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Abstract

With the advances in biochemistry and drug design in the late years, the
analysis of molecular data has seen an increased attention. One of the many
properties being researched are inaccessible cavities, which are an empty
space inside a molecule, and surface depressions called pockets. To discover
such empty space, a spherical probe representing a solvent is often used.

In this thesis we tried to solve the problem of finding and visualizing cavities
in large molecules of up to hundreds of thousands of atoms. The algorithm
finds approximate cavities in a molecule. To allow quick updates when a
probe radius is changed, it uses a preprocessing stage where a Delaunay
triangulation of molecule atoms is computed. If a precise shape is desired,
an algorithm that uses an additively-weighted Voronoi diagram can be used
to improve the shape of cavity.

Because there may be a large number of cavities found for a selected probe
radius, the filtering of cavities is also important. To support filtering, new
methods to measure cavity properties are introduced in this work.
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1 Introduction

A structure of a molecule may contain various elements that are interesting
for example in the drug research. An empty space inside a molecule that is
not connected to the surface is one of these elements. We call such empty
space a cavity. An element related to cavities is a pocket. Pockets are
depressions in the molecule surface. Figure 1.1 shows an example of a cavity
and a pocket. A spherical probe representing a solvent is usually used to
discover cavities by slipping the probe among the atoms. Changing the probe
radius allows us to find cavities of different sizes.

Figure 1.1: A pocket (left) and a cavity (right) in a molecule 1AKD.

Both cavities and pockets take an important role in molecule interactions.
Many of these interactions are vital part of biological processes. Therefore
their research is important for the understanding of these processes, even-
tually allowing designing new drugs. A lot of research has been done into
locating places where the molecules, such as proteins, interact. These places
are called active sites, or binding sites, depending on the molecule. These
sites are usually found in large pockets.
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Introduction

As molecules are not stationary, it is possible that an inner cavity becomes
accessible from the surface and thus it may become a potential active site.
Inner cavities can also affect other molecule properties. For example, they
may hold buried residui of other molecules, such as water [34, 37]. These
residui can influence the stability of protein structure [37].

The researched molecules, such as these of proteins and ribosomes, may be-
come very large, ranging from dozens to hundreds of thousands of atoms.
Processing such large data may be a very time consuming task. Another
problem that we face when finding cavities is that many of the cavities are
not interesting for research, as they may be too small or complicated. The
goal of this work was to find a way to process and visualize such large data
effectively, and to design new methods that can be used to filter cavities
based on their importance.

In the first chapter, the existing approaches to finding cavities and their
visualization will be described. In Chapter 3, the mathematical background
necessary for a complete understanding of the presented algorithms will be
given. Next, in Chapter 4, an existing solution that we decided to work on
will be described. Chapter 5 discusses new methods for finding, visualizing
and filtering cavities. The results of our work are given in Chapter 7. Finally,
we summarize our findings in Chapter 8.
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2 Theory

There are various algorithms that can be used for finding and visualizing
cavities in molecules. Finding and visualizing cavities in a molecule is closely
related to finding a molecular surface. Many of the algorithms that were
designed with finding the molecular surface in mind can be also used for
finding cavities either directly, or the surface is used at some point of a
specialized cavity-finding algorithm. Apart from that, the molecular surface
is usually used for visualizing cavities. Because of this tight connection, both
kinds of algorithms will be covered.

Before describing the algorithms themselves, a short summary of the most
common types of molecular surfaces will be given, because their knowledge
is needed for finding and visualizing cavities. After that, a short summary
of the algorithms that are used to find molecular surface will be provided.
Finally, some of the algorithms designed specifically for finding cavities will
be described.

2.1 Molecular Surfaces

In history, various kinds of molecular surfaces have been introduced. The
common ones are a van der Waals surface, a solvent-accessible surface and
a solvent-excluded surface. In the following paragraphs, basic information
about these surfaces will be provided.

The van der Waals surface [23] is a very simple surface approximation that is
defined as a union of spheres. Each sphere represents an atom with a radius
defined by a van der Waals radius corresponding to that atom. It is very
common model for the visualization of molecules, although it cannot be seen
as a real surface. It can be considered as a starting point for the algorithms
that are used for finding molecular surfaces.

However, when talking about molecular surfaces, the solvent-accessible sur-
face or the solvent-excluded (Connoly) surface are usually used. For both
surfaces, a spherical probe that is swept over the van der Waals surface is
introduced. This probe represents a solvent, a common solvent being water
with a radius 1.4 Å.
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Theory Molecular Surfaces

In 1971, Lee and Richards [23] defined the solvent-accessible surface of a
molecule. In their definition, the solvent-accessible surface is the surface
formed by the van der Waals surface where the radius of each atom was
extended by the radius of the probe. Extending the radius is also the al-
gorithm that is commonly used to find the solvent-accessible surface. They
also discussed an option of using the algorithm to find cavities in a molecule
by eliminating the surface that is connected to the outside of a molecule.

Recently, another kind of surface, the solvent-excluded surface is gaining
more attraction. This surface has been popularized by Connolly [10], whose
work builds upon the previous work of Richards [30] . It should be noted
that some works use the name solvent-accessible surface for this kind of
surface, making it difficult to distinguish it from the surface described by
[23]. In this work, the term solvent-excluded is strictly used for this type
of surface to avoid confusion. This type of surface is created by rolling the
probe over the van der Waals surface. The surface consists of three basic
shapes – spheres, representing atoms that are also part of the van der Waal
surface, spherical triangles, that are formed by a probe touching three atoms,
and inner parts of tori, created by a probe revolving around two atoms.
In his work, Connolly presented the necessary equations for the analytical
description of such surface.

For our work it is important to know some of the basic properties of these
shapes. The spheres are clipped by tori in place of their connection. The
clipping can be achieved using a clip plane that is defined by the intersection
of a torus and a sphere, and that is orthogonal to the axis of the torus.
The spherical triangle is a part of sphere that touches exactly three atoms
and that is bounded by these atoms. Tori are generated by revolving the
probe around two atoms so that the probe always touches each sphere at
exactly one point (i.e. the probe has two tangential points in any point in
time, one with each sphere). The probe touching the spheres defines an arch
between the tangential points. By rolling the probe around the spheres these
arches generate a surface. This surface takes shape of a clipped inner part
of a torus. In a real molecule the probe usually hits a neighboring sphere
during the revolution, causing the surface to be generated only between these
tangential points.

Unfortunately, finding the solvent-excluded surface is more complicated than
finding other types of surface. Multiple algorithms have been proposed. Some
of these algorithms will be covered in the next section.
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Theory Finding Molecular Surface

For better illustration of the differences between the various definitions of
surface, see Figure 2.1 and Figure 2.2.

Figure 2.1: Common types of molecular surface in a two-dimensional cross-section. Gray circles represent
the van der Waals surface of atoms. The solvent-excluded surface is outlined in red and filled with stripes.
The solvent-accessible surface is the blue dashed outline.

2.2 Finding Molecular Surface

The following section describes some of the algorithms that are used to find
the molecular surface. These algorithms can find both the outer molecular
surface and the surface of cavities. Sadly, they usually does not distinguish
between the two, meaning that additional steps must be taken to extract
cavities. This usually means determining whether there exist a connection
to the outer void. A common problem of these algorithms is that if such an

Figure 2.2: Surfaces of a molecule 1CQW. Left: the van der Waals surface. Center: the solvent-accessible
surface. Right: the solvent-excluded surface. A probe with radius 3 Å was used for the solvent-excluded
and for the solvent-accessible surface.
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Theory Finding Molecular Surface

algorithm is used to find cavities, it provides from little to no information
about the cavity itself.

Brute-force Approach

The popular molecular visualization system PyMOL [33] uses a brute-force
algorithm that finds a solvent-excluded surface for both cavities and the
whole molecule.

The algorithm first finds the van der Waals surface of the molecule. It con-
tinues with finding surface points of the solvent atoms that touch the atoms
of the molecule’s van der Waals surface using a hash map. The surface
points are then trimmed. The trimming is done by extending the radius of
the molecule’s atoms by the radius of the probe and by checking whether
the point lies within the space defined by the neighboring enlarged spheres.
Finally, the points are used to create a surface mesh.

PyMOL implementation can distinguish the molecular surface and cavities
and pockets, but it does not provide much information apart from the visu-
alization, or possibly computing the surface area.

Pseudo-Gaussian Approximation

Pseudo-Gaussian approximation [8] is a method for finding a surface that
has been specifically designed to work with large molecular data. Its idea
is to replace the solvent-excluded surface with an approximation that uses a
scaled Gaussian density function to smooth the transitions among atoms in
the van der Waals surface.

The algorithm uses a pseudo-Gaussian density function, which is very sim-
ilar to the Gaussian density function, but with the added property that it
evaluates to 1 when its parameter is equal to the van der Waals radius of an
atom, for which the function is evaluated. It also features a parameter called
spread, that is used to simulate the effect of changing the probe radius.

The approximation is computed using a molecule placed on a uniform grid.
The algorithm itself is as follows: first the spread is computed for a user-
given parameter. Then for each atom, the density function is computed
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Theory Finding Molecular Surface

and summed over the uniform grid with small values being ignored, thus
reducing the computation only to a limited neighborhood of the atom. After
all atoms are processed, the surface, including the surface of cavities, is found
by creating a contour of the grid at the level 1. The contour can be found
e.g. using the marching cubes algorithm.

It has been proposed to render the surface by superposing the contour on the
van der Waals surface, or to use the approximation to construct the surface
analytically.

MSMS

When talking about surfaces, we must not forget to mention MSMS [32]
because it is a very popular application used to compute solvent-excluded
surfaces. MSMS does not implement a single algorithm, but a set of four
algorithms. The first algorithm that is utilized by MSMS is an algorithm
to find a reduced surface of a molecule. Its output is used by the second
algorithm to compute the analytical representation of the solvent-excluded
surface. The third algorithm removes singular self-intersections. Finally, the
last algorithm builds a triangulated surface.

The first step is computing a reduced surface. The reduced surface is a
surface that consists of triangular faces where the probe can touch three
atoms, edges where the probe can touch only two atoms without hitting a
third atom, and vertices for singular atoms. The principle of the algorithm
to find the reduced surface is following: first, a molecule is triangulated using
the probe radius for the atom radius. The algorithm starts from an initial
triangle at the surface and it recursively tries to roll the probe over the edges
of the triangle, discovering the neighboring triangles. The initial triangle
can be either hand-picked (useful for examining inner cavities) or a triangle
adjacent to the vertex with the lowest x coordinate is used. Also in this step,
singular edges where two spherical triangles intersect are identified.

The next algorithm takes the reduced surface as its input and computes the
analytical representation of the surface as defined by Connolly [10].

