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Abstract
The task of dynamic mesh compression seeks to find a compact representation of a surface animation, while the ar-
tifacts introduced by the representation are as small as possible. In this paper we present two geometric predictors,
which are suitable for PCA based compression schemes. The predictors exploit the knowledge about the geomet-
rical meaning of the data, which allows a more accurate prediction, and thus a more compact representation. We
also provide rate/distortion curves showing that our approach outperforms the current PCA-based compression
methods by more than 20%.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Animation—

1. Introduction

Dynamic mesh compression is a topic that has received in-
creased popularity in the last period. The research activities
are focused on finding a compact representation for 3D sur-
face animations. An animation is represented by a series of
static triangular meshes (frames) of shared connectivity. The
geometry of the subsequent frames usually does not change
radically, because the temporal distance between two frames
is usually 1/25 s or 1/30 s.

The problem of connectivity compression is of minor im-
portance to this case. First because it has been studied in-
tensively for the static case, and the results can be directly
applied to the dynamic case, and second because the en-
coded size of a single frame’s connectivity is almost negligi-
ble when compared to the geometry data from all the frames.

The problem of dynamic mesh compression has been ad-
dressed from many points of view. One of the most promis-
ing is the representation of the animation by a series of sam-
ples in the space of trajectories, each vertex having one sam-
ple. Such representation provides useful properties, such as:

1. possibility of very strong dimensionality reduction using
a tool such as the PCA (Principal Component Analysis)
to find an optimal basis for expressing the samples,

2. possibility to predict the trajectories of topologically in-

cident vertices by some kind of interpolation or extrapo-
lation of neighbouring sample values,

3. suitability for direct and memory efficient displaying us-
ing modern GPUs with programmable vertex processing
pipeline,

4. possibility of compact representation without a need for
a bone system, which may be unknown, or unfit for trans-
mitting due to intellectual property issues.

In this paper we extend the trajectory space PCA based
compression scheme by adding two predictors, which allow
higher precision estimation of trajectories, and thus more
efficient compression. The predictors are suited to be used
in a situation, when the trajectories of a topological neigh-
bourhood of a vertex are already transmitted. This state
is achieved by a compression scheme which involves ver-
tex decimation, such as the scalable compression by Ste-
fanoski et al. [SLKO07].

In our approach, we update the predictor during the trans-
mission of the coordinates of a single vertex. The nature of
the PCA removes the global correlation between the coordi-
nates, and thus we cannot directly determine anything about
a subsequent coordinate based on the value of the previous
one. However, when the neighbourhood is known, we can
make some assumptions on the relations between the neigh-
bourhood and the decoded vertex, allowing a more efficient
compression.
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2 L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression

2. Related Work

First attempt to dynamic mesh compression has been pub-
lished in the paper by Lengyel [Len99], who suggested sub-
dividing the mesh into clusters in which the movement can
be described by a single transformation matrix.

Ibarria and Rossignac [IR03] later suggested a spatio-
temporal prediction schemes ELP and Replica, which were
used to predict next vertex position during a mesh traversal
using the EdgeBreaker state machine. A similar approach
has been used by Stefanoski et al. [SO06] in the angle pre-
serving predictor. The position of the new vertex is expressed
in a local coordinate system defined by a neighboring trian-
gle.

Owen and Zhang [ZO04] have proposed exploiting spatial
coherence of the data using an octree to subdivide the model
and encoding each subdivision cell separately. This approach
has been improved by Mueller et al. [MSK∗06,MSK∗05]. In
their approach they select the best fitting appropriate predic-
tor for each cell, and the cells which are predicted badly are
further subdivided.

The wavelet theory has been used for dynamic mesh com-
pression in the work by Payan and Antonini [PA05], who
suggested treating separate vertex trajectories as sampled
signal. However, their method did not use the spatial coher-
ence present in the data.

A different class of approaches has been pioneered by
Alexa and Mueller [AM00], who suggested using the PCA in
the space of frames, expressing each frame as a linear com-
bination of eigen frames. However, this method had prob-
lems with rigid movement, which had to be compensated in
a preprocessing step, where a transformation matrix for each
frame has been found using the least squares approach.

The method has been subsequently improved by Karni
and Gotsman [KG04], who suggested exploiting the tem-
poral coherence of the PCA coefficients by encoding them
using linear prediction coding (LPC), thus achieving a lower
entropy of the encoded data. Another improvement has been
proposed by Sattler et al. [SSK05], who suggested using
PCA in the space of trajectories, and finding clusters of ver-
tices where the PCA worked well (Clustered PCA). How-
ever, their iterative clustering method did not always reach
the same clustering because it had been randomly initialised.

Another addition to the PCA based method was proposed
in 2007 by Amjoun [Amj07, AS07], who suggested using
a trajectory based analysis along with expressing each tra-
jectory in a local coordinate frame defined for each cluster.
Additionally, a bit allocation procedure is applied, assign-
ing more bits to cluster where more PCA coefficients are
needed to achieve desired precision. This paper also men-
tions the compression of the PCA basis, however it suggests
simple direct encoding without prediction and with uniform
quantization of the basis matrices.

