴1 = (𝑨11 + 𝑨22) × (𝑩11 + 𝑩22) 
𝑴2 = (𝑨21 + 𝑨22) × 𝑩11 
𝑴3 = 𝑨11 × (𝑩12 − 𝑩22) 
𝑴4 = 𝑨22 × (𝑩21 − 𝑩11) 
𝑴5 = (𝑨11 + 𝑨12) × 𝑩22 
𝑴6 = (𝑨21 − 𝑨11) × (𝑩11 + 𝑩12) 
𝑴7 = (𝑨12 − 𝑨22) × (𝑩21 + 𝑩22) 

Then the final matrix 𝑪 is given as 
𝑪11 = 𝑴1 + 𝑴4 −𝑴5 + 𝑴7 
𝑪12 = 𝑴3 + 𝑴5 
𝑪21 = 𝑴2 + 𝑴4 
𝑪22 = 𝑴1 −𝑴2 + 𝑴3 + 𝑴6 

If the above rules are applied recursively we get 
algorithm complexity  𝑂�𝑛𝑙𝑜𝑔27� ≈ 𝑂(𝑛2.81) . It 
should be noted that the matrices must be of 
2𝑘 × 2𝑘 size and there is a lot of memory allocation 
and data transmission from/to a matrix.  

Let us more explore our case of the RFB 
interpolation, when the RBF matrix is symmetrical 
and the inverse matrix is symmetrical as well. It 
means that we do not need to store 𝑛2 elements, but 
only  𝑛(𝑛 − 1) 2⁄ , which is significantly lower 
memory requirements. It should be noted that a 
result of multiplication of two symmetrical matrices 
is not generally a symmetrical matrix. 

 
procedure MULT (in: A symmetrical, B; out: C); 
# Matrix A: symmetrical; B: general; C: general 
# Sizes are to be legal 
# Initialization 
cij := 0;  cij := aii*bij;  # for all i,j 
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for i := 1, n-1 
    for j := i+1, n 
        for k := i+1, n 
        { cij +:= aik*bkj; 
          cki +:= aik*bkj 
          # Coherence of caching 
         # q := bkj ; 
        # cij +:= aik*q; 
          # cki +:= aik*q 
        } 

Algorithm 1 
 

As an element 𝑎𝑖𝑗 in a matrix is stored in a linear 
data structure as 𝑏𝑞, i.e. in a vector, a new mapping 
function, if the matrix 𝑨  is stored “row by row” 
compressed for, as  

𝑞 = (𝑖 − 1)𝑛 + 𝑗 − 𝑖 + 1 = 𝑖𝑛 − 𝑛 + 𝑗 − 𝑖 + 1
= 𝑖(𝑛 − 1) − (𝑛 − 1)𝑗
= (𝑖 − 𝑗)(𝑛 − 1)      for   𝑖 < 𝑗 

Now, the formula for the matrix multiplication for a 
symmetric matrix 𝑨 has to be modified, see Alg.1. 

It can be seen that the computational complexity 
is 2 (𝑛 − 1) 1

2
𝑛 1
2
𝑛 = 1

2
𝑛2(𝑛 − 1)  which is again 

 𝑂(𝑛3), but computation will be faster about four 
times. 

 
Matrix inversion is generally of  𝑂(𝑛3) , i.e. 
1
6
𝑛(𝑛 + 1)(𝑛 + 2) − 1

2
𝑛(𝑛 + 1) , complexity, if 

explicit solution is made. The explicit solution is 
necessary in the case of multidimensional or 
dynamic (t-variant) data interpolation. 

 
5 Incremental computation 
As for many applications, the number of points is 
high and some data are to be deleted and new 
inserted,.  

It is not possible to recompute the whole LSE 
due to computational complexity. In this case the 
incremental computation of RBF is to be used. The 
algorithm itself is simple [28] and can be simply 
described as follows: 
 
Incremental RBF computation 
The main question to be answered is: 

Is it possible to use already computed RFB inter-
polation if a new point is to be included into the 
data set? 

If the answer is positive it should lead to significant 
decrease of computational complexity.  

In the following we will present how a new point 
can be inserted, a selected point can be removed and 
also how to select the best candidate for a removal 
according to an error caused by this point removal. 

Let us consider some operations with block 
matrices (we will assume that all operations are 
correct and matrices are non-singular in general etc.). 