In the third step, the singularities are treated. Three different kinds of sin-
gularities are identified. The first involves self-intersecting, opposite-facing
spherical triangles generated by the same three atoms. This kind of sin-
gularity is responsible for holes in spherical triangles. The second kind of
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Theory Finding Cavities

singularity that is treated here is when a torus is partially clipped by the
probe. The last kind of singularities is an intersection of two separate spher-
ical triangles sharing no common atoms. In all cases the identification is
based on testing if a probe intersects the triangle. The first two cases are
simpler, because we know which probe to use for the test. In the third case,
we need to find all probes that can intersect the tested triangle. This is
achieved using a tree structure.

The last step that MSMS employs to generate molecular surface is triangu-
lation. The application triangulates the three basic shapes separately, using
pre-triangulated templates for spheres and spherical triangles.

2.3 Finding Cavities

This section focuses on the description of some of the prominent approaches
to finding cavities in molecules. Many of these algorithms use previously
described surface finding algorithms either in one of their steps, or they can
use such an algorithm to visualize the found cavities.

SURFNET

SURFNET [22] uses a simple approach based on filling space with spheres.
For each two neighboring atoms, it creates a probe that just touches these
atoms. If the probe intersects with any other atom, the radius of the probe is
reduced until it is no longer intersected by any atom. If the resulting probe
is larger than the requested minimal probe, the probe is recorded. This is
repeated for all pairs of atoms. All recorded probes are either in cavities or
pockets. The results are visualized as a union of spheres representing the
recorded probes.

Alpha Shape

Liang et al [26] presented an algorithm based on a three-dimensional alpha
shape [12] which is used in the program called CAST. They have also pre-
sented means for measuring various properties of cavities [25].
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Theory Finding Cavities

The algorithm starts by finding a weighted alpha shape [11] of molecule’s
atoms. Then a discrete-flow method is used. In two dimensions, the method
finds flows from empty obtuse triangles into acute empty triangles called
sinks. After all flows are found, all empty triangles (tetrahedra in three
dimensions) are merged to form a cavity.

In [25] they represent a cavity using its corresponding tetrahedra in the
alpha shape. In the examples provided in [26], cavities are also visualized by
rendering van der Waals surface of atoms forming a cavity.

Grid-based Approaches

There is a multitude of algorithms based on grids. These algorithms usually
place the examined molecule on a regular grid, marking each point of the grid
with an information whether it is inside or outside of the molecular surface.

Two very similar algorithms that can be used for finding cavities are POCKET
[24] and LIGSITE [15]. The POCKET is simpler of these two. It places the
molecule on a regular grid. It then moves a probe along each axis of the
grid and computes whether an atom center lies inside the probe for each grid
point. It also records the nature of the interaction between the probe and
atoms. A cavity is identified as a set of points where the probe does not
intersect any atom and for which the probe was identified to interact with
atoms on each side (i.e. the probe had passed the molecular surface on each
side of the point).

LIGSITE uses the scanning approach similar to POCKET. First, it initializes
grid points to 0 if they lie outside of the solvent-excluded surface and to -1
if they are inaccessible by solvent. In comparison to POCKET, the probe
is moved not only along each axis, but also along diagonals, making it less
dependent on the orientation of the molecule. Another improvement is that
it increases the grid point value by 1 for each direction for which the point is
enclosed by molecule’s atoms. The resulting value identifies how buried the
point is inside the molecule, where 0 means outside of pocket or cavity and
7 means an inner cavity that is enclosed by atoms in all 7 directions used to
scan.

Exner [13] presented an algorithm that uses the solvent-excluded surface and
a regular grid to find cavities. The algorithm starts by placing the solvent-
excluded surface on a regular grid and marking each grid point as “in” for
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points inside the surface and “out” for points outside the surface. Now, the
algorithm takes each point marked as “out” as a starting point and checks
the neighboring points along each axis up to a distance of 12Å. If there are
at least two axes with points marked as “in” in both directions, the point
is marked as a cavity point, similarly to the previous algorithms. All the
cavity points are then clustered and two operations called contraction and
expansion are performed. The contraction removes the cavity points that
have non-cavity neighbors from the border. The expansion adds points that
have at least one neighbor that is a cavity point. These two operations are
performed to remove the small clusters of cavity points that represent small
cavities.

Another algorithm called VICE [36] also begins with a grid with points
marked 0 for points outside of the molecule and 1 inside. The algorithm
takes each point outside of the molecular surface and creates test vectors to
all neighboring points up to a defined distance. Again, a cavity is identified
by testing whether vectors pass the molecule’s atoms. The values in grid are
amended by classification of each vector (e.g. the vector passes an atom).
The resulting grid values can be used to classify how deep a point is buried
as in LIGSITE.

For the visualization purposes, the mentioned algorithms usually use the
corresponding part of the surface that was used for the finding of cavities.

Additively-weighted Voronoi Diagram

In our previous work [16] we have presented an algorithm that uses an
additively-weighted Voronoi diagram to find cavities. The algorithm will be
described in more detail in Chapter 4. It uses preprocessing to construct an
additively weighted Voronoi diagram (see Section 3.2). The diagram is used
to find the narrowest place among three atoms, whose distance to the atoms
is called a bottleneck. The diagram is also used to finds points equidistant to
four atoms forming a tetrahedron, which define something like a small cavity.

During the run time the algorithm takes all points for which the distance
to the atom surface is large enough for the probe to fit and it tries to slip
the probe among atoms using a graph search algorithm using the knowledge
about bottlenecks. The advantage of this algorithm is that thanks to the
preprocessing it finds cavities for various probes very quickly. The algorithm
can be also used to find the outer surface of a molecule and to find pockets.
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Theory Finding Cavities

Output of this algorithm is a set of tetrahedra formed by quadruples of
atoms, or the points among them (see the Section 3.2 about their duality).
The tetrahedra are very useful for generating the surface. The algorithm for
finding the surface finds the boundary faces and uses them to construct an
analytic representation of the solvent-excluded surface.

For the visualization a triangulated model of the surface is generated from
the analytic surface description.

In this work we have focused on the improvement of this algorithm, because
of its speed for variable probe sizes and because the description of cavities it
uses is very flexible, making it useful for measuring various cavity properties.
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3 Mathematical Background

Before going further with describing the current algorithm and the proposed
changes, it is necessary to cover some basic mathematical background. Both
the previous solution and the solution proposed in this work are based on
an additively weighted Voronoi diagram [28, 18]. In addition, the proposed
changes use an ordinary Voronoi diagram [28]. Therefore both diagrams will
be described in the following sections, along with their dual counterparts:
a quasi-triangulation and a Delaunay triangulation. We will begin with the
ordinary Voronoi diagram and the Delaunay triangulation, because these are
simpler. The next section will cover the additively-weighted Voronoi diagram
and the quasi-triangulation, both of which are extending the ideas introduced
by the Voronoi diagram.

3.1 Voronoi Diagram and Delaunay Triangu-
lation

A Voronoi diagram [28] is a tessellation of space (in this work we assume
that the space is the Euclidean space) defined for a set containing at least
two distinctive points. These points are usually called generators, as they
“generate” the subdivision of space into several regions. This subdivision of
space is created by assigning every location in space to its closest point in
the generator set. A region that consists only of points closest to the same
generator is called a Voronoi region, or a Voronoi polygon when the space is
two-dimensional or a Voronoi polyhedron for an m-dimensional space.

Formally, we can write that for each generator pi there exists a Voronoi region
Ri such that:

Ri = {x : ‖pi − x‖ ≤ ‖pj − x‖,∀j 6= i} (3.1)

where i, j ∈ {1, 2, . . . n} and n is the number of generators.

Boundaries between the Voronoi regions are very important for our work. In
the two-dimensional case, a boundary between two regions is called a Voronoi
edge and it consists of points closest to two generators. We will call these
generators edge generators. The point where the edges meet is a Voronoi
vertex. It can be also seen as a boundary point closest to three different
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Mathematical Background Voronoi Diagram and Delaunay Triangulation

generators. An example of a 2D Voronoi diagram including Voronoi edges
and points can be seen in Figure 3.1

Figure 3.1: A two-dimensional Voronoi diagram of points. The blue dots are generators. The dashed
edges extend to infinity.

In the three-dimensional space, a boundary between two regions forms a
Voronoi face. A Voronoi edge lies on a boundary of three regions and it
consists of points equidistant to their generators. Similarly, a Voronoi vertex
is a point that is shared among four regions.

The Voronoi diagram is in fact a graph, meaning that various graph algo-
rithms can be used to explore the diagram.

Closely related to the Voronoi diagram is a Delaunay triangulation. The
Delaunay triangulation has a few interesting properties, but because these
properties are not of great importance for our use, they will be skipped.
However, what is important for this work is that it is a dual representation
of the Voronoi diagram. That means that the Voronoi diagram can be easily
obtained from the Delaunay triangulation and vice versa. It is important
especially because the algorithms for constructing Delaunay triangulation
are well-established and many implementations exist.
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The Delaunay triangulation can be constructed from a Voronoi diagram by
connecting each closest pair of generators, i.e. generators sharing an edge in
2D or a face in 3D with an edge. As a result we obtain a triangle for each
Voronoi vertex in two dimensions and a tetrahedron in three dimensions.
The Voronoi diagram can be constructed from the Delaunay triangulation
by applying the procedure in reverse. Figure 3.2 shows this relation between
the Voronoi diagram and the Delaunay triangulation.

Figure 3.2: A Delaunay triangulation placed on top of a Voronoi diagram.

3.2 Additively-weighted Voronoi Diagram

An additively-weighted Voronoi diagram [28, 18] extends the ideas introduced
by the ordinary Voronoi diagram. It is also known as the Apollonius dia-
gram or the Euclidean Voronoi diagram of spheres. The additively-weighted
Voronoi diagram is one of many possible generalizations of the ordinary
Voronoi diagram.

Instead of using dimensionless point generators that all affect the diagram in
the same way, a weight can be added to each point. There are several such
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modifications of Voronoi diagram, one of these being the additively-weighted
Voronoi diagram. In the additively-weighted Voronoi diagram, the generators
are no longer seen as points, but instead as circles in two dimensions and
spheres in three dimensions. This is achieved by replacing the Euclidean
distance by an additively-weighted distance defined as:

daw(p,pi) = ‖x− xi‖ − wi (3.2)

where p is the tested point at position x and pi is a generator at position
xi with weight wi. Substituting this distance in equation 3.1, we obtain
the following formula for Voronoi region in the additively-weighted Voronoi
diagram:

Ri = {x : ‖x− xi‖ − wi ≤ ‖x− xj‖ − wj,∀j 6= i} (3.3)

The region can be imagined as a set of points closest to a surface of the
generating spheres. Unfortunately the edges in this diagram are no longer
necessarily straight edges, instead they are usually hyperbolic arcs [28]. Fig-
ure 3.3 gives an example of the additively-weighted Voronoi diagram in two-
dimensions.

Figure 3.3: An additively-weighted Voronoi diagram in two dimensions. The gray circles are generators.