Mamou [MZP06] has proposed an approach similar to the
PCA, called skinning based compression. The mesh is first
segmented into parts that move in an almost rigid fashion.
The movement of each cluster is expressed by a transfor-
mation matrix, and subsequently each vertex is assigned a
vector of weights, that tells how to combine the transforms
of the neighboring clusters to obtain the movement of the
vertex.

A resampling approach has been proposed by Briceno
[BSM∗03] in his work on Geometry Videos. This idea is
an extension of the previously proposed Geometry Images
[GGH02]. The geometry of the object is unwrapped and pro-
jected onto a square, which is regularly sampled. The result-
ing image is encoded using some off the shelf algorithm. The
extension to videos solves the problems of finding a single
mapping of a moving content onto a square while minimiz-
ing the overall tension. Generally, the method is not easy
to implement and suffers from some artifacts, especially for
objects with complex geometry.

Recently, there are also scalable approaches appearing,
such as the scheme proposed by Stefanoski et al. [SLKO07].
These approaches allow progressive level of detail transmis-
sion of the dynamic mesh, and also achieve better compres-
sion ratios by using sophisticated local predictors which use
the data from coarser detail levels.

In 2008, a second amendment of the MPEG-4 part 16 was
published, specifying a new MPEG standard for dynamic
mesh compression, the FAMC algorithm. The standard is
based on the algorithms of Mamou and Stefanoski, and it
includes a specific arithmetic coder based on the CABAC
scheme [MWS03]. The algorithm has been shown to outper-
form all the algorithms available at the time of publication.

Recently Váša and Skala have published compression
schemes based on the trajectory space PCA, suggesting
a combination of the PCA step with an EdgeBreaker-like
predictor (see Rossignac [Ros99]). The Coddyac algorithm
[VS07] predicts the PCA coefficients by the well known
parallelogram local predictor, which allows better perfor-
mance than the clustering-based approaches. Subsequently,
they have suggested using vertex decimation as a part of the
compression [VS09b]. The main advantage of this approach
is that it allows the encoder to partially steer the decima-
tion process according to the accuracy of the used predictors,
and therefore their approach is well suited for interchanging
predictors. Finally, the authors have presented an algorithm
for efficient encoding of the PCA basis [VS09a], which has
boosted the performance of the algorithm so that it outper-
forms the FAMC standard.

Note that in contrast to Alexa [AM00] the schemes of
Váša and Skala are based on PCA in the space of trajec-
tories, which is of a much lower dimension than the space of
shapes. The dimension still depends on the number of frames
in the animation, however the number of frames is dictated
by the rules of content editing (see Reisz et al. [RMD68]),
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L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression 3

which usually state that individual scenes between scene
cuts should not be longer than 20 seconds (500 frames).
Moreover, a longer sequence can be quite easily split into
shorter sequences, and thus the dimension of the space never
has to be much larger than about 1500 (three coordinates
in each frame). Therefore the schemes based on trajectory-
space PCA are fully practical, because the PCA step can be
usually performed in 1-2 minutes instead of hours needed
for the shape space PCA.

Generally, the area of dynamic mesh compression has ma-
tured over the last years, as illustrated by the publication
of the second MPEG standard for this task. It is therefore
quite difficult to achieve any significant improvement of per-
formance. In this paper we demonstrate that improvement
is still possible, at the cost of increasing the computational
complexity, which, however, does not compromise real-time
decompression of the mesh.

3. Algorithm derivation

3.1. Used notation

In the following paragraphs we will be using following sym-
bols:

F stands for the total number of frames in an animation.

V stands for the total number of vertices in each frame of
an animation.

v f
i stands for the three-component vector of XYZ coordi-

nates of the i-th vertex in the f -th frame.

ci stands for a vector of PCA coefficients (feature vector)
associated with the i-th vertex. c j

i is the j-th component of
the feature vector.

R stands for a number of PCA coefficients used for encod-
ing, usually R << 3V .

n(i) stands for a set of indices of vertices in topological
neighbourhood of i-th vertex. n(i, j) is the j-th member of
the set, i.e. index of the j-th neighbor of the i-th vertex.

N(i) stands for the number of vertices in topological
neighbourhood of i-th vertex.

pred(ξ) stands for a prediction of the value ξ (vertex coor-
dinate, PCA coefficient) which can be simultaneously com-
puted by both encoder and decoder.

ξ denotes value of ξ (vertex coordinate, PCA coefficient)
as decoded by decoder. It might be different from the orig-
inal value of ξ due to quantization and other causes of data
loss in transmission. The value of ξ is always known to both
decoder and encoder, because encoder can simulate the de-
coding process to obtain the decoded value.