�𝑨 𝑩
𝑪 𝑫�

−1

=  � (𝑨 − 𝑩𝑫−1𝑪)−1 −𝑨−1𝑩(𝑫− 𝑪𝑨−1𝑩)−1

−(𝑫− 𝑪𝑨−1𝑩)−1𝑪𝑨−1 (𝑫 − 𝑪𝑨−1𝑩)−1 � 

Let us consider a matrix M of (n+1)×(n+1) and a 
matrix 𝑨 of n×n in the following block form: 

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐� 

Then the inverse of the matrix 𝑴  applying the rule 
above can be written as: 

𝑴−1 =

⎣
⎢
⎢
⎡�𝑨 −

1
𝑐
𝒃𝒃𝑇�

−1
−

1
𝑘
𝑨−1𝒃

−
1
𝑘
𝒃𝑇𝑨−1

1
𝑘 ⎦

⎥
⎥
⎤
 

=  �
𝑨−1 +

1
𝑘
𝑨−1𝒃𝒃𝑇𝑨−1 −

1
𝑘
𝑨−1𝒃

−
1
𝑘
𝒃𝑇𝑨−1

1
𝑘

� 

where:  𝑘 = 𝑐 − 𝒃𝑇𝑨−1𝒃 
We can easily simplify this equation if the matrix 

A is symmetrical as: 

𝝃 = 𝑨−1𝒃 𝑘 = 𝑐 − 𝝃𝑻𝒃 

𝑴−1 =  
1
𝑘
�𝑘𝑨

−1 + 𝝃⨂𝝃𝑻 −𝝃
−𝝃𝑻 1

� 

where: 𝝃⨂𝝃𝑻 means the tensor multiplication. It can 
be seen that all computations needed are of 𝑂(𝑁2) 
computational complexity. 

It means that we can compute an inverse matrix 
incrementally with 𝑂(𝑁2)  complexity instead of 
𝑂(𝑁3)  complexity required originally in this 
specific case. It can be seen that the structure of the 
matrix 𝑴  is “similar to the matrix of the RBF 
specification. 

Now, there is a question how the incremental 
computation of an inverse matrix can be used for 
RBF interpolation? 

We know that the matrix 𝑨  in the equation 
𝑨𝒙 = 𝒃  is symmetrical and non-singular if 
appropriate rules for RBFs are kept. 

 
Point Insertion 
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Let us imagine a simple situation. We have already 
computed the interpolation for N points and we need 
to include a new point into the given data set. 
A brute force approach of full RBF computation on 
the new data set can be applied with  𝑂(𝑁3) 
complexity computation. 

Let us consider RBF interpolation for N+1 points 
and the following system of equations is obtained:  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜙1,1 𝜙1,𝑁 𝜙1,𝑁+1 𝑥1 𝑦1 1

: . . : : : 1
𝜙𝑁,1 𝜙𝑁,𝑁 𝜙𝑁,𝑁+1 𝑥𝑁 𝑦𝑁 1
𝜙𝑁+1,1 𝜙𝑁+1,𝑁 𝜙𝑁+1,𝑁+1 𝑥𝑁+1 𝑦𝑁+1 1
𝑥1 𝑥𝑁 𝑥𝑁+1 0 0 0
𝑦1 𝑦𝑁 𝑦𝑁 0 0 0
1 1 1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜆1
:
𝜆𝑁
𝜆𝑁+1
𝑎𝑥
𝑎𝑦
𝑎0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓1
:
𝑓𝑁
𝑓𝑁+1

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

             where:  𝜙𝑖,𝑗 = 𝜙𝑗,𝑖 

Reordering the equations above we get: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 𝑥1 𝑥𝑁 𝑥𝑁+1
0 0 0 𝑦1 𝑦𝑁 𝑦𝑁+1
0 0 0 1 1 1
𝑥1 𝑦1 1 𝜙1,1 𝜙1,𝑁 𝜙1,𝑁+1
: : : : : :
𝑥𝑁 𝑦𝑁 1 𝜙𝑁,1 𝜙𝑁,𝑁 𝜙𝑁,𝑁+1
𝑥𝑁+1 𝑦𝑁+1 1 𝜙𝑁+1,1 𝜙𝑁+1,𝑁 𝜙𝑁+1,𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑎𝑥
𝑎𝑦
𝑎0
𝜆1
:
𝜆𝑁
𝜆𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
𝑓1
:
𝑓𝑁
𝑓𝑁+1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