Also various anomalies can occur in the additively-weighted Voronoi diagram
(Figure 3.4). If there is a small sphere (a generator with small weight) among
large spheres (generators with large weight), the Voronoi edge can be split
into two separate edges. These edges are connected by shorter edges gen-
erated by the small generator. Small generator may also generate elliptical
edges, which may not be connected to the rest of the diagram and which may
even lack a Voronoi point on them. More details about these anomalies can
be found in [19]
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Mathematical Background Additively-weighted Voronoi Diagram

Figure 3.4: Singularities in the additively-weighted Voronoi diagram. Left: a Voronoi edge split by two
dotted edges. Right: elliptical edges in a 3D diagram.

Similarly to the ordinary Voronoi diagram, a dual representation exists. It
is called quasi-triangulation [19]. It can be constructed from the additively-
weighted Voronoi diagram in the same way as the Delaunay triangulation
was constructed from the ordinary Voronoi diagram. However, compared to
the Delaunay triangulation the quasi-triangulation is not necessarily a valid
triangulation. In other words, quasi-triangulation is not necessarily formed
only by the corresponding simplices such as triangles in 2D and tetrahedra in
3D. This is caused by the anomalies in the additively-weighted Voronoi dia-
gram. For example, an elliptic edge in a three-dimensional diagram diagram
is represented by a triangle in the quasi-triangulation. Another example is a
split edge, which is, in three dimensions, represented by multiple tetrahedra
with two or more triangles in common.
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4 Finding Cavities Using the
Additively-weighted Voronoi Diagram

In this chapter, the existing approach to finding cavities and their visualiza-
tion using the additively-weighted Voronoi diagram will be described. The
chapter is divided into three sections, describing each part of the process
needed to find and visualize cavities.

In the first section, the algorithm to find cavities using the additively-weighted
Voronoi diagram will be introduced. The second section describes the finding
of cavity surface. Here, the quasi-triangulation will be used in the description,
as it is more intuitive than using the additively-weighted Voronoi diagram.
However, the real implementation uses quasi-triangulation for both. In the
third section, a description of the approach used to visualize cavities will be
given.

4.1 Finding Cavities

The method is used primarily to find inner cavities in a molecule. However,
it can find cavities that are connected to the outer surface (pockets) and the
outer surface, too. The algorithm input is a molecule given as a set of atoms.
Each atom is represented as a sphere with an appropriate van der Waals
radius. The output is a set of subgraphs of the additively-weighted Voronoi
diagram of the molecule. Each subgraph represents one connected cavity in
a molecule. This method is implemented in the cavity-finder module that is
part of the awVoronoi project [1].

The algorithm has two stages – the first stage is a preprocessing stage that
needs to be run only once for a molecule. In the second stage cavities are
discovered for a probe of a selected radius. Both stages will be described in
more detail in later sections.

The preprocessing leverages the additively-weighted Voronoi diagram. The
diagram has two important properties that allow us to find cavities quickly
for varying probe size.

First, a Voronoi vertex is equidistant to its four generators. If a spherical
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probe with center in the Voronoi vertex is placed so that it touches the
generators, the probe does not intersect any other generator, thus defining a
minimal spherical cavity with the radius of the probe.

Also, the Voronoi edge in the diagram is equidistant to its generators. This
means that the edge is an optimal way among atoms generating the edge.
Intuitively, it can be seen that if a probe was slipped away from the edge,
the probe would get closer to some atom and possibly collide with it even
though there was still a space next to the other atoms. This knowledge is
used to find the narrowest point among atoms. The probe can pass among
atoms only if it is smaller that the distance from the narrowest point to the
generating atoms. We will call this distance a bottleneck. We do not need
the position of the narrowest point to determine if a probe can pass among
atoms, so our algorithm operates only using the bottlenecks.

The second stage, where the cavities are discovered, uses the knowledge about
the bottlenecks obtained during the preprocessing. Here we try to slip a probe
along the edges of the Voronoi diagram, finding cavities.

Preprocessing

The preprocessing starts by computing the additively-weighted Voronoi dia-
gram of the molecule’s atoms. The diagram is used to compute bottlenecks
for each edge. Next the Voronoi vertices are sorted according to the distance
to their generators. Also, a flag “is outer” is added to each Voronoi vertex.
The flag is set to true for all vertices that have at least one edge leading to
infinity. It is later used to distinguish the outer void from the inner cavities.
In the following paragraphs, we will cover each step in more detail.

To compute the Voronoi diagram, the awVoronoi library [1] is used. The
input of this library is a list of weighted points (spheres) that are used as
generators. The output is the additively-weighted Voronoi diagram repre-
sented in its dual form – the quasi-triangulation.

The bottlenecks are computed for each edge. The algorithm begins by com-
puting the point with minimum distance to the edge generators. However,
this point does not necessarily lie on an edge (Figure 4.1). Additional mea-
sures must be taken to ensure the bottleneck is computed for a point on the
edge. If the point does not lie on the edge, the edge endpoint for which the
bottleneck is smaller is used instead. Figure 4.2 show the narrowest points
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on each edge.

Figure 4.1: The narrowest place between the two large circles lies on the dotted line connecting the circle
centers. However, the edge they generate does not intersect this line. Therefore, the closest Voronoi vertex
(marked with cross) is used to compute the bottleneck.

Figure 4.2: The narrowest points on each edge used for bottleneck computation. Each point is marked
by a cross.

The check if a point lies on an edge is performed in the following way: first,
vectors from the generator with the smallest weight to the edge endpoints
are constructed. Second, a test vector from the generator to the tested point
is formed. The tested point lies on the edge if and only if the test vector lies
withing the angle defined by the vectors to the edge endpoints.
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Although the bottlenecks can be already used to find cavities, we improve
this approach even further to ensure that it is not necessary to test all ver-
tices when finding cavities to improve the speed. We introduce a maximal
bottleneck property to each Voronoi vertex, and define it as a distance from
the Voronoi vertex to its generating spheres. This distance is always larger
than or equal to the edge bottleneck. The maximal bottleneck not only
tells us if the probe can fit among atoms, but it also defines a radius of a
small cavity formed by the generators, as mentioned earlier. The last step of
preprocessing is to sort the vertices using their maximal bottleneck.

Finding Cavities

The second stage is the finding of cavities itself. Its input is a Voronoi
diagram, bottlenecks and a sorted list of Voronoi vertices that were obtained
in the preprocessing stage. The algorithm is based on the idea of slipping a
probe along the edges of Voronoi diagram if there is enough space to do so.
As the Voronoi diagram is stored in a graph-like structure of vertices and
edges, it can be explored using a graph-traversal algorithm.

The algorithm for finding cavities takes the vertex with the largest maximum
bottleneck from the sorted list of vertices. If the maximum bottleneck is
larger than the probe radius, a constrained graph traversal algorithm starts
(our implementation uses a depth-first search) from this vertex. The graph-
traversal algorithm is allowed to move between vertices only if the bottleneck
associated with the edge is larger than the probe size. If the bottleneck is too
small, the traversal behaves as if there was no edge. This idea is illustrated
in two dimensions in Figure 4.3. The Voronoi vertices visited during the
traversal form one cavity (Figure 4.4).

The algorithm continues by selecting the next unvisited vertex with the next
largest bottleneck from the sorted list of vertices and again starts the graph
traversal. This is repeated until the maximum bottleneck of the next vertex
in the list is smaller than the probe. Thanks to the sorting performed during
preprocessing we are sure that all remaining vertices in the list have smaller
maximum bottleneck and therefore they cannot be a part of any cavity.

The result is a list of all cavities in the molecule. However, this includes the
outer void, too. To differentiate the outer void from the inner cavities, the
algorithm uses the “is outer” flag that was introduced earlier. If a traversal
reaches a vertex that has the “is outer” flag set, the flag is set for all vertices
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Figure 4.3: Probes in the narrowest points of each edge. The probes that fit have a full outline, while the
probes that cannot pass have a dashed outline.

Figure 4.4: A cavity (filled with stripes) approximated as a union of circles.

of the cavity that is being discovered, too. A cavity whose vertices have this
flag set is part of the outer void.

To make the algorithm even more flexible, the finding of inner cavities and
the finding of outer void can be done in two steps. The first step is executing
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the described algorithm using a selected probe radius to find the outer void.
In the next step the algorithm is executed again, but this time the vertices
are not marked using the “is outer” flag. Instead, the “is outer” flag from
the first step is used to restrict the algorithm from entering the outer void.
This approach allows finding not only inner cavities, but also pockets and
channels that have connection to the surface.

The algorithm currently does not handle the elliptical edges. Fortunately
the anomalies found in the additively-weighted Voronoi diagram should not
occur in molecular structures, because the differences between radii of various
atoms are relatively small.

4.2 Finding Surface

The current solution uses an algorithm designed and implemented by Mgr.
Martin Maňák in a plugin for Caver [9]. The input of this algorithm is a
quasi-triangulation, a cavity and bottlenecks from the cavity-finding algo-
rithm. The output is a solvent-excluded surface described by a list of spher-
ical triangles, list of tori and a list of spheres. The method is also described
in a not-yet published article [27].

For the purpose of the description we will use the quasi-triangulation, as the
faces of tetrahedra in the triangulation have direct mapping to the shapes
forming the surface and therefore using quasi-triangulation is more intuitive
approach. When using a triangulation, a face of cell corresponds to a spher-
ical triangle, edge of a face corresponds to a torus and a vertex corresponds
to a sphere. As the quasi-triangulation is dual to the additively-weighted
Voronoi diagram, we can easily transform between the two. When the quasi-
triangulation is used, a cavity is formed of tetrahedral cells instead of Voronoi
vertices. Each face of cell corresponds to a Voronoi edge, meaning that if
the a probe can pass along the edge, we can also say that the probe can pass
through the face of cell.

The algorithm starts with finding the boundary of a cavity. The boundary
consists of triangles on the cavity surface, edges between triangles, and ver-
tices. First, the surface triangles are identified. This is done by testing faces
of each cavity cell. If a probe cannot pass through the face, the face is added
to the list of surface triangles. A hashing needs to be used to ensure the
triangles are not duplicated. Also a list of edges between triangles and a
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list of cavity vertices are created in this step. Next, intersections between
spherical triangles are solved.

The next step is processing the triangles, edges and vertices to find parame-
ters of spherical triangles, tori and spheres.

A sphere is described using three parameters – its center, the radius, and a
list of clip planes. The sphere center is the vertex position. The radius is
the van der Waals radius of the atom. The list of clip planes is derived from
the edges adjacent to the vertex. Each edge contributes by a clip plane that
removes a part of sphere that would by overlapped by the torus generated
by that edge.

A torus is described by the two spheres adjacent to the torus, the radius of
the probe that was used to find the surface, the initial position of the probe
and the angle for which the probe can rotate around the edge before hitting
another atom.