3.2. Overview of the background algorithms

In order to derive our predictor, we will first describe a gen-
eral scheme used in some static and dynamic mesh compres-

sion algorithms. The idea is targeted on predictive delta cod-
ing, i.e. a scheme where the decoder predicts the value (co-
ordinate etc.) being decoded as precisely as possible, the en-
coder simulates the prediction and only sends the difference
between the actual value and the prediction. The quantized
residuals generally have much lower entropy than the quan-
tized original values, thus the final code is shorter.

Some algorithms have used an EdgeBreaker-like [Ros99]
traversal of the mesh, using the parallelogram predic-
tor to estimate the coordinate values (for static meshes
see [Ros99], for dynamic case see [VS07]). The predictor in
this case is based on a neighboring triangle, which is avail-
able at the decoder, and performs basically an extrapolation
of the vertex coordinates of the triangle.

However, a better approach presented in [VS09b] uses in-
terpolation instead of extrapolation. In order to do so, we
need to transmit the vertices in such an order that in each
step a complete topological neighbourhood of the vertex is
available at the decoder. Fortunately, this can be done quite
easily: the decoder first receives a full connectivity, which
is then simultaneously decimated (see [SZL92,COLR99]) at
both the encoder and the decoder, i.e. vertices are removed
from the mesh, and the resulting holes are retriangulated.

input data

Basis

encoding

Predictor

prediction

residuals

Decimation

connectivity

coarse versionre!nements

PCA

basis coe"cients

geometry

-

encoded basis

Figure 1: Block scheme of the encoder. The thick arrows
denote data that is sent over to the decoder.

The decimation must use topology-only criteria, because
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4 L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression

geometry is not yet known to the decoder. In this paper,
we follow the scheme by Váša and Skala [VS09b] and use
preservation of vertex degree close to 6. This way, a major-
ity of vertices are removed, obtaining a very coarse version
of the original mesh. The geometry of the coarse mesh is
transmitted using the previously described method, and sub-
sequently the inverse of the decimation follows, in each step
adding a vertex into a neighbourhood completely known to
the decoder. This allows a better estimation of the actual
vertex position by simply averaging the coordinates of the
neighboring vertices.

pred(v f
i ) =

1
N(i) ∑

j∈n(i)
v f

j (1)

It has been suggested by in [SSK05] and [VS07] to first
perform a decorrelation using the principal component anal-
ysis (PCA) in the space of trajectories. The input data is re-
ordered to a matrix M of size 3F ×V , where each column
represents a trajectory of a single vertex. An average value
is computed for each row, forming an average trajectory, and
this average trajectory is subtracted from each column. The
matrix is subsequently decomposed using either the singular
value decomposition, or simply the eigenvalue decomposi-
tion of MMT . In both cases a new basis of the column space
of M is found, where the combination coefficients are uncor-
related.

Note that at this point, the data is decomposed into feature
vectors ci and a basis, both of which need to be transmitted
to the decoder. We will not discuss the encoding of the basis
here, because its efficient compression is a different problem
which has been addressed by [VS09a].

Each column (vertex trajectory) of M is expressed in the
new basis. Experiments show that a vast majority of variance
is accumulated in only a few most important coefficients,
and therefore preservation of only a subset of length R of the
combination coefficients works as a good representation of
the original values.

After this process, each vertex has assigned a vector of
coefficients ci (feature vector). This vector determines how
to combine the basis trajectories to obtain the trajectory re-
construction. Note that at this point vertices no longer have
their XYZ coordinates, and they are only determined by their
topological position and by the above mentioned feature vec-
tor.

A useful property of the PCA step is that it does not affect
the shape of the predictors in any way, because the PCA can
be viewed as a simple change of coordinate system, which
has no effect on the result of a linear operation. Thus, for
the extrapolation we can use the very same formula which
has been used to extrapolate the XYZ coordinates, only this
time extrapolating the PCA coefficients, i.e. the components
of the feature vectors ci [VS07]. Equally, we can average

decoded data

Basis

decoding

Predictor

predictionresiduals

Re�ning

connectivity coarse version

re�nements

*

basis

all coe!cients

+

encoded basis

Figure 2: Block scheme of the decoder. The thick arrows
denote data that is received from the encoder.

the components of the feature vectors during interpolation
[VS09b].

pred(ci) =
1

N(i) ∑
j∈n(i)

c j (2)

Block schemes of both general encoder and decoder are
shown in figures 1 and 2 respectively.

Generally, it might seem inconvenient that in order to start
playback of the animation, it is necessary to first decode
its full length. It is important to realise that we are deal-
ing with compression of separate scenes usually of length
about 500 frames (20 seconds), between which the user can
freely navigate. In fact most video codecs also do not allow
fully free temporal navigation, because in order to decode a
"B frame", it is necessary to first locate and decode its sur-
rounding "P frames", which may in turn require first decod-
ing their respective "I frames" (see Poynton [Poy03]).

Similarly, it might seem inconvenient that the user is not
given random access to vertices. However, access to sepa-
rate vertices is usually only needed for the purposes of LOD
playback, which is naturally supported by the incorporation

submitted to COMPUTER GRAPHICS Forum (3/2010).