We can see that last row and last column is 
“inserted”. As RBF functions are symmetrical the 
recently derived formula for iterative computation 
of the inverse function can be used. So the RBF 
interpolation is given by the matrix M as  

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐� 

where the matrix A is the RBF matrix (N+3)×(N+3) 
and the vector b (N+3) and scalar value c are 
defined as: 

𝒃 = [𝑥𝑁+1 𝑦𝑁+1 1 𝜙1,𝑁+1 . . 𝜙𝑁,𝑁+1]𝑇 

𝑐 = 𝜙𝑁+1,𝑁+1 

It means that we know how to compute the matrix 
𝑴−1 if the matrix 𝑨−1 is known.  

That is exactly what we wanted! 

Recently we have proved that iterative computation 
of inverse function is of 𝑂(𝑁2) complexity, which 
offers a significant performance improvement for 
points insertion. It should be noted that some 
operations can be implemented more effectively, 
especially 𝝃⨂𝝃𝑻 = 𝑨−1𝒃𝒃𝑇𝑨−1  as the matrix 𝑨−1 
is symmetrical etc. 
 
Point Removal 
In some cases it is necessary to remove a point from 
the given data set. It is actually an inverse operation 
to the insertion operation described above. Let us 
consider a matrix M of the size (N+1)×(N+1) as  

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐� 

Now, the inverse matrix  𝑨−𝟏 is known and we want 
to compute matrix A-1, which is of the size N×N. 
Recently we derived opposite rule: 

𝑴 = � 𝑨 𝒃
𝒃𝑇 𝑐� 

𝝃 = 𝑨−1𝒃 𝑘 = 𝑐 − 𝝃𝑻𝒃 

𝑴−1 =  �
𝑨−1 +

1
𝑘
𝝃⨂𝝃𝑻 −

1
𝑘
𝝃

−
1
𝑘
𝝃𝑻

1
𝑘

� = �𝑸11 𝑸12
𝑸21 𝑸22

� 

It can be seen that 

𝑸11 = 𝑨−1 +
1
𝑘
𝝃⨂𝝃𝑻 

and therefore 

𝑨−1 =  𝑸11 −
1
𝑘
𝝃⨂𝝃𝑻 

Now we have both operations, i.e. insertion and 
removal, with effective computation of 𝑂(𝑁2) 
computational complexity instead of   𝑂(𝑁3) . It 
should be noted that vectors related to the point 
assigned for a removal must be in the last row and 
last column of the matrix M-1. 

 
Point selection 
As the number of points within the given data set 
could be high, the point removal might be driven by 
a requirement of removing a point which causes a 
minimal error of the interpolation. This is a tricky 
requirement as there is probably no general answer. 
The requirement should include additional 
information which interval of x is to be considered. 
Generally we have a function  
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𝑓(𝒙) = �𝜆𝑖

𝑁

𝑖=1

𝜙𝑖(𝒙) + 𝑃𝑘(𝒙) 

and we want to remove a point xj which causes a 
minimal error 𝜀𝑗 of interpolation, i.e.  

𝑓𝑗(𝒙) = � 𝜆𝑖

𝑁

𝑖=1,𝑖≠𝑗

𝜙𝑖(𝒙) + 𝑃𝑘(𝒙) 

and we want to minimize  

𝜀𝑗 = � �𝑓(𝒙) − 𝑓𝑗(𝒙)� 𝑑𝒙
Ω

 

where 𝛺 is the interval on which the interpolation is 
to be made. It means that if the point xj is removed 
the error εj is determined as: 

𝜀𝑗 = 𝜆𝑗 �𝜙��𝒙 − 𝒙𝑗��𝑑𝒙
Ω

 

As we know the interval 𝛺  on which the 
interpolation is to be used, we can compute or 
estimate the error 𝜀𝑗  for each point xj in the given 
data set and select the best one. For many functions 
𝜙  the error 𝜀𝑗  can be computed or estimated 
analytically as the evaluation of 𝜀𝑗  is simple for 
many functions, e.g. 