Finally, the spherical triangles are described by the center of the sphere on
which the triangles lies, the three spheres in the corners of the triangle, the
list of clip planes and three vectors from the sphere center to a point of
contact between the spherical triangle and a corner sphere. The clip planes
are computed from the intersections among spherical triangles (see also the
discussion of singularities in MSMS 2.2).

4.3 Visualization

The visualization takes a solvent-excluded surface described by spherical tri-
angles, tori and spheres from the previous step and displays it. The solution
uses triangular meshes to model each shape of the surface separately. To re-
duce the memory requirements, the visualization uses instancing, i.e. there
is only one mesh generated for each shape. The mesh is transformed to its
final form in the vertex shader.

A sphere uses a unit sphere mesh. In the vertex shader, the sphere is trans-
lated to the desired position and scaled according to the van der Waals radius.
In the fragment shader, the fragments are clipped using the clip planes.

A spherical triangle uses a mesh in the shape of a subdivided triangle. The
vertex shader uses barycentric coordinates to transform the triangle to a
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spherical patch of a unit sphere. The patch is then moved to the desired
position. The fragment shader clips the unwanted parts of the spherical
triangle.

A torus is rendered using a subdivided rectangular grid. The vertex shader
transforms this grid to a desired part of a torus. In the fragment shader,
only the self-intersecting part is clipped.

One of the problems of a solution using separate meshes for each surface
shape is continuity of the surface. It is very difficult to make sure the shape
fits together perfectly without artifacts caused by discontinuities.
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5 Proposed Solution

In this work I tackled the first and the last step of finding cavities, i.e. the
finding cavities itself and the visualization.

While the finding of cavities is already very fast, the construction of the
additively-weighted Voronoi diagram in the preprocessing stage is slow. For
that reason we focused on finding a way to speed up the preprocessing. The
first section presents a possible solution which uses the Delaunay triangula-
tion to find an approximation of cavities, because it is faster to compute than
the additively-weighted Voronoi diagram. This approximation can be used
as a foundation for computing precise shape using the additively-weighted
Voronoi diagram, while effectively reducing the the number of generators
used to compute the diagram.

Our second goal was to improve the visualization to handle large molecular
structures, ideally to allow real-time interaction. This is described in the
second section of this chapter. I have reused the previous work of Mgr.
Martin Maňák for finding the cavity surface, as that already works well.

5.1 Finding Approximate Cavities

As the computation of the additively-weighted Voronoi diagram is very time-
consuming, we were trying to find a solution that would reduce its cost to
minimum. The proposed solution takes advantage of the fact that the size
differences among atoms are relatively small. Thanks to this fact, the dif-
ference between the additively-weighted Voronoi diagram and the ordinary
Voronoi diagram is small (Figure 5.1), making it possible to use the Delaunay
triangulation to find approximate cavities. The algorithm finds a set of cav-
ities that is a superset of cavities found when using the additively-weighted
Voronoi diagram. If required, the user can request a precise computation
of cavities that looks promising. This “shape-improvement” is done on the
atoms forming the approximate cavity only, thus reducing the time required
to compute the costly additively-weighted Voronoi diagram.

The input and the output of this algorithm are the same as in the previous
solution, that is – the input is a set of atoms represented as spheres and the
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Figure 5.1: Comparison of Voronoi diagrams when the generators have approximately the same size. The
additively-weighted Voronoi diagram has a full outline. The ordinary Voronoi diagram using only the
circle centers as generators has a dashed outline.

output is a set of cavities. The algorithm operates within three steps. The
first step is preprocessing, the second step is finding approximate cavities
and the last step is an optional improvement of the shape of the discovered
cavities.

In the preprocessing step, a Delaunay triangulation of atoms is computed.
For the purpose of computation the atoms are seen as points. Also in this
step, bottlenecks are computed. The principle is the same as in the previous
solution (see 4.1). However, there is one important difference. While in the
previous solution the bottlenecks were computed using the real van der Waals
radii of each atom, as the the additively-weighted Voronoi diagram allows
that, a single radius must be used for all atoms when using the Delaunay
triangulation.

There are many possible options for choosing the radius, but only some
of them make sense for the cavity computation. Namely, using a mean of
radii of all atoms would give us, in theory, the closest approximation to the
precise cavities that can be computed using the additively-weighted Voronoi
diagram. However, this means that some of the atoms would be enlarged,
causing some cavities to be either omitted completely or to be reduced. A
solution is to use a radius of the smallest atom in the molecule. While this
approach may be “too optimistic” in that it can find more and larger cavities,
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Figure 5.2: Probes (left) and the resulting approximate cavities (right) found using the proposed algorithm.
The same generators as in e.g. Figure 4.4 were used with their radius changed according to the algorithm.

it ensures that no cavities are left out or reduced. The mentioned problems
can be remedied in the third, optional, step of the algorithm.

The second step is finding cavities itself. The algorithm here is exactly the
same is in the previous solution, with one exception – the bottlenecks are the
ones computed using the Delaunay triangulation. Figure 5.2 shows probes
and computed cavities when the ordinary Voronoi diagram (or the Delaunay
triangulation) is used to find approximate cavities. Note that there are two
cavities now compared to the Figure 4.4 that used the same generators.

The third step is optional. The input of this step is a cavity that the user
wants to improve. The output is one or more cavities computed with the im-
proved precision that replace the input cavity. In this step, the atoms that
form a cavity are put into a list. This is done by iterating over all Voronoi
vertices and putting their generators into a list of atoms, while employing
hashing to avoid duplicates caused by the generators being shared among
multiple Voronoi vertices. Once a list of atoms that form the cavity is con-
structed, the algorithm using the additively-weighted Voronoi diagram, as
described in Chapter 4, is executed. Because the number of atoms has been
reduced significantly (only the cavity atoms are used instead of all atoms),
the time required to compute the additively-weighted Voronoi diagram is
much shorter.

As the cavity that is input to the third step is computed using the smallest
possible atom radius for all atoms, it is likely that when using a real van
der Waals radii some of the generators becomes larger, causing smaller bot-
tlenecks. The result is that the cavity is likely to get reduced in some way.
In extreme case, the cavity may be removed completely, however, this hap-
pens only with small cavities that bear no real significance. More often, the
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boundary of the cavity is reduced, or a cavity is split up into several smaller
cavities.

5.2 Visualization

Because the solution presented in Section 4.3 suffered from the number of tri-
angles being rendered and the possible non-continuity among surface shapes,
we have decided to implement visualization using a ray casting. This should
fix both problems, because the ray casting needs to render only simple bound-
ing objects and it provides a precise analytical description of a surface. Ren-
dering of molecules and molecular surfaces using ray casting has been previ-
ously described by e.g. Krone [21].

The input of the visualization are spherical triangles, tori and spheres from
the method described in Section 4.2.

Ray Casting

Ray casting is a method that is used to solve various problems by solving
ray-surface intersections. It is commonly used for rendering surfaces and
solids [31]. For the rendering purposes, ray casting is used to visualize a
surface using its analytical description while using a simple bounding object
for rendering. Ray casting can be fully implemented on GPU. In our work,
we used OpenGL shaders to implement ray casting, so the terminology used
in the following text is based on the OpenGL terminology.

The methods described in this section are used in a paper [27] that is being
prepared for publication.

The first step is to render a bounding object. For each point on the object,
a ray from the camera to the fragment, or image point, is constructed. With
the ray casting, this ray is used to compute the intersection between the ray
and the desired object in the fragment shader. The computed intersection
is then used instead of a real fragment position for computing the lighting.
Additionally, it is required to compute a new fragment depth for the z-buffer
to work correctly. In OpenGL, the fragment depth is computed using the

32



Proposed Solution Visualization

formula defined in [17]:

gl_FragDepth = z(far − near)
2w + near + far

2 ;

where far and near are positions of clip planes, z is the z coordinate and w
is the homogenous coordinate.

Ray Casting of Spheres

To render a sphere using ray casting, a cube is used as a bounding box of
the sphere as shown in Figure 5.3. To simplify the computation, the cube
coordinates range from [−1,−1,−1] to [1, 1, 1].

Figure 5.3: A unit sphere enclosed in its bounding box used for ray casting.

In the vertex shader, each vertex position is scaled by the radius of sphere to
make sure that the cube is large enough. All computations are carried out
in the world space, so the position of the sphere center has to be added to
each vertex to obtain the coordinate in the world space. This can be done
because the modelview matrix is used only for the view transform. Next, the
position of eye in the world space is determined. The position of eye in the
view space is [0, 0, 0, 1]. To obtain the position in the world space, it needs to
be transformed using the inverse of the modelview matrix. After carrying out
the necessary multiplication, we will find out that the transformed position
is equal to the last column of the matrix. Now, a vector from the eye in
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the world space to the sphere center and a vector from the eye to the vertex
position in the world space are created. Finally, the vertex position in the
world space is transformed using the modelviewprojection matrix.

In the fragment shader, we need to solve the intersection of a ray with a
sphere. To solve this, a following formula for the sphere is used:

‖x− c‖2 = r2 (5.1)

and a parametric equation of a line:

x = o + td (5.2)

where x is the point of intersection, c is the sphere center, r is the sphere
radius, o is the ray origin (the position of eye) and d is the ray direction.

Because the intersection point lies both on the line and the sphere, it is
possible to substitute for x and find t:

‖o + td− c‖2 = r2 (5.3)

substitute l = o− c:
‖td + l‖2 = r2 (5.4)

expand the left side to get rid of the norm and subtract the right side to
obtain a quadratic equation:

t2d · d + 2td · l + l · l− r2 = 0 (5.5)

substitute:
a = d · d
b = d · l
c = l · l− r2

The equation can be simplified by making d a unit vector, thus giving us
a = 1. With this assumption being held, an equation in the following form
is obtained:

at2 + 2bt+ c = 0 (5.6)

Using a formula for roots of a quadratic equation t can be found:

t =
−2b±

√
(2b)2 − 4c
2 (5.7)
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By carrying out the division on the right side of the formula, a final form of
the formula to compute ray-sphere intersection for ray casting is derived:

t = −b±
√
b2 − c (5.8)

If the equation does not have solution in real numbers, it means there is no
intersection and the fragment is discarded. Otherwise it is simple to compute
the position of the intersection from the parameter t. Computing normal at
this position is easy, too, because the normal can be obtained by subtracting
the sphere origin from the intersection.

Ray Casting of Spherical Triangles

As a spherical triangle is a part of a sphere, the formula for computing line-
sphere intersection from the previous section is used to find the intersection
with a sphere. The intersection is then clipped using three clip planes.

The biggest difference between the ray casting of spherical triangles and
spheres is that the spherical triangle cowers only a small portion of the whole
sphere and thus using a cube for ray casting would mean computing many
intersections that would be later discarded. For that reason we introduced a
different enclosing object.

We have evaluated two possibilities: a prism and a triangular pyramidal
frustum, as suggested and implemented by Mgr. Martin Maňák.