Computer Graphics Forum, Vol.29,No.6, pp.1921-1933, ISSN 0167-7055,  2010

Skala
Obdélník

Skala
Obdélník



L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression 5

of simplification into the process. Therefore the user is not
allowed to decompress any vertex at any time, however it is
possible to simply stop the decompression at any time during
the mesh refinement, and play the partially decompressed
dynamic mesh.

3.3. Hypothesis

The hypothesis behind our approach is that each vertex is
located at a certain position relative to its neighbors, and
that this relative position does not change too much dur-
ing the whole animation. If the decoder had the information
about the relative position, then it would be able to perform
a more precise prediction, and thus achieve a better bitrate.

The existing approaches, such as parallelogram extrapo-
lation or neighbourhood average interpolation, actually al-
ready use this idea, placing the prediction either to a tip of a
parallelogram formed by vertices of an adjacent triangle, or
into the average position of neighboring vertices. However,
as shown by Isenburg and Alliez [IA02], in most cases this
position is not optimal.

To support our hypothesis, we have constructed a hypo-
thetical predictor, which knows the relative position of each
vertex. The relative position of i-th vertex is expressed as a
set of weights w(i) j, j = 1..N(i) of its neighboring vertices
used for interpolation, or by a triplet of weights w(i) j, j =
1..3 for the three vertices of the adjacent triangle for the case
of extrapolation (extrapolation is always used to transmit the
coarse version of the mesh). These weights have been com-
puted by the least squares optimization, and in our hypo-
thetical scenario they do not increase the bitrate at all. Note
that these weights are not barycentric coordinates (sum of
weights is allowed to be different form 1), and therefore we
are able to express any relative position, even when it does
not lie in the plane of the neighboring vertices. The hypo-
thetical predictor uses the following scheme for prediction
during interpolation:

pred(ci) =
N(i)

∑
j=1

w(i) jcn(i, j) (3)

Table 1 shows the performance of a PCA-based coder, us-
ing parallelogram and neighbourhood average (will be de-
noted NAVG) predictors, compared to the same experiment
using the predictor with the knowledge of weights. It can
be seen that we have achieved a decrease of bitrate for all
the models, and in some cases we have even decreased the
error (for details on how the errors were measured see sec-
tion 6, we have used the same method throughout the paper).
Roughly speaking, this decrease is caused by the improved
accuracy of the predictor in the cases when the residual value
is quantized to zero - more such cases appear, i.e. the entropy
is decreased, and the predicted position is closer to the actual

dataset extrapolator interpolator

rate 

[bpfv]

KG 

error ∆rate ∆error

chicken Parallelogram NAVG 1,55 0,09

chicken Weighted Weighted 1,26 0,08

dance Parallelogram NAVG 1,05 0,05

dance Weighted Weighted 0,70 0,05

jump Parallelogram NAVG 0,75 0,41

jump Weighted Weighted 0,48 0,40

cowheavy Parallelogram NAVG 2,33 0,31

cowheavy Weighted Weighted 1,70 0,31

snake Parallelogram NAVG 0,97 0,06

snake Weighted Weighted 0,73 0,06

cloth Parallelogram NAVG 0,58 0,12

cloth Weighted Weighted 0,44 0,12

average 27,40% 2,35%

19,14% 3,64%

33,36% 8,61%

35,78% 0,43%

27,15% 0,50%

24,68% -0,98%

24,26% 1,89%

Table 1: Hypothetical predictor results.

position, which causes the decrease in error, even when the
quantization has not been changed.

This improvement of performance is our goal, however,
we cannot achieve it directly. Our hypothetical predictor as-
sumed an exact knowledge of the weights without any im-
pact on the bitrate, which, of course, cannot be achieved in
practice. A straightforward idea is to transmit the weights
along with the other data, and optimise their quantization to
obtain the best rate/distortion ratio.
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Figure 3: Performance of the weighted predictor on the
chicken run dataset. The quantization parameter Q shown
on horizontal axis determines the roughness of quantization,
the quantization constant is determined as 1/2Q. Bpfv de-
notes bit per frame and vertex.

Such an approach has been implemented, and figure 3 in-
deed shows that for the chicken run sequence we can achieve
results better than using the original predictors by using
uniformly quantized weights with quantization constant of
1/27. However, this result is only possible to achieve, when
meshes of low detail (i.e. low number of vertices, low num-
ber of weights to be transmitted) and long duration (i.e. the
weights are amortised by many frames) are used.

Although the quantization constant of 1/27 remains opti-

submitted to COMPUTER GRAPHICS Forum (3/2010).