�𝑟𝑚 ln𝑑𝑟 = 𝑟𝑚+1 ln 𝑟
𝑚 + 1

−
1

(𝑚 + 1)2 

It means that for TPS function 𝑟2 ln 𝑟  the error 
𝜀𝑘  is easy to evaluate. In the case of CSRBF the 
estimation is even simpler as they have a limited 
influence, so generally 𝜆𝑗  determines the error 𝜀𝑗. 

It should be noted, that a selection of a point with 
the lowest influence to the interpolation precision in 
the given interval 𝛺 is of 𝑂(𝑁) complexity only. 

We have shown a novel approach to RBF 
computation which is convenient for larger data sets. 
It is especially convenient for t-varying data and for 
applications, where a “sliding window” is used. 
Basic operations – point insertion and point removal 
– have been introduced. These operations have O(N2) 
computational complexity only, which makes a 
significant difference from the original approach 
used for RBFs computation. 
 
6 RBF Approximation 
The RBF interpolation relies on solution of a LSE 
𝑨𝒙 = 𝒃 of the size M×M in principle, where M is a 
number of the data processed. If the “global” 
functions are used, the matrix 𝑨 is full, while if the 
“local” functions are used (CSRBF), the matrix 𝑨 is 
sparse. 

However, in visualization applications it is 
necessary to compute the final function 𝑓(𝒙) many 
many times and even for already computed 𝜆𝑖 

values, the computation of 𝑓(𝒙)  is too expensive. 
Therefore it is reasonable to significantly “reduce” 
the dimensionality of the LSE 𝑨𝒙 = 𝒃. Of course, 
we are now changing the interpolation property of 
the RBF to approximation, i.e. the values computed 
do not pass the given values exactly. 

Probably the best way is to formulate the 
problem using the Least Square Error approximation. 
Let us consider the formulation of the RBF 
interpolation again.  

𝑓(𝒙𝑖) = �𝜆𝑗  𝜑��𝒙𝑖 − 𝝃𝑗��
𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 + 𝑎0  

ℎ𝑖 = 𝑓(𝒙𝑖)           𝑖 = 1, … ,𝑁 

where: 𝝃𝑗 are not given points, but points in a pre-
defined “virtual mesh” as only coordinates are 
needed (there is no tessellation needed). This 
“virtual mesh” can be irregular, orthogonal, regular, 
adaptive etc. For simplicity, let us consider the 
two-dimensional squared (orthogonal) mesh in the 
following example. Then the 𝝃𝑗 coordinates are the 
corners of this mesh. It means that the given 
scattered data will be actually “re-sampled”, e.g. to 
the squared mesh. 
 

New reference points  ξ

Given points  x

 
Fig.2. RBF approximation and points’ reduction 
 
In many applications the given data sets are 

heavily over sampled, or for the fast previews, e.g. 
for the WEB applications, we can afford to “down 
sample” the given data set. Therefore the question is 
how to reduce the resulting size of LSE.  

Let us consider that for the visualization 
purposes we want to represent the final potential 
field in k -dimensional space by 𝑃 values instead of 
𝑀 and 𝑃 ≪ 𝑀. The reason is very simple as if we 
need to compute the function 𝑓(𝒙) in many points, 
the formula above needs to be evaluated many times. 
We can expect that the number of evaluation 𝑄 can 
be easily requested at 102 𝑀 of points (new points) 
used for visualization.  
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If we consider that  𝑄 ≥ 102 𝑀  and  𝑀 ≥ 102 𝑃 
then the speed up factor in evaluation can be 
easily about 𝟏𝟎𝟒 !  

This formulation leads to a solution of a linear 
system of equations 𝑨𝒙 = 𝒃  where number of 
rows 𝑀 ≫ 𝑃, number of unknown [𝜆1 , … , 𝜆𝑃 ]𝑇. As 
the application of RBF is targeted to high 
dimensional visualization, it should be noted that the 
polynomial is not requested for all kernels of the 
RBF interpolation. However it is needed for 
𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟 kernel function (TPS).  

This reduces the size of the over determined 
linear system of equations  𝑨𝒙 = 𝒃  significantly. 
Such system can be solved by the Least Square 
Method (LSM) as  𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 or Singular Value 
Decomposition (SVD) can be used. 