Prism Transformation

If the prism is to be used, it has to be transformed from an initial position
into a position suitable for ray casting. This is very similar to transforming
one triangle into another in 3D.

The transformation needed to change an input prism to arbitrary output
prism can be described by a matrix A:

A =


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
0 0 0 1
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For the purposes of finding the transformation matrix, the prism is seen as a
triangle that is moved along the z axis. We will be transforming a triangle:

X = [x1,1, x1,2, x1,3, 1]T

X = [x2,1, x2,2, x2,3, 1]T

X = [x3,1, x3,2, x3,3, 1]T

using the matrix A to a new triangle:

Y = [y1,1, y1,2, y1,3, 1]T

Y = [y2,1, y2,2, y2,3, 1]T

Y = [y3,1, y3,2, y3,3, 1]T

The transformation can be written as:

AX = Y

AX = Y

AX = Y

This means that a system of 12 equations for 12 unknowns has to be solved.
Solving this system of equations would be too time-consuming for render-
ing using shaders. However, the equations can be simplified by carefully
selecting the initial triangle as X = [0, 0, z, 1]T , X = [1, 0, z, 1]T and
X = [0, 1, z, 1]T . A prism that meets these requirements can be seen in
Figure 5.4. To accommodate the z-coordinate, the destination triangle is
modified to include a translation in the direction of a normal n = [n1, n2, n3],
i.e. Y = [y1,1 + n1z, y1,2 + n2z, y1,3 + n3z, 1]T , similarly for Y and Y.

This change gives us a1,4 = a2,4 = a3,4 = 1 directly and it results in a much
simpler system of equations:

a1,3z +1 = n1z + y1,1

a1,3z +a1,1 +1 = n1z + y2,1

a1,3z +a1,2 +1 = n1z + y3,1

a2,3z +1 = n2z + y1,2

a2,3z +a2,1 +1 = n2z + y2,2

a2,3z +a2,2 +1 = n2z + y3,2

a3,3z +1 = n3z + y1,3

a3,3z +a3,1 +1 = n3z + y2,3

a3,3z +a3,2 +1 = n3z + y3,3
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Figure 5.4: A prism that is used for ray casting of spherical triangles.

By solving this system of equations a following definition of A is obtained:

A =


y2,1 − y1,1 y3,1 − y1,1

n1 z+y1,1
z
− 1

z
1

y2,2 − y1,2 y3,2 − y1,2
n2 z+y1,2

z
− 1

z
1

y2,3 − y1,3 y3,3 − y1,3
n3 z+y1,3

z
− 1

z
1

0 0 0 1

 (5.9)

where z 6= 0.

This matrix can be used to transform the specified prism into an arbitrary
prism in 3D space.

However, this approach brings a new problem – finding a suitable prism that
encloses the ray-casted surface. An obvious solution, using the corners of a
spherical patch as a prism base, cannot be used because the spherical patch
may not fit into such a prism completely. In the worst case, the prism base
would have to be large enough to contain an inscribed circle of the three
atoms.

Therefore, a solution using a triangular frustum developed by Mgr. Martin
Maňák is used. The solution is described in the next section.
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Triangular Frustum

The current solution uses a triangular frustum that has been designed by
Mgr. Martin Maňák. This method constructs a triangular frustum whose
base is defined by the corners of the spherical triangle. The frustum is ex-
truded in the direction of the vectors from the sphere center to the triangle
corners and that is big enough to contain the whole triangle.

The method uses the same prism as the previous algorithm and transforms it
to a triangular frustum. However, instead of finding a transformation matrix
to change the input prism into another prism, a set of conditional transforms
is used to transform the prism vertices directly.

The triangle corners are identified using the normalized vectors u, u, u

pointing from the sphere center C to the spherical triangle corners. We call
these vectors corner vectors. As the distance of the triangle corners from
C is equal to the radius r, the position of the base of the frustum can be
computed by translating the sphere center in a direction of each corner vector
for a distance equal to radius. Therefore, the position of the corners of the
spherical triangle, which also form the base of the frustum, can be described
as C + ur, C + ur, C + ur.

C

Y

X

n

u0

u1

�

Figure 5.5: Depiction of how a point of a frustum base is found.

The position of the second base can be computed using trigonometry. Figure
5.5 shows a two-dimensional cut of the spherical triangle. To ensure the
frustum encloses the whole spherical triangle, the second base is constructed
such that it touches the spherical triangle at exactly one point Y . It also
has to be parallel to the first base with the normal n. To find a point of the
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second base, the sphere center C is translated in the direction of a corner
vector to the plane that meets these requirements. For example, the point X
is constructed by translating the sphere center in the direction of the corner
vector u.

To effectively construct the point X, the distance ‖XC‖ by which the vector
u is multiplied has to be found. The definition of cos can be used:

cosϕ = ‖Y C‖
‖XC‖

(5.10)

‖XC‖ = ‖Y C‖
cosϕ (5.11)

The cosϕ can be computed using a dot product:

n · u = ‖n‖‖u‖ cosϕ (5.12)

If both n and u are normalized, the cosϕ can be obtained directly. The
distance ‖Y C‖ is known as it is the radius of the sphere.

By applying this method for all three corner vectors, we obtain the points of
the second base. An example of a spherical triangle enclosed in a triangular
frustum is shown in Figure 5.6.

Ray Casting of Tori

The most complicated part of the visualization is the visualization of tori.
Without loss of generality we can assume that the torus is symmetric about
z-axis. The results can then be transformed to a desired position using a
transformation matrix. The torus is rendered using a cube mesh like it is
done when rendering spheres in Section 5.2. Because the torus is symmetric
about z-axis, the enclosing object is in fact an axis-aligned bounding box.

A standard implicit equation of torus symmetric about z-axis is:(
R−

√
x2 + y2

)2
+ z2 = r2 (5.13)

Where R is the major radius and r is the minor radius of torus. This equation
is used by Krone [21].

39



Proposed Solution Visualization

Figure 5.6: A spherical triangle enclosed in a triangular frustum used for ray casting.

Computing a ray-torus intersection is rather complicated (see below), so we
try to reduce the search space where the intersection is being searched as
much as possible. As numerical methods are used to find the intersection,
this includes finding a good initial estimate, too.

The first step in reducing the search space is properly scaling the cube in the
vertex shader. To make sure the torus fits into the box, the box is scaled in
the xy plane using the major radius. The major radius can be computed as
a distance of a probe center from the axis of the torus. Next, the box needs
to be scaled along the z axis. To reduce the search space, the box is scaled
so that it encloses only the visible part of the torus i.e. a cube that encloses
only surface between the tangential points on the two spheres (the green arc
in Figure 5.7) rather than the whole torus height. This is done by finding
two scales, one being applied to the part of the box that is above the xy
plane and one applied to the part below the plane. We will call these scales
zlima and zlimb.

Computing the scales is based on trigonometry. Figure 5.8 describes the
problem using a two-dimensional cut of the torus. Point P is the position of
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Figure 5.7: A two-dimensional cut of torus. Gray circles represent atoms. The dotted lines outline the
whole inner part of a torus. However, the actual surface comprises only of the part highlighted in red and
filled with stripes.

Figure 5.8: Depiction of how the usable length of a torus is found.

the revolving probe. Point C is the point in the center of the torus height.
What we want to find is the length ‖CX‖, which is used as zlima. The
zlimb is computed in the same way. The length can be computed as:

‖CX‖ = ‖AC‖ − ‖AX‖ (5.14)

‖AC‖ can be computed using dot product:

u ·AP = ‖AP ‖‖u‖ cosα (5.15)

where u is a vector aligned to the torus axis. If u is a unit vector, the
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equation is simplified to:

u ·AP = ‖AP ‖ cosα (5.16)

and because:
cosα = ‖AC‖

‖AP ‖
(5.17)

the dot product is the length of AC.

The length ‖AX‖ can be computed in the same way as:

‖AX‖ = u ·AT (5.18)

The vector AT has the same direction as the vector AP and its length is
equal to the sphere radius.

After the bounding box was properly placed and scaled, we can continue
with finding a good initial guess for finding intersection and with reducing
the search space even more. From now on, everything is carried out in the
fragment shader.

The next step is crucial for estimating the initial interval where the roots
of the ray-torus intersection equation will be searched. Intersections with
a circular frustum whose top and bottom radii are equal to the respective
radii of a torus are computed. This gives a good initial estimate for the root
finding. Even more importantly it also removes the parts of the top and the
bottom where the roots should not be searched to avoid artifacts caused by
finding non-existent roots or roots outside the surface.

The idea behind constructing the frustum is as follows: start with an equation
of a cylinder symmetric about z-axis:

x2 + y2 = r2 (5.19)

At any height, the cylinder has the same radius. To create a frustum that
has different radii at the top and at the bottom, the radius r2 is replaced
with an interpolation between two radii r1 and r2:

x2 + y2 = r2
1(1− z0) + r2

2z0 (5.20)

However, this solution does not take the height of the torus into account yet.
To do that, it is necessary to transform the real z-coordinate to a value in the
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range [0, 1] using the zlima and zlimb that were used to scale the bounding
box:

z0 = z − zlima

zlimb − zlima

(5.21)

To solve the intersection, the parametric equation of a line is substituted for
each variable, which results in a quadratic equation:

at2 + bt+ c = 0 (5.22)

Where a, b and c are as follows:

a = (b− a)
(
dy

2 + dx
2
)

b = −dz r2
2 + dz r1

2 + (2 b− 2 a) dy oy + (2 b− 2 a) dx ox
c = (a− oz) r2

2 + (oz − b) r1
2 + (b− a) oy2 + (b− a) ox2

(5.23)

This yields an intersection with an infinitely long circular frustum. Finding
an intersection with a frustum with a finite length is just a matter of finding
an intersection with a top and bottom planes, which are planes parallel with
xy at height zlima and zlimb. The result of this step are two parameters t0
and t1 where t0 is the intersection with the front side of the frustum and t1
with the back side.

At this stage the search space can be reduced by doing clipping that is
caused by the probe not being able to roll around the atoms completely.
The torus is clipped by two planes at this point, possibly replacing t0 and
t1 with a parameter that reduces the search space even more. It is required
to distinguish two cases: a case when the central angle of the visible part of
the torus is convex and a case when the angle is reflex. Both situations are
shown in Figure 5.9.

First, a parameter t of the intersection of a ray with each plane is com-
puted. We will label them ta for an intersection with plane A and tb for
an intersection with plane B. The algorithm slightly differs depending on
whether the central angle is convex or reflex. In the convex case, there are
four possible configurations of the ray in relation to the clip planes. Figure
5.9 presents example vectors v, v, v, v in each possible configuration.
We will use these vectors to represent their respective configuration in the
algorithm pseudocode. Each configuration can be recognized using a dot
product between the vector and a plane. For example, for the vector v and
vectors a, b of plane coefficients the following holds:

(v · a > 0) AND (v · b > 0) (5.24)
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Figure 5.9: A cut of a torus viewed along the Z axis to display clipping. Strong blue outline is the visible
part of a torus. Colored half space represents the negative side of each clip plane. The left image presents
a torus with a convex central angle. On the right a torus with a reflex central angle can be seen.