Computer Graphics Forum, Vol.29,No.6, pp.1921-1933, ISSN 0167-7055,  2010

Skala
Obdélník

Skala
Obdélník



6 L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression

mal, it is shown in figure 4 that for highly detailed sequence
it may not be beneficial at all to transmit the weights. As for
the remaining datasets, we have found results consistent with
this analysis, having significant improvement in two cases
(chicken run, cowheavy), slight improvement in two cases
(dance and human jump) and no improvement at all in two
cases (snake and cloth).
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Figure 4: Performance of the weighted predictor on the
falling cloth dataset. The quantization parameter Q shown
on horizontal axis determines the roughness of quantization,
the quantization constant is determined as 1/2Q.

In the following text we will therefore search for a way
to estimate the weights without having to send them to the
decoder.

3.4. Least squares prediction (LSP)

In our first real predictor, we will use least squares minimi-
sation to obtain a vector of weights of neighboring vertices
that fits the data well.

The task is to insert the i-th vertex, which has a trajectory
described by a feature vector ci of length R.

We assume that R > N(i), because for regular meshes N(i)
is usually about 6, while R needs to be about 30-80, depend-
ing on the length and character of the animation.

For the first N(i) components of the vector ci we have to
use neighbourhood average prediction in the following form:

pred(c j
i ) =

1
N(i) ∑

k∈n(i)
c j

k, j = 1..N(i) (4)

The encoder simulates this prediction, and sends over the
corrections, so that after N steps, c1..N(i) are known to both
encoder and decoder. The prediction so far can be seen as
combining the neighboring vectors using weights equal to

1
N(i) . This would be a perfect predictor if the new vertex was
placed in the exact centre of the hole. However, it is usu-
ally not the case (not even for regular meshes, because the

iterative decimation usually destroys the regularity). There-
fore, the decoder will now estimate a better set of weights
w j, j = 1..N(i), using the following system of linear equa-
tions:

w1c1
n(i)1

+w2c1
n(i)2

+ · · ·+wN(i)c1
n(i)N(i)

= c1
i

w1c2
n(i)1

+w2c2
n(i)2

+ · · ·+wN(i)c2
n(i)N(i)

= c2
i

...

w1cN(i)
n(i)1

+w2cN(i)
n(i)2

+ · · ·+wN(i)c
N(i)
n(i)N(i)

= cN(i)
i

(5)

The matrix of this system of linear equations should be
regular (unless two neighbors are located at the same posi-
tion - this situation may appear due to quantization, and its
treatment will be described later). Therefore a solution can
be found and used to predict the component N +1:

pred(cN(i)+1
i ) =

N(i)

∑
j=1

w jc
N(i)+1
n(i, j) (6)

Again, this prediction is computed at both encoder and
decoder, and the encoder sends a correction, which makes
the value of cN+1

i known to the decoder. Thus, the system
of equations (5) can be extended by one row. This makes
the set overdetermined, however, it can be still solved using
the least squares minimisation. Such solution will yield an
even more precise estimate of the weights w j , which will
be then used to compute pred(cN+2

i ). In this manner, with
each correction sent to the decoder, a new set of weights is
found and used to predict the subsequent component, until
the whole vector has been transmitted.

There are two additional circumstances that require treat-
ment:

1. The coordinates are quantized, and therefore it might
happen that two or more neighbors have the same values
assigned. This may lead to underdetermination of the sys-
tem of linear equations (5). We solve such case by sim-
ply removing the neighbors with equal values assigned
from the computation. Note that this state is likely to be
corrected when more components are transmitted, as it
is unlikely that two vertices shared the same position. If
such case occurs, it is an indication that the mesh has been
quantized too roughly.

2. The values transmitted are the PCA coefficients, and thus
their magnitude is approximately sorted from large to
small. The quantized residuals of the large values con-
tribute a big part to the entropy, and thus we should focus
on precise prediction of these. Therefore, we transmit the
coefficient vectors in the reverse order, first transmitting
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L. Váša, V. Skala / Geometry driven local neighbourhood based predictors for dynamic mesh compression 7

the small coefficients, which allows us to have a very pre-
cise set of weights at the point when large coefficients are
transmitted.

The interpolating predictor presented in this paragraph
can be simply transformed into an extrapolating predictor by
simply considering the three vertices of a neighboring trian-
gle instead of the vertices of the neighbourhood.

The overdetermined matrix solved during the evaluation
of the LSP is of size R×N(i), where R stands for the num-
ber of basis vectors used and N(i) stands for the number of
neighbors (which does not change significantly). The least
squares solution of this matrix can be obtained in time lin-
ear to the number of basis vectors. The solution is computed
for each of the R components of each feature vector. Thus
the overall computational complexity is linear with respect
to the number of vertices and quadratic with respect to the
number of used basis vectors.

3.5. RBF based predictor (RBFP)

The second predictor we are presenting is based on the
Radial Basis Function (RBF) interpolation (see Duchon
[Duc77] and Uhlíř and Skala [US06]). This approach be-
comes natural if we reinterpret the predictor described in the
previous section as an interpolator. The predictor actually
interpolates each unknown component of the feature vector
(unknown variable), using the already known components,
which can be seen as coordinates. The LS predictor of pre-
vious paragraph can be thus seen as an interpolator based
on generalized barycentric coordinates. However, we have
better concepts for interpolation.

