
III-29

On the divergence calculation of the Extended Kalman Filtering for chaotic signals  
 

V.Kontorovich**, F. Ramos-Alarcón** 
**Electrical Engineering Department, Research and 

Advanced Studies Center, CINVESTAV-IPN, Av.IPN 
#2508, C.P. 07360,Mexico D.F., Mexico. 

valeri@cinvestav.mx 

 
 

D. Arditti * 
*Intel Labs , Zapopan Jalisco, Mexico 

david.arditti@intel.com 

Abstract—The Extended Kalman Filter (EKF) has become one 
of the options to achieved synchronization of chaotic signals 
with important applications for wireless communications. 
However the joint operation of the EKF and the chaotic signals 
suffers from several reported drawbacks that negatively affect 
the performance of the EKF up to a breaking point. This paper 
shows a rather simple way of establishing a reference threshold 
that allows to avoid the breaking point and keeps the EKF in a 
working regime that yields good performance in terms of the 
Mean Square Error (MSE) between the real and estimated 
chaotic signals. Three different chaotic systems are used to 
illustrate the proposed approach.    
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I.  INTRODUCTION  
A chaotic system is a non-linear model with strong 

dependence and sensitivity on its initial conditions a feature 
that, for some time, seemed to defy synchronization between 
two chaotic systems. The discovery of the self-
synchronization property of some chaotic systems [1] is 
acknowledge as the “entrance pass” of chaos in the 
communications arena [2] with applications that go from 
modulation [3, 4] to secure communication [5, 6] just to 
mention some of many more works in this line. 

The synchronization can be achieved in different ways. 
The first proposed synchronization approach [1] assumes a 
decomposition of the chaotic system into a driving system 
(which can be regarded as the transmitter) and a stable state 
response system (say the receiver) that get synchronized by 
means of a common signal. Synchronization can also be 
achieved by means of the EKF [2, 3, 7-9] which is close to 
the purpose of this work. 

The EKF has two main drawbacks reported in the 
literature that reduce the performance. On one side when the 
EKF is applied for chaotic systems, the Kalman gain either 
oscillates or converges to a fixed point greater than zero [10]. 
On the other side when the EKF works in presence of non-
linear systems it tends to become too confident on its 
estimates, which prevents a correct update based on new data 
and provokes the filter to lock into a parameter estimate with 
a large error leading to ill-conditioned error covariance 
matrices. This phenomenon is known as divergence [11, 12]. 
Indeed the divergence phenomenon is inherited from the 
standard Kalman Filter where the problem is somehow 
compensated by the square root filtering using the Cholesky 
factorization [13]. The same Cholesky factorization is 
applied in the EKF but it is not the absolute and ultimate 

solution and eventually the error covariance matrix becomes 
non-positive definite crashing any numerical calculation. In 
chaotic communication systems this problem is of paramount 
importance. For the case of the EKF working with chaotic 
signals this work presents a way to “forecast” the time when 
the ill-condition of the error covariance matrix may take 
place. The calculation involves the Lyapunov exponents of 
the chaotic model.  

II. PROPOSED APPROACH 
We applied the time update and measurement update 

equations of the EKF [7] for 3 chaotic models with the 
following parameters [14]. For Rössler a = 0.15, b = 0.2,  
c=10. For Lorenz σ = 16, R = 45.92, b = 4 and Chua α = 9.2, 
β= 14.3, a = -1/7, b = 2/7. 

The approach is based on two main considerations. First, 
in information theoretic terms the magnitudes of the 
Lyapunov exponents (given in bits/s) quantify the dynamics 
of the chaotic system [14]. This means that the future 
behavior can be “forecasted” only up to a certain time instant 
which depends on the value of the positive Lyapunov 
exponent (which indicates exponential expansion) and the 
accuracy used to establish the initial conditions [14]. Second, 
the divergence of the error covariance matrix in the Kalman 
Filter based approaches is due to finite word length 
numerical computations [13]. 

The first consideration refers to the fact that the accuracy 
used to specify the initial conditions between two 
(parametrically identical) chaotic systems determine the 
point when the divergence between the two of them will take 
place (sensitivity to initial conditions).  