The algorithm that adds clipping of the frustum in case the central angle is
convex can be written using the following pseudocode:

switch (configuration)
case v_0:
t_1 = min(t_a, t_b)

case v_1:
t_0 = max(t_a, t_b)

case v_2:
t_0 = max(t_0, t_a)
t_1 = min(t_1, t_b)
if (t_1 < t_0)

discard
case v_3:
t_0 = max(t_0, t_b)
t_1 = min(t_1, t_a)
if (t_1 < t_0)

discard

When the central angle is reflex, the algorithm is written as follows:

switch (configuration)
case v_0:
t_0 = max(t_0, min(t_a, t_b))

case v_1:
if (t_b < t_0)
t0 = t_a

case v_2:
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if (t_a < t_0)
t0 = t_b

The final step before computing intersections is discarding the fragments
where no solution lies. The used algorithm is very simple and fast. However,
it may discard even some valid fragments. The algorithm takes parameters t0
and t1 obtained in the previous steps and computes their average obtaining
t0.5. A position is computed for each of these parameters. Each position is
then substituted into the equation 5.28.

According to the Bolzano’s theorem, if the function has opposite signs on
an interval, there must be a root in this interval. Therefore, if there is a
change of sign between points t0, t0.5 and t1, there must be root. If there
is no sign change, the fragment is discarded. This gives significant speedup
of the computation by discarding the fragments outside of the torus early.
It also removes all artifacts caused by a numerical algorithm trying to find
a non-existent solution. Again, to reduce the search space, t0 and t1 are
transformed to the interval where the sign change occur.

However, this method has some drawbacks, too. When the ray intersects
both the top and the bottom plane, all points will give the same sign. Still,
there may be a root in the inner arch of a torus. Fortunately, this is not such
a big problem since for a large part of a surface only the outer part is visible.
Even when the inner part is visible, the problem affects only a small portion
of the torus either on the bottom or on the top.

Now that the search space was reduced considerably and the initial guesses
were found, a ray-torus intersection needs to be computed.
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Figure 5.10: An inner part of a torus generated by revolving a semicircle.
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Because only the inner part of torus is needed, a slightly modified equation is
used in place of a standard implicit equation of a torus. The idea is that the
cross section of the inner part of a torus symmetric about z-axis is a circle,
whose radius depends on the z-coordinate as illustrated in Figure 5.10. This
can be written as:

x2 + y2 = f(z) (5.25)
To find f(z) an equation of a circle in xz plane is solved for x:

x2 + z2 = r2

x =
√
r2 − z2

(5.26)

This gives one solution in real numbers that describes a semicircle in a xz
plane. To accommodate the major radius, a shift needs to be added to this
value, obtaining:

f(z) = R−
√
r2 − z2 (5.27)

Finally f(z) is substituted to the original equation to obtain a final form of
the equation of the inner part of a torus:

x2 + y2 =
(
R−
√
r2 − z2

)2
(5.28)

The advantage of using this equation instead of the standard implicit torus
equation is that it guarantees that any solution is an intersection with the
inner part of a torus. With the standard formula the intersections with the
inner part of a torus and the intersections with the outer part of a torus need
to be distinguished.

For ray casting, it is necessary to compute an intersection of this inner part
of a torus with a line. Again, a parametric equation of a line is used:

x = ox + tdx

y = oy + tdy

z = oz + tdz

(5.29)

By substituting these equations into the equation of the inner part of the
torus, a following equation is obtained:

(ox + tdx)2 + (oy + tdy)2 =
(
R−

√
r2 − (oz + tdz)2

)2
(5.30)

Solving for t produces a quartic equation of a form

a4t
4 + a3t

3 + a2t
2 + a1t+ a0 = 0 (5.31)
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Where:

a0 = (R4 − 2r2R2 + 2o2
zR

2 − 2o2
yR

2 − 2o2
xR

2 + r4 − 2o2
zr

2 − 2o2
yr

2 − 2o2
xr

2

+ o4
z + 2o2

yo
2
z + 2o2

xo
2
z + o4

y + 2o2
xo

2
y + o4

x)
a1 = (4(dzozR2 − dyoyR2 − dxoxR2 − dzozr2 − dyoyr2 − dxoxr2 + dzo

3
z

+ dyoyo
2
z + dxoxo

2
z + dzo

2
yoz + dzo

2
xoz + dyo

3
y + dxoxo

2
y + dyo

2
xoy + dxo

3
x))

a2 = (2(d2
zR

2 − d2
yR

2 − d2
xR

2 − d2
zr

2 − d2
yr

2 − d2
xr

2 + 3d2
zo

2
z + d2

yo
2
z + d2

xo
2
z

+ 4dydzoyoz + 4dxdzoxoz + d2
zo

2
y + 3d2

yo
2
y + d2

xo
2
y + 4dxdyoxoy + d2

zo
2
x

+ d2
yo

2
x + 3d2

xo
2
x))

a3 = 4(d2
z + d2

y + d2
x)(dzoz + dyoy + dxox)

a4 = (d2
z + d2

y + d2
x)2

(5.32)

Although quartic equation can be solved analytically, it is rather difficult and
time consuming task, especially when the coefficients are more complicated
like in this case. Instead, the equation can be solved numerically. There are
various methods to solve the equation numerically, the common choice being
bisection method, Newton’s method or regula falsi [29]. The initial experi-
ments have shown that the Newton’s method fails to converge or converges
very slowly for the lower visible part of a torus. While both bisection method
and regula falsi gave very similar results in terms of speed and quality, the
bisection produced slightly more appealing results.

The bisection uses the parameters t0 and t1 found in the previous steps
as an initial guess. Our implementation uses 10 iterations to obtain the
intersection.

Because the intersection was computed for the torus symmetric about z-axis,
it is necessary to transform the intersection using the modelview matrix to the
eye space, where shading is performed. The modelview matrix is assembled
in the vertex shader, taking the position of generators into account.
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There may be an enormous amount of cavities found in the molecule, with
a large part often being of little to no practical use. Thus it is desirable to
hide the cavities that do not meet the requirements. The used algorithm
allows obtaining additional information about cavities easily, which enables
us to filter cavities on the base of various measures. In this chapter, several
methods to evaluate cavity properties that can be used for filtering the results
are proposed. Methods can be purely geometric, as the methods described
in Section 6.1, or they can be based on chemical properties as described in
Section 6.2.

6.1 Geometric Methods

The geometric methods do not take the chemical properties and the knowl-
edge about atoms into account. Instead, they rely solely on the cavity geom-
etry, such as its shape or volume. The previous solution implemented only
the geometric methods. These are described first. During the course of this
work, new geometric methods were developed. These methods are presented
later.

Existing Methods

A very important property of a cavity is its volume, because it is easy to
understand and gives a good estimate of how big the cavity is. The volume
is computed in the following way: first, an axis-aligned bounding box of the
Voronoi vertices is obtained and its volume is computed. Then a number of
random sampling points are computed in the bounding box. For each point,
it is determined whether it hits a probe outside of the cavity surface or not.
If the points do not hit a probe outside of the surface, the point is counted as
hitting the cavity volume. From the total number of samples and the number
of samples that hit the cavity, a probability of a hit can be evaluated. The
approximate volume is computed as a multiple of the hit probability and a
volume of the bounding box.

Another property that was previously implemented by Mgr. Martin Maňák
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is a complexity based on the number of spherical triangles. It is a simple
measure of the number of spherical triangles that are part of the cavity
surface. A high number usually means that the cavity is large and that it
has complicated surface. Small cavities and cavities with a simple surface
tend to have a lower number of spherical triangles in their surface.

The next two properties are the minimum and the maximum probe. The
minimum probe is the radius of a sphere when the cavity becomes part of
the outer void. This tells us when the cavity becomes accessible from the
outer space. The maximum probe is the radius of a sphere that fits into the
largest cell in the cavity quasi-triangulation. It is applicable when the radius
of the largest spherical space in the cavity is needed.

There is also an “aggressive” filtering of cavities. This filtering is based on
a maximum probe and the number of Voronoi vertices in a cavity. The
cavities are sorted according to the maximal probe radius and the number of
vertices. The filter returns only a selected percentage of cavities from each
sorted list, while avoiding duplicates if a cavity fulfills both the requirement
for the maximal probe size and the number of vertices.

New Methods

As a part of this work, new methods for evaluating geometric properties of
a cavity were introduced to further extend the knowledge about cavities and
to allow more informed filtering of the cavities. These properties are focused
mostly on describing the shape of cavity. They are: fractal dimension, con-
vexity and branching. Each of these will be described in more detail in the
following sections.

Fractal Dimension

One of the geometric methods is a method that uses fractal dimension to
measure the roughness of the cavity surface. While, strictly speaking, the
cavity surface is not a fractal due to missing small scale features, it still has
some degree of self-similarity at higher scales, making it possible to estimate
its fractal dimension.

The idea behind fractal dimension is to enumerate how a fractal pattern
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changes at various scales. The term fractal dimension usually refers to a
Hausdorff dimension [14] or to a box-counting dimension [14] Both dimen-
sions express the self-similarity at various scales.

The Hausdorff dimension is based on a concept of covering the space F by
sets of increasingly smaller diameter. As the diameter decreases, the number
of sets covering the space increases. To find the dimension, we first define a
δ-cover of F as a cover of space with sets of radius at most δ. Then we define
Hausdorff measure as:

Hs
δ (F ) = inf{

∞∑
i=1

rsi } (6.1)

where ri is a δ-cover of F . In other words we seek to minimize the sum of the
rsi . As previously mentioned, the number of sets increases with decreasing δ.
The Hausdorff dimension is defined as a limit when δ approaches 0:

Hs(F ) = lim
δ→0

Hs
δ (F ) (6.2)

The box-counting dimension approaches the problem by using boxes instead.
First, Nδ(F ) is defined as the smallest number of sets with diameter at most
δ that cover F . Then a box-counting dimension is given by:

dimb(F ) = lim
δ→0

logNδ(F )
− log δ (6.3)

To compute the box-counting dimension, F is placed onto a uniform grid and
a number of boxes that covers F is counted [35]. The box-counting dimension
can be seen as a ratio how the required number of boxes changes as δ → 0.

It can be seen that the box-counting dimension is much easier to compute.
For the Hausdorff dimension it is necessary to compute spheres to cover the
examined object. However, for box counting dimension a uniform grid can be
used. Also, determining whether a box covers an object is much simpler than
doing the same for a sphere. For this reason, the box-counting dimension is
more commonly used.