The RBF is a tool for interpolating scattered data in a
general dimension space. The interpolation is formed as a
superposition of radial functions centred at the points of
known values. Each radial function is multiplied by a weight
λi, which is found so that the interpolation function passes
through the known values. Additionally, there should be a
polynomial function that improves the fitting.

For our purposes we will only be able to use zero order
polynomial, i.e. a constant. Thus our interpolation function
has the following form:

f (x) =
N

∑
i=1

λiφ(‖x− xi‖)+a (7)

where xi are the locations of N known points, ‖.‖ denotes
Euclidean norm and φ(r) is some function (the function we
have used will be discussed later). The values λi are un-
known, and are determined from the values at the known
points. The equation (7) should have the correct value yi at
the given points xi, thus we get the system of linear equa-
tions 8.

λ1φ(‖x1− x1‖)+ · · ·+λNφ(‖x1− xN‖)+a = y1

λ1φ(‖x2− x1‖)+ · · ·+λNφ(‖x2− xN‖)+a = y2

...

λ1φ(‖xN − x1‖)+ · · ·+λNφ(‖xN − xN‖)+a = yN

(8)

This gives us N equations for N + 1 unknowns (λ1..N and
a), thus we need to add one more equation to obtain a de-
termined system. This equation usually takes the following
form:

λ1 +λ2 + · · ·+λN = 0 (9)

For exact derivation of this additional equation
see [Duc77]. This gives us a determined system of
linear equations (10), which has a symmetric matrix.

Now that we have described how the RBF interpolation
works, we can apply it in a quite straightforward way on our
case. The first component of the vector assigned to a vertex is
estimated from its neighbors by simply averaging them, i.e.
using the formula (4). The encoder simulates this prediction
and sends a correction, and thus the first component is now
known to the decoder.

We will now use RBF for the prediction of the second
component. We will treat the first component of the feature
vectors as spatial coordinate in a 1-dimensional space. The
second component is known only for the neighboring ver-
tices, and RBF is used to interpolate this value to the loca-
tion of the added vertex. Again, the encoder simulates this
prediction and sends a correction, so that the first two com-
ponents of the vector become known to the decoder.

The subsequent steps are a straightforward repetition of
the last step. The known K components of the transmitted
feature vector are treated as spatial coordinates, and the first
unknown component (of index K + 1) is treated as a value
which is interpolated using the RBF. The dimension of the
interpolation space increases, but the size of the system of
linear equations remains unchanged. We construct and solve
the system of linear equations (11), and the solution is used
to compute the interpolant described by equation (12).
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φ(‖x1− x1‖) φ(‖x1− x2‖) . . . φ(‖x1− xN‖) 1
φ(‖x2− x1‖) φ(‖x2− x2‖) . . . φ(‖x2− xN‖) 1

...
...

. . .
...

...
φ(‖xN − x1‖) φ(‖xN − x2‖) . . . φ(‖xN − xN‖) 1

1 1 . . . 1 0







λ1
λ2
...

λN
a




=




y1
y2
...

yN
0




(10)

N(i)

∑
j=1

λ jφ

(√√√√ K

∑
k=1

(
ck

n(i,1)− ck
n(i, j)

)2
)

+a = cK+1
n(i,1)

N(i)

∑
j=1

λ jφ

(√√√√ K

∑
k=1

(
ck

n(i,2)− ck
n(i, j)

)2
)

+a = cK+1
n(i,2)

...

N(i)

∑
j=1

λ jφ

(√√√√ K

∑
k=1

(
ck

n(i,N(i))− ck
n(i, j)

)2
)

+a = cK+1
n(i,N(i))

N(i)

∑
j=1

λ j = 0 (11)

pred(cK+1
i ) =

N(i)

∑
j=1

λ jφ

(√√√√ K

∑
k=1

(
ck

i − ck
n(i, j)

)2
)

+a (12)

4. Basis function selection

One question that remains to be answered is the choice of
the function φ(r). The RBF theory does not offer any ulti-
mate function that would give the best results in any situa-
tion. Generally any function can be used, and the efficiency
of the functions is difficult to predict.

We have performed experiments with various functions
suggested by the RBF literature, such as the thin plate spline
(TPS) of form φ(r) = r2log(r) or compactly supported func-
tions such as φ(r) = e−sr2

, however, the most accurate pre-
dictions have been obtained by using power function

φ(r) = rβ, (13)

where the value of β is little less than 2, usually about
1.7−1.9.

We do not have a derivation of the β parameter value,
and it varies slightly depending on the dataset used, how-
ever, it can be seen that using β = 1,φ(r) = r1 = r is not a
good choice, because this function has a non-zero derivative
for zero argument, i.e. the radial function is not smooth. A
simple function with zero derivative at zero is obtained for

β = 2,φ(r) = r2, unfortunately this function cannot be used,
because it makes the system of equations (10) degenerate.
Therefore, a function φ(r) = r1.8 is a compromise which pro-
duces a solvable system of equations, while the derivative at
zero is zero and the shape of such function is close enough
to the shape of φ(r) = r2.