⎣
⎢
⎢
⎢
⎡
𝜑1,1 ⋯ 𝜑1,𝑃
⋮ ⋱ ⋮

𝜑𝑖,1 . . 𝜑𝑖,𝑃
⋮ ⋱ ⋮

𝜑𝑀,1 ⋯ 𝜑𝑀,𝑃⎦
⎥
⎥
⎥
⎤

�
𝜆1
⋮
𝜆𝑃
� =

⎣
⎢
⎢
⎢
⎡
ℎ1
⋮
⋮
⋮
ℎ𝑀⎦

⎥
⎥
⎥
⎤

        𝑨𝒙 = 𝒃 

The high dimensional data can be approximated for 
visualization by RBF efficiently with a high 
flexibility as it is possible to add additional points of 
an area of interest to the mesh. It means that a user 
can add some points to already given mesh and 
represent easily some details if requested. It should 
be noted that the use of LSM increases instability of 
the LSE in general. 
 
7 Experimental Evaluation 
The RBF interpolation is a very powerful tool for 
interpolation of data in k -dimensional space in 
general. In order to demonstrate the functionality the 
RBF, we have recently used RBF for reconstruction 
of damaged images by a noise or by inpainting [26], 
[28]. Also a surface reconstruction has been solved 
by the RBF interpolation well. Fig.3a and Fig.3b 
illustrates the power of the RBF interpolation [8], 
[15], [24] for corrupted image reconstruction. The 
RBF interpolation gives quite good results even if 
the images are heavily damaged.  

The advantages of RBF interpolation over the 
other interpolations have been proved even though 
that the RBF interpolation causes some additional 
computational cost as the RBF is primarily targeted 
for scattered data interpolation. Fig.4 presents speed 
of the “standard” and incremental solution and Fig.5 
resents the actual speed-up of computation for one 
inserted or deleted point. 

 
Fig.3a. Original image with 60% of damaged pixels 

 
Fig.3b. Reconstructed image [13] 

 

 
Fig.4: Comparison of “standard” and incremental method 

 
Speed-up is defined as 

𝜈 =
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
𝑡𝑖𝑚𝑒𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙

 

 
Fig.5: Speed-up of the incremental method 

 
It can be seen that the incremental approach is much 
faster as expected as the incremental computation is 
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of 𝑂(𝑛2) while the total re-computation of the RBF 
interpolation is of 𝑂(𝑛3) complexity. 
 
8 Conclusion 
The radial basis functions (RBF) interpolation is a 
representative interpolation method for un-ordered 
scattered data sets. It is well suited approach for 
solving problems without meshing the data domain. 
RBF interpolations are used in many computational 
fields, e.g. in solution of partial differential 
equations, DEMs and support the k -dimensional 
space naturally. 

This paper briefly describes a principle of the 
RBF incremental computation and shows the 
decrease of the computational complexity from 
approx. 𝑂(𝑁3) to 𝑂(𝑁2) for a point insertion and a 
point removal.  

The paper also presents a method for 
“resampling” the data processed as the 
approximation is acceptable in many applications, 
namely in visualization. This approach enables to 
increase details for visualization by adding new 
points to the “virtual mesh”, if more details are 
needed. It is necessary to mention, that there is no 
mesh actually needed nor generated and only points 
of the “virtual mesh” need to be defined. 
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Appendix A 
It should be noted that a result of multiplication of 
two symmetrical matrices is not generally a 
symmetrical matrix, e.g. 
 

�𝑎 𝑏
𝑏 𝑐� �

𝑑 𝑒
𝑒 𝑓� = �𝑎𝑑 + 𝑏𝑒 𝑎𝑒 + 𝑏𝑓

𝑏𝑑 + 𝑐𝑒 𝑏𝑒 + 𝑐𝑓� 

 
 
Appendix B 
 
Multiplication 𝑪3,2 = 𝑨3,3 × 𝑩3,2  
 

𝑐11 = 𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 
𝑐21 = 𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 
𝑐31 = 𝑎31𝑏11 + 𝑎32𝑏21 + 𝑎33𝑏31 

 
𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32 
𝑐22 = 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32 
𝑐32 = 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32 

 
If the matrix 𝑨 is symmetrical, then only the upper 
triangular part is to be stored in a linear structure 
as 𝑎𝑖𝑘 = 𝑎𝑘𝑖. This also simplifies the multiplication 
algorithm for 

 𝑪 = 𝑨 × 𝑩 
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