When computed for a cavity, the box-counting dimension can be seen as
describing the roughness of a cavity surface, or its complexity. The higher
the dimension is, the more complex the cavity is.

To simplify the computation and to make things faster, a cavity is approxi-
mated using spheres in the Voronoi vertices. The algorithm works as follows:
first, a uniform grid with a defined spacing is created. Second, the algorithm
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goes through all cavity vertices and marks each block in the grid that in-
tersects the sphere defined by the vertex. Then a number of marked blocks
is counted. This algorithm is repeated using several block sizes. Next the
results are portrayed as points. The box-counting dimension is the slope of
this line. To find the slope, a linear least squares method is used.

Convexity

We define the convexity property as a ratio of a convex hull volume and a
cavity volume. For the purpose of computing volume the atoms are replaced
by points and a cavity is represented as a set of tetrahedra. This allows using
simpler algorithms to compute the volumes.

The convex hull is computed using the QuickHull3D library [4] that computes
a convex hull using the QuickHull algorithm [7]. Once the convex hull is
computed, three random vertices are selected from the hull and their position
is averaged to obtain a middle point x. This point is certain to lie inside the
convex hull. It is used to compute a volume of the hull by iterating over all
triangular faces of the hull. For each face a, b, c, a tetrahedron a, b, c, x is
computed and its volume is computed using the equation 6.4. The volume
of the hull is the sum of volumes of all tetrahedra.

V = 1
6 ||(a− x) · ((b− x)× (c− d))|| (6.4)

To compute the volume of a cavity, we loop over all tetrahedra of a quasi-
triangulation and compute the sum of their volumes.

We define convexity as a ratio:

Vtriangulation
Vhull

(6.5)

It yields a number between 0 and 1, where 1 is a cavity that is perfectly
convex. The closer the value is to zero, the more inconvexities are present in
a cavity. The convexity can be used to quantify how difficult it would be to
slip probe through the cavity. There is a higher chance that the probe gets
stuck in a more complicated cavity with many inconvexities rather than in a
convex cavity.
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Branching

The branching property is based on the algorithm that finds the most sub-
stantial subgraph of a graph. The algorithm is used to reduce a graph de-
scribing a cavity leaving only its most prominent features. From this graph,
a “branching number” is computed as a sum of the number of additional
branches of nodes with a degree higher than two. This number describes a
number of the most important paths in a cavity graph, thus it can be used
to evaluate how complicated the cavity is.

The input of the algorithm for finding the most substantial subgraph is a
graph and a metric that defines the distance between two nodes in the graph.
The output of the algorithm is a graph. The algorithm iteratively removes
insignificant nodes from the graph.

The algorithm begins by finding all graph endpoints, i.e. nodes of degree one.
These nodes are assigned a distance 0 and added to a list of start nodes. Each
endpoint is then used as a starting node for a depth-first search. The search
stops when it discovers a node with degree > 2. A node with degree > 2
is considered a “branching point” of a graph and it is where insignificant
branches are removed. A distance from the endpoint to the branching point
is stored in the branching point and the branching point is added to a list of
future start nodes. It should be pointed out that when doing the depth-first
search, the branching point should not be marked as processed once it is
found. That is because the branching point may be discovered from another
endpoint, too.

After all endpoints are processed, the algorithm starts pruning the graph to
remove insignificant branches. To prune the branches, the algorithm iterates
over the list of future start nodes (i.e. the current branching points). For
each node, it removes the paths whose distance to the endpoints is smaller
than a user-specified value, while leaving at least one path with the assigned
distance intact. If the removal reduced the degree of the point to less than
two, the longest two paths are kept. If a path has no computed distance yet,
it is not considered for removal.

The algorithm continues by replacing the list of start points with the list of
future start points. The algorithm then tries to find new branching points
using the same algorithm. The algorithm stops when there are no branching
points found.
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An example of how the the algorithm works step-by-step is given in Figure
6.1.

(a)

(b)

(c)

Figure 6.1: The example of removing short branches. For the illustrative purposes length of an edge is 1.
The branches shorter than 2 are removed. (a) The initial graph with endpoints marked with red. (b) First
iteration of the algorithm, branching points are black, with the incoming edges assigned with a distance
to the endpoint on the path from that edge. (c) The short branches are removed, keeping at least one
branch intact. A new branching point is computed and distances are assigned.

For the purposes of computing the branching number, the algorithm to reduce
the cavity is used with a metric that is an Euclidean distance of the Voronoi
vertices. The branching number is computed by adding up the degree - 2 of
all nodes with degree > 2.

It would be possible to introduce other cavity measures using the algorithm
to find the most substantial subgraph by changing the metric, or by using a
different algorithm to measure the resulting subgraph. An option could be
the use of this algorithm, e.g. to measure the longest path, possibly taking
the path smoothness into account.
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6.2 Atom-based Filtering

Apart from the filtering methods based on geometric properties, it can be
useful to filter cavities based on their chemical properties, too. This is im-
portant if there is a requirement for some chemical interaction to occur in a
cavity. For this purpose, a filtering method based on residues adjacent to a
cavity was implemented in this work.

The input of this method is a user selectable list of residues. The cavities are
filtered by testing all atoms forming each cavity if they are part of a residue
selected by the user. The cavities that do not contain an atom with any
selected residue are removed.
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The algorithms described in this work were implemented in a plugin for Caver
[9], a software tool for protein analysis and visualization. In the first section,
the related functionality of the plugin will be covered. In the second section,
the comparison with the previous solution will be discussed. Finally, a few
usage examples of the plugin will be given.

7.1 Caver Plugin

The algorithms presented in this work were implemented in a Caver plugin
for finding cavities. This plugin was developed by Mgr. Martin Maňák. The
plugin was modified to find approximate cavities using the Delaunay triangu-
lation, while allowing the user to select cavities for the precise computation
using the additively-weighted Voronoi diagram. The rendering using ray
casting was added in addition to the previous solution. The recent version
uses ray casting as a default setting. Also, the existing filtering options were
extended with the new filtering options described in this work.

Cavities Using the Delaunay Triangulation

Implementing the approximate cavities involved the following changes: adding
a computation of the Delaunay triangulation, modifying the code to allow
the cavities to be recomputed using the additively-weighted Voronoi diagram,
and modifying the user interface to reflect the changes.

We decided to use CGAL [2] to compute the Delaunay triangulation rather
than implementing our own solution. The reason to choose CGAL over other
solutions is that the implementation of the Delaunay triangulation in CGAL
is proved to be a well-tested and very flexible, yet fast implementation. The
downside of choosing CGAL is that CGAL is written in C++, while the
plugin is written using Java. To solve this, a wrapper using Java Native
Interface was implemented to allow using the CGAL’s implementation from
Java. Also in this wrapper, the bottleneck computation is included, com-
pared to the previous solution which uses a separate module to compute
bottlenecks. This is because the CGAL’s implementation of Delaunay trian-
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gulation provides additional information which includes most of the data for
bottleneck computation.

To allow easier interoperability with the existing algorithms, the wrapper pro-
vides the same interface as the existing module for computing the additively-
weighted Voronoi diagram from the previous solution. Thanks to this, the
code for finding cavities in a diagram could be left mostly unchanged, al-
lowing the change between the precise computation and the approximate
computation being done by simply changing the module which does the pre-
processing.

Changes to the code were also needed to allow improving the approximate
cavities using the additively-weighted Voronoi diagram to find a precise cav-
ity shape. Probably the biggest challenge lied in changing the existing code
that assumed that the triangulation and bottlenecks computed in the prepro-
cessing stage are valid for the whole molecule (i.e. all cavities are computed
using the same triangulation and the same bottlenecks). To allow an im-
provement of individual cavities, it had to be changed, because each cavity
can be computed using a different triangulation and different bottlenecks.

To improve an individual cavity, we iterate over all Voronoi vertices of a
cavity, while adding their generating atoms to a HashSet. The HashSet is
used to avoid duplicates caused by the fact that many generators are shared
by multiple vertices. The atoms are used to run the algorithm using the
additively-weighted Voronoi diagram to find precise cavities.

The user interface reflects these changes in a way that it allows the user se-
lect interesting approximate cavities and request their precise computation.
It also presents the user with an information whether a cavity is only approx-
imate or if it was computed precisely with the additively-weighted diagram.
An example of the user interface will be given in Section 7.4.

Ray Casting

The ray casting is implemented using GLSL shaders and it is integrated with
the existing code. The implementation uses instancing, implemented by Mgr.
Maňák to reduce the number of data transmitted to a video card. For all
shapes, a buffer containing a bounding object is generated. This bounding
object is a simple primitive modeled using a triangular mesh. Depending on
the shape it is either a cube with coordinates ranging from [−1,−1,−1] to
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[1, 1, 1] for spheres and tori, or a triangular prism aligned with with a base
[0, 0, 0], [1, 0, 0] and [0, 1, 0] and height from −1 to 1 for spherical triangles.
The shaders are passed the necessary information needed to transform the
default object to a bounding object required for the computation.

Generally, the vertex shaders are used to translate the bounding object into
its position and to scale and rotate it to make sure it encloses the rendered
shape. Also in the vertex shader, the rays from camera to a vertex are
computed to be used for ray casting. The fragment shader computes an
intersection between a rendered shape and the ray, including clipping. The
intersection is used to compute the lighting and correct depth.

The implementation of the ray casting in shaders closely reflects the process
described in the theoretical part in Section 5.2.

Filtering

The current Caver plugin allows attaching various information to each cavity
by so-called Cavity Properties. The information can be used to sort and
filter cavities in a list of all cavities. All new geometric methods presented
in Chapter 6 are implemented as Cavity Properties. To use the existing
infrastructure, each cavity property must implement the required interfaces
and it must be correctly annotated. When done properly, the property is
automatically picked up and made accessible from the user interface. The
user interface shows each available property. The user can use this newly
acquired knowledge about cavities to manually hide or show the cavities.

The atom-based filtering is implemented separately because of different re-
quirements on the user interface. The implementation is hooked to the code
right after the cavity-finding. When the cavities are found, they are checked
against the selected residues and filtered before they are even visualized. To
make this possible, it is necessary to keep mapping between vertex generators
and the atoms. To filter a cavity, it is necessary to find out which residue
each atom belongs to. The caver provides the necessary functions. All the
cavity residues are checked against the user selected set of residues. To im-
prove the speed of the check, the user selected residues are stored in a hash
set to quickly identify whether the user selected the tested residue.
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7.2 Comparison

In this section, a comparison with the previous solution will be presented.
The comparison comprises several parts. The first part focuses on the time
required to find cavities. In the next part, the ray casting is compared to the
previous solution using triangular meshes. Finally, selected cavities are used
to present the cavity measures.

The system used for experiments was a PC with Core i7 920 CPU (four cores
at 2.7GHz with Hyper-Threading), 12 GB RAM and GPU nVidia GeForce
9600 GT 512MB. The used operating system was Arch Linux 64bit running
Oracle JDK 7u55.