Also note that the prediction algorithm is used not only
in the reconstruction step, but also in the simplification step,
where the prediction error is used as decimation cost. This
leads to a slightly different decimation strategy. In the case of
neighbourhood average, the algorithm removed vertices that
were close to the centre of their neighbourhood, while our
predictors prefer vertices that lie in the plane of their neigh-
bourhood, even when they are slightly off-centre. In other
words, the simplification is now more precise in removing
vertices that carry little geometrical information. This ef-
fect is positive on one hand, because the coarse version of
the mesh which can be extracted from the bitstream already
contains much of the geometrical detail. On the other hand,
this effect causes an increase in the entropy of extrapolation
residuals.

In contrast to the LSP, the RBF based predictor cannot be
used for extrapolation because the RBF generally performs
very poorly in extrapolation tasks. The absolute value of the
extrapolated data quickly grows with growing distance from
the known points, and this effect cannot be reliably con-
trolled. Therefore we use the LSP extrapolation to transmit
the coarse version of the mesh, and subsequently we use the
RBFP interpolation to add the previously removed vertices.

The RBF predictor involves constructing a matrix of size
N(i)×N(i) in each step, where each element of the matrix
is an Euclidean distance in a R-dimensional space. This ma-
trix can be constructed incrementally, adding one term of the
Euclidean distance in each step. Therefore the computational
complexity is linear with respect to the number of basis vec-
tors and linear with respect to the number of vertices.

5. Discussion of the performance of the new predictors

When evaluating the expected performance of the proposed
predictors with respect to the original NAVG prediction, we
may do the following reasoning for both LSP and RBFP: For
each predictor there is a particular input (ideal input), which
is predicted perfectly (with zero residuals) by the predictor
algorithm. Other inputs are predicted imperfectly, and the
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performance is closely related to the distance of the given
input to the ideal input.

For the NAVG predictor, the ideal input is a vector which
is the arithmetic average of the neighbourhood upon which
the prediction is performed. This input is also an ideal input
for the LSP (each neighbour will be assigned equal weight
and the predictor will predict the values perfectly) and for
the RBFP. However, apart form the initialisation stage, there
are other ideal inputs for both LSP and RBFP. For example,
for each input which can be expressed as linear combination
of neighbours LSP will produce zero residuals.

This argument is difficult to completely formalise due to
the complexity of the prediction algorithms. However, it is
intuitive that a predictor with a single possible ideal input
will be in most cases outperformed by predictors which have
in fact infinite number of additional possible ideal inputs.

6. Testing

We have performed a series of experiments with the pro-
posed predictors to test their efficiency. Although dynamic
mesh compression has been studied for quite a while now,
there is currently no consensus on which error measure
should be used to evaluate distortion caused by compression.
Therefore, we focus on a case when distortion is almost fixed
and we compare the data rate results for the given distortion.

In order to show results comparable with known algo-
rithms, we give the error measure values computed accord-
ing to Karni and Gotsman [KG04] (KG-error). They suggest
to reorder the data into matrices, where each column rep-
resents a frame of the animation. The original data will be
reordered into matrix A, and the decoded version into A′.
The error is then expressed as:

KGerror = 100 · ‖A−A′‖
‖A−E(A)‖ (14)

where E(A) is an average matrix, i.e. a matrix where each
X value has been replaced by average X value in the given
column and similarly for Y and Z. We are using Frobenius
norm and per-frame averages for the E(A) matrix.

We are aware that KG error is not an ideal measure for
mesh distortion, however we are using it because the re-
sults of competing algorithms have been measured by this
error metric. Also note that there is currently no error met-
ric shown to correlate with human perception of distortion,
and most metrics (KG error, MSE, DA error, Hausdorff dis-
tance) correlate strongly with each other in the usual cases
of compression error evaluation.

In our implementation we have used an implementation
of arithmetic coding similar to the CABAC encoder used by
Marpe et al. [MWS03]). We have used 80 basis vectors for
the PCA step. Subsequently we have quantized the residuals

with precision of 12 bits for the main diagonal length of the
first frame of the animation, i.e. we have used quantization
with step δ:

δ =
d

212 (15)

where d is the main diagonal length of the first frame
bounding box.

We have used several datasets with similar results. Gen-
erally, the algorithm works better for highly detailed meshes
(human jump: 15830 vertices, 222 frames, see Sand et al.
[SMP03] and Anuar and Guskov [AG04]), where the simpli-
fication step removes larger amount of vertices. On the other
hand, even for quite simple meshes, such as the chicken run
sequence (3030 vertices, 400 frames), we achieve a signifi-
cant improvement.
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Figure 5: Encoded sizes of prediction residuals.