Let us make the following interpretation. Let it be a 
source chaotic system. The EKF generates its own version of 
the chaotic system not necessarily with identical parameters 
but, for the moment suppose that parameters for both chaotic 
systems are the same. The EKF is able to synchronize both 
chaotic systems in very short time no matter if the initial 
conditions are completely different or rather close to each 
other but, the two chaotic processes will diverge after some 
time. So what relationship, if any, exists between this and the 
time when the error covariance matrix becomes ill-posed?  

Let us investigate if the time when the covariance matrix 
becomes ill-posed (divergence time, DT) can be evaluated 
according to:   
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where ∆IC is the accuracy for the initial conditions, and λ1 is 
the value of the largest positive Lyapunov exponent 
expressed in bits/s. 
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Let us assume that numerical evaluations are made using 
MatLab with double precision floating point representation 
of numbers. In this case the numerical data is build according 
to the IEEE-754 standard for double precision which 
requires 64 bits distributed as follows: 1 bit for the sign, 11 
bits for the exponent and 52 bits for the Mantissa. In this 
case accuracy for the initial conditions will be ∆IC = 52 bits. 
Next, for the Rössler, Lorenz and Chua strange attractors, the 
following table shows the value of the largest Lyapunov 
exponent [14]. 
 

 λ1 λ1 (bits/s)
Rössler 0.09 0.13 
Lorenz 1.5 2.16 
Chua 0.326 0.47 
Table1. Positive Lyapunov exponents. 

 
Upon substitution of (1) one gets the approximated 

divergence time of the EKF under the presence of signals 
from Rössler, Lorenz and Chua strange attractors:  

 
 DT 

Rössler 400 sec 
Lorenz 24 sec 
Chua 110 sec 

Table 2. Theoretical divergence time DT.  
 
According to our simulation results, for the case of the 3 

chaotic attractors under study, the Kalman gain of the EKF 
shows the behavior reported in [10] where the Kalman gain 
converges to a certain fixed value (shown in the full version).  

After some running time the EKF yields a non positive 
definite error covariance matrix for all the cases under study 
crashing the simulation. Close examination of this situation 
revealed that for a given component of the attractor (x, y or z) 
the correspondent value in the error covariance matrix starts 
to be negative at a given point and from then on it shows 
unstable variations for some time up to the point when it 
assumes a negative value bigger than the variance of the 
measurement noise. At this point the error covariance matrix 
is ill-posed making impossible to make the Cholesky 
factorization.  

For the three cases under study the instant when certain 
element in the error covariance matrix (let us say for the x 
component) becomes negative for the first time was 
recorded. Let us denote it as the experimental divergence 
time DTE. We denote the Signal to Noise Ratio (S/N) as the 
ratio of the average power of the chaotic signal (say for the x 
component) and the measurement noise. For three different 
values of the S/N, with the correspondent sampling times TS, 
the table 3 shows the DTE which closely follows the 
calculated DT.  

 
S/N 0.1 1 10

Rössler TS = 10-2 sec 340 sec 330 sec 300 sec
Lorenz TS = 10-3 sec 23.9 sec 22.95 sec 21.6 sec
Chua TS = 10-2 sec 99 sec 93 sec 91 sec

Table3. Experimental divergence time DTE. 

It is worth mentioning that the evaluation of the 
divergence time based on the Lyapunov exponents has to be 
considered as an upper boundary. 

III. CONTENTS OF THE FULL VERSION 
The full version of the paper will show that for practical 

cases it is possible to set a divergence prediction threshold 
25% percent below of the calculated DT. In this moment the 
fatal journey of the error covariance matrix can be stopped 
by restoring the conditions when the EKF began its 
operation, concretely a unitary error covariance matrix. This 
mid-flight “resynchronization” does not affect significantly 
the performance of the EKF. The MSE between the original 
signals and the estimated signals will be presented, showing 
that the MSE without the “readjustment” (before the error 
covariance matrix gets its first negative element) and the 
MSE with continuous “resynchronized” regime are 
practically the same.  
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