When measuring times, the first few runs of each algorithm were omitted until
the times become more stable. This is to ensure the code was loaded into
memory, and more importantly, that the measurements were not affected by
JIT compiler optimizing the code. The optimization is otherwise exhibited
by shortening times between successive runs.

Finding Cavities

This section presents a comparison between the previous solution and the
proposed solution in terms of speed of finding cavities.

First, we have evaluated the preprocessing on a variety of molecules with a
different number of atoms. All molecules used for testing are available from
the RSCB Protein Data Bank [3] under the public domain with the exception
of the molecule 70S RF2 [20] that is available from the Center for Molecular
Biology of RNA [5]. We refer to all molecules using their PDB IDs.

The measured times required for preprocessing using the Delaunay triangu-
lation are presented in Table 7.1. The preprocessing times for the method
using the additively-weighted Voronoi diagram are in Table 7.2. The tables
contain two times – a time required to build a triangulation from the input
and a total time required for the preprocessing, including the computation
of bottlenecks.

It can be seen that the time required for preprocessing is several times shorter
when using Delaunay triangulation. An interesting result is that there is
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much higher disparity between the time needed to compute the triangulation
and the time needed for the rest of the preprocessing despite the fact that
the implementation of the Delaunay triangulation in CGAL already includes
some of the steps needed to compute the bottlenecks. This is likely due to
the overhead caused by the need to pass data from the C++ structures to
Java objects.

It can also be seen that the required time does not depend solely on the
number of atoms. For example, the times for molecule 1FFK were very short
despite its high number of atoms. This is probably because this molecule is
very sparse and the atoms are grouped into several smaller clusters.

Molecule Execution time Average
(# atoms) [ms] [ms]

1CQW triangulation 20 19 19 20 24 20
(2 358) total 105 102 102 103 108 104

1FFK triangulation 28 28 27 27 27 27
(3 656) total 156 160 159 158 159 158

1CW2 triangulation 39 39 39 38 39 39
(4 926) total 228 218 220 214 217 219

3O58 triangulation 194 192 189 195 189 192
(23 719) total 1 149 1 120 1 118 1 145 1 092 1 125

3OH5 triangulation 211 211 209 210 222 213
(25 880) total 1 250 1 211 1 278 1 269 1 278 1 257

3WOD triangulation 237 239 239 239 245 240
(28 953) total 1 399 1 446 1 443 1 403 1 423 1 423

2VKZ triangulation 711 721 720 714 711 715
(85 830) total 4 127 4 311 4 182 4 390 4 172 4 236

70S RF2 triangulation 2 616 2 544 2 510 2 577 2 557 2 561
(298 820) total 16 656 15 982 14 870 15 605 15 509 15 724

Table 7.1: Times required for preprocessing using the Delaunay triangulation. The values in the triangu-
lation row describe the time needed to compute the triangulation of atoms only. The row total contains
the total time required to build a triangulation and to compute bottlenecks.

In the next comparison we compared a total time required by each method to
find a precise cavity. If we want a precise cavity, the time needed to improve
the cavity constitutes to the total required time. The example of times
required to find a precise shape of selected cavities using both approaches
(i.e. finding approximate cavities and improving a cavity and finding cavities
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Molecule Execution time Average
(# atoms) [ms] [ms]

1CQW triangulation 430 456 462 442 459 450
(2 358) total 531 552 555 531 552 544

1FFK triangulation 280 287 278 278 288 282
(3 656) total 345 353 348 344 353 349

1CW2 triangulation 199 200 198 203 186 197
(4 926) total 242 250 241 245 228 241

3O58 triangulation 2 488 2 467 2 510 2 484 2 443 2 478
(23 719) total 2 940 2 911 2 971 2 925 2 913 2 932

3OH5 triangulation 2 654 2 773 2 787 2 738 2 714 2 733
(25 880) total 3 154 3 268 3 300 3 224 3 202 3 230

3WOD triangulation 3 219 3 394 3 464 3 360 3 387 3 365
(28 953) total 3 794 3 972 4 039 3 936 3 971 3 942

2VKZ triangulation 13 912 14 058 13 806 13 423 13 782 13 796
(85 830) total 15 863 16 059 15 778 15 418 15 700 15 764

70S RF2 triangulation 46 453 47 903 44 157 48 906 46 960 46 876
(298 820) total 53 389 54 960 51 095 55 482 53 899 53 765

Table 7.2: Times required for preprocessing using the additively-weighted Voronoi diagram. The values
in the triangulation row describe the time needed to compute the triangulation of atoms only. The row
total contains the total time required to build a triangulation and to compute bottlenecks.

directly with the additively-weighted Voronoi diagram) is found Table 7.3. It
can be seen that the difference is negligible for smaller molecules, but as the
molecule size increases, the total time becomes considerably lower when using
approximate cavities with the improvement step. However, improving large
number of cavities may become ineffective if that meant that the additively-
weighted Voronoi diagram had to be computed for a larger portion of the
molecule.

Finally, we compared the volume of some selected cavities to identify how
much the approximate cavities and the precise cavities differ. The results are
presented in Table 7.4. The results show that the approximate cavities have
larger volume as expected. This means that when approximate cavities are
used, it must be taken into account that the true cavity is likely smaller and
it may not meet requirements anymore.
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Molecule Approximate Precise
1CW2 (1.4 Å) 282 559
1AKD (1.4 Å) 202 355
1AOI (3.0 Å) 346 680

2VKZ (4.2 Å) 6 302 14 776
70S RF2 (8.0 Å) 15 558 57 925

Table 7.3: The total time in [ms] required to find a precise shape of the largest cavities. The probe size
is specified next to each molecule ID.

Molecule Approximate Precise Ratio
1CW2 (1.4 Å) 1 664 1 126 1.48
1AKD (1.4 Å) 2 041 1 371 1.49
1AOI (3.0 Å) 3 699 3 306 1.12

70S RF2 (8.0 Å) 30 553 30 114 1.01
Table 7.4: The comparison of volumes of the largest cavities found with a probe size specified under each
molecule ID. The volumes were computed using 1000000 samples.

Visualization

To compare the visualization speed, we measured the frames per second
(FPS) when rendering a rotating model of a molecule.

Rather than measuring FPS when visualizing surface of inner cavities, we
visualized the outer surface of a whole molecule. The reason to do so is
that it is less dependent on the structure of a molecule. Small molecule may
contain more cavities than a large molecule when the same probe is used.
Also, the outer surface has much larger area than the surface of cavities, thus
it is better for stress testing.

For all measurements, we used a probe of size 1.4 Å, as it is a very common
choice. Both the old method described in Section 4.3 and the ray casting
described in Section 5.2 were tested on molecules of various sizes to show
how the methods scale for increasingly large data. The FPS were measured
over a period of time (several minutes) to obtain a larger set of samples. The
samples were averaged and the results are presented in Table 7.5.
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Molecule Old method Ray casting
1CQW 5.255 17.933
1CW2 2.983 10.940
3WOD 0.741 6.552
1FFK 2.874 9.354
2VKZ 0.348 0.935
3O58 0.761 2.020

70S RF2 0.161 0.325

Table 7.5: The frames per second when rendering a surface of selected molecules using a probe 1.4 Å.

7.3 Filtering

New filtering methods were introduced in this work. In this section some
real-world examples of cavities are presented while providing the measured
data that can be used for filtering. The user can use the measured properties
to sort cavities in a list of all cavities and to manually filter cavities.

We have selected three different cavities to demonstrate the new geometric
methods that can be used to measure cavities for filtering. The cavities are
shown together with the evaluation of their properties as implemented in
Caver plugin in the Figure 7.1, 7.2 and 7.3. The volume is added to keep a
sense of scale.

Because of its large, tentacle-like spurs, the cavity in Figure 7.1 has a very low
convexity. Its shape also causes the fractal dimension to be relatively high,
since the surface varies a lot on different scales. Also the branching measure
is high, indicating that the cavity has a complicated shape. While the cavity
in Figure 7.2 has a relatively high convexity compared to the first one, it
still has a high fractal dimension and the branching measure because of the
surface roughness at a smaller scale. Figure 7.3 shows a simple, round-shape
cavity. According to that, it has a very high convexity, very low branching
and low fractal dimension.

The results show that the selected properties can be used to sort and filter
cavities based on their shape. The convexity is a more global measure and
can be used to filter cavities with lots of bends where a molecule can easily
get stuck. The fractal dimension describes finer details of the surface, which
affects the probability of a contact between the surface and other molecules
[6]. The branching is affected by both finer details and a general shape of a
cavity.
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Parameter Value
Volume 1404
Convexity 0.43
Fractal Dimension 2.17
Branching 352

Figure 7.1: The largest precise cavity in a molecule 1CW2 for a probe 1.3 Å.

Parameter Value
Volume 1371
Convexity 0.64
Fractal Dimension 2.18
Branching 380

Figure 7.2: The largest precise cavity in a molecule 1AKD for a probe 1.4 Å.

Parameter Value
Volume 400
Convexity 0.88
Fractal Dimension 1.7
Branching 6

Figure 7.3: The largest precise cavity in a molecule 1AKD for a probe 3.4 Å.
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Results User Interface

7.4 User Interface

A menu to enable the user interface of the plugin to find cavities. “Computation”
shows the interface to find the cavities. “Overview” shows a list of all cavities with
their properties. The overview can be used to filter cavities.

1

2

3

Caver with a loaded molecule 1AKD. The control interface for cavity finding is
on the right (1). The list of all cavities (“Overview”) is on the bottom (2). The
cavities are sorted according to the “Fractal Dimension” and only the ones with
dimension > 1 are shown. The first cavity in the list has been improved, which is
depicted in the column “Improved.” To improve a cavity, right click on a selected
cavity, or cavities, in the list and select improve. The atom based filtering is
accessible from the panel (3). Only the cavities with Arginine are shown.
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8 Conclusion

In this work, we have presented a modification of an algorithm using the additively-
weighted Voronoi diagram to find cavities that allows processing large molecules.
The modification uses the Delaunay triangulation to find approximate cavities.
The shape of an approximate cavity can be improved by a modified algorithm using
the additively-weighted Voronoi diagram that considers only the atoms forming the
cavity.

To allow visualization of cavities in large molecular models a solution using the
solvent-excluded surface of cavities was developed. This solution uses ray casting
to render the basic shapes forming the surface.

Because the user is usually interested in a subset of cavities, we have provided new
means to measure cavity properties that can be used for filtering cavities based on
both purely geometrical approach and on residues forming the cavity.

The experiments show that computing approximate cavities and then improving
only selected cavities leads to an improvement over the previous solution in the
terms of speed. Also, the visualization using ray casting proved to be of very high
quality, while being several times faster than a method using triangular mesh.
Finally, we have visually evaluated the newly introduced cavity properties for the
filtering.
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