Figure 5 shows the encoded sizes of prediction residuals.
The figure demonstrates that by using the RBF interpolation
we can reduce the encoded length of interpolation residuals
by 40-70%. The encoded size of extrapolation residuals re-
mains almost unchanged, however, without employing our
least squares predictor it would have actually grown due to
a different simplification order introduced by the new RBF
predictor.

The overall results of our algorithms are shown in figure 6.
The benefit is relatively smaller compared to the 40-70% re-
duction in figure 5 because the final data stream also contains
the compressed PCA basis, which is not affected by our im-
provement. Still, the results show that we have achieved an
improvement of 7-25% of the bitrate. The figure also shows
the result of the standard FAMC algorithm.

We are also including four full rate-distortion (RD) curves
for the models dance, cloth, cow and snake (figures 7, 8, 9
and 10). The RD curves for other models we have tested
show a similar behaviour, where original algorithm based on
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Figure 6: The relative encoded sizes of the testing datasets.
The PCA-based method with parallelogram extrapolation
and neighbourhood average interpolation is taken as a ref-
erence, and the relative results of the proposed methods and
of the standard FAMC method are shown.

neighbourhood average prediction competes with the FAMC
algorithm, but both are outperformed by the newly proposed
RBF predictor.
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Figure 7: Rate-distortion curve for the dance model.

We also present the dependency of the residual entropy on
the choice of the parameter β of the radial basis function. The
results of this test for the human jump sequence are shown in
figure 11, other sequences have produced equivalent results.

We have also tested the compression and decompression
speed. The decompression consists of coefficient restora-
tion, from which the original trajectories are reconstructed.
Our version of the coefficient restoration algorithm is cur-
rently capable of achieving about real-time decompression
for moderately complex mesh sequences. The chicken run
sequence (cca 16 second animation) can be decompressed in
about 4.5 seconds on a 2.53GHz Core2 Duo PC, however,
the more detailed meshes take longer to decompress. On the
other hand, the algorithm still leaves a quite large space for
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Figure 8: Rate-distortion curve for the cloth model.
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Figure 9: Rate-distortion curve for the cow model.

optimization. Additionally, the solution of the LSP equation
set is likely to change only slightly with added components,
and therefore the solution from previous step could be used
in a following step to speed the computation up.

The compression takes at least the same time as decom-
pression, as the compressor emulates the decompressors pre-
dictions in order to produce correct residuals. In addition to
that the encoder must perform the PCA step, which usually
takes about two minutes. Compression and decompression
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Figure 10: Rate-distortion curve for the snake model.
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model ver�ces frames Compress Decompress Compress Decompress Compress Decompress Compress Decompress

chicken 3 030 400 64 030 3 268 72 088 4 524 64 225 2 761 69 826 3 214

dance 7 061 201 26 777 5 000 48 360 9 828 20 077 4 290 33 587 5 226

humanoid 7 646 154 19 032 4 774 39 671 7 768 14 071 4 321 28 330 5 086

jump 15 830 222 58 758 8 556 106 751 24 975 43 384 7 972 73 117 13 057

cloth 9 987 200 32 206 4 867 56 222 13 010 22 651 4 290 39 109 6 989

snake 9 179 134 17 129 4 906 47 143 9 984 13 213 4 586 33 119 6 022

walk 35 626 187 95 441 17 402 196 514 41 854 68 266 17 207 136 154 24 695

NAVG (original) RBF (proposed) NAVG (original) RBF (proposed)

Intel Pen�um Core2 Duo (2.53GHz) Intel Pen�um i7 920 (2.67GHz)

Table 2: Compression and decompression times [ms].
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Figure 11: Dependency of the residual entropy on the choice
of parameter β (RBF exponent), see section 4 for additional
details.

times for several models using a mainstream and a high-end
computer are shown in table 2.

7. Conclusions and future work

We have presented two novel predictors that can be used for
dynamic mesh compression. Our main contribution is the
continuous update of the predictor being used, during
the transmission of data related to a single vertex. The
update is not time dependant, i.e. it does not only use in-
formation from previous frame of the sequence. Instead the
update continuously refines the knowledge about the vertex
position relative to its neighbours. By using the framework
of RBF interpolation, which naturally works in higher di-
mensional space, we exploit the character of the PCA rep-
resented animations, where vertices have many coordinates
which describe their trajectory.

In our experiments we have achieved a reduction of resid-
ual entropy of over 40% and for the chicken run sequence we
have reached more than 60% reduction. However, the over-
all efficiency gain depends also on the ratio of interpolated
and extrapolated vertices, used entropy coding scheme and

the size of the PCA basis. In our implementation, we have
achieved bitrate reduction of about 20%.

In the future, we intend to test different basis functions for
the RBF in order to find a better interpolation. The decoder
could also benefit from the advanced methods of evaluating
the RBF interpolation.

We would also like to implement and test the decompres-
sion algorithms using a programmable GPU. Our prelimi-
nary results show that we are able to perform the final mul-
tiplication of basis vectors and feature vectors on the GPU,
thus saving both main memory and communication between
CPU and GPU.
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