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Abstract—The  influence  of  different geometric  

parameters  of  a  construction  of  recently  developed  

permanent  magnet  linear  electromagnetic  actuator  for  

Braille screen is studied. The static force characteristics and 

magnetic field distribution are obtained when varying the 

different parameters, including height of the coils and outer 

diameter of the actuator. 
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I. INTRODUCTION 

The problems connected with creating of computer 

controlled Braille screens, are object of research from many 
authors. In their works they realize different type of 

actuators. [1-9]. A linear magnetic actuator designed for a 

portable Braille display application is presented in [1].  
Actuators based on piezoelectric linear motors are given in 

[2], [3]. A phase-change micro actuator is presented in [4] 

for use in a dynamic Braille display. Similar principle is 
employed in [6], where actuation mechanism using metal 

with a low melting point is proposed.  In [7], Braille code 

display device with a polydimethylsiloxane membrane and 
thermopneumatic actuator is presented. Braille sheet display 

is presented in [8] and has been successfully manufactured 

on a plastic film by integrating a plastic sheet actuator array 
with a high-quality organic transistor active matrix.  A new 

mechanism of the Braille display unit based on the inverse 

principle of the tuned mass damper is presented in [9]. 
Different electromagnetic actuators have been studied by the 

authors in [10-12]. 

II. ACTUATOR CONSTRUCTION 

The principal actuator construction is shown in Fig. 1. 
The main parts of the construction are: 

1 – Needle (shaft); 2 – Upper core; 3 – Outer core;             

4 – Upper coil; 5 – Upper ferromagnetic disc; 

6 - Permanent magnet; 

7 - Lower ferromagnetic disc; 8 – Lower coil;  

9 - Lower core; 10 – Needle (shaft). 

 

The two coils are connected in series in such way that 

they create magnetic flux of opposite directions in the 

region of the permanent magnet. In this way, depending on 

the polarity of the power supply, the permanent magnet will 

move either up or down. When motion up is needed, the 
upper coil should create flux in the air gap coinciding with 

the flux of the permanent magnet. Lower coil at the same 

time will create opposite flux and the permanent magnet 
will move in upper direction. When motion down is needed, 

the polarity of the power supply is reversed. The motion is 

transferred to the Braille dot using shaft, shown in Fig. 1 

The actuator features increased energy efficiency, as the 

need of power supply is only during the switching between 
the two end positions of the mover.  In each end position, 

the permanent magnet creates holding force, which keeps 

the mover in this position. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig.1. Principal construction of the studied actuator 

III. FINITE ELEMENT MODELLING  

Magnetic field of the actuator is modelled using the 
finite element method and the program FEMM [13]. For 

speeding-up the computations, Lua Script® is employed. 

Axisymmetric model is adopted as the actuator features 
rotational symmetry. The electromagnetic force F acting on 

the moving permanent magnet is obtained using the 

weighted stress tensor approach. The simulations are made 
for two different outer actuator diameters and for three 

different heights of the coils with and without coil supply. 

The third variable parameter is the stroke of the mover. 

The research work reported in the paper is partly supported by the 
project AComIn "Advanced Computing for Innovation", grant 316087, 

funded by the FP7 Capacity Programme (Research Potential of 
Convergence Regions). 
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Some of the obtained static force characteristics for 

maximal stroke 0.8 mm and coil supply causing downward 
movement (see Fig. 1) are shown in Fig. 2 and Fig. 3 for 

different coil height hw and outer diameter d. 

a) 

 

 

b) 

 

 
Fig. 2. Force-stroke characteristics for different heights of coils: 

 a) d=7mm; b) d=5mm. 
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Fig. 3. Force-stroke characteristics for different outer diameter: 

 a) hw=5 mm; b) hw=10 mm; c) hw=15 mm. 

IV. CONCLUSION 

Based on the results obtained, the following conclusions 

can be drawn:  

- the developed actuator has static force characteristics 

which are suitable for Braille screen application; 

- increasing the height of the coil has important 

influence on the force-displacement characteristics. 

Above a certain value, thought, further increase does 
not lead to significant change. 

Further study could include optimization of the actuator 
and estimation of its dynamic characteristics. 
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