
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master Thesis

Tool for Automatic Generation
of Graphical Templates

for Mobile Devices

Pilsen, 2014 Jakub Krauz

Declaration

I hereby declare that this master thesis is completely my own work and that I used

only the cited sources.

Pilsen, May 10, 2014 Jakub Krauz
 ..

Acknowledgement

I would like to thank to my thesis supervisor Ing. Petr Ježek, Ph.D. for his

assistance, time and valuable remarks.

Abstract

Data management systems usually consist of a database and a user interface which

provides access to stored data. User interfaces are mostly web-based, providing

an easy access using a web browser. In addition, applications for mobile devices,

which communicate with the system through web services, are sometimes offered.

The common shortcoming of all such user interfaces is the strong dependence

on the underlying database structure. They are designed for a specific system and

cannot be easily reused for another one. The aims of this work are to solve this

problem by providing a framework that is able to generate platform-independent

graphical templates for an arbitrary database structure. The implemented tool

is driven by an annotated data model. A use-case deployment is presented

on a database for neuroscience experiments.

Keywords: graphical template, form layout, odML, neuroinformatics, EEG/ERP,

web service, Java, REST

Contents

1 Introduction 3

2 Theoretical Background 5
2.1 Electrophysiology Research ... 5

2.1.1 EEG/ERP Experiments ... 6

2.2 Neuroinformatics ... 7

2.2.1 Metadata Sharing ... 7

2.2.2 Organizations and Databases ... 9

2.2.3 Mobile Technologies ... 11

3 Automatically Generated Templates 12
3.1 Format Selection .. 14

3.2 odML: Open Metadata Markup Language .. 14

3.2.1 Data Model .. 15

3.2.2 Terminologies ... 16

3.2.3 Tools ... 16

3.3 Form Templates ... 17

3.3.1 Basic Structure ... 17

3.3.2 References to Data Entities .. 20

3.3.3 Data Previews .. 21

3.3.4 Sample Template .. 22

3.4 Data Transport .. 24

4 Template Generation Tool 26
4.1 Analysis ... 26

4.2 Data Model Annotations ... 27

4.3 Internal Model ... 31

4.3.1 Templates ... 31

4.3.2 Data ... 33

4.4 Parsers Implementation ... 34

4.4.1 Class Parser .. 34

4.4.2 Data Parser .. 37

4.5 Objects Builder ... 39

4.6 odML Serialization .. 40

4.6.1 Odml-java-lib Adaptation .. 40

4.6.2 Writer and Reader Implementation .. 42

4.7 Public API ... 43

- 1 -

Contents

5 EEGBase: Implementing Web Services 46
5.1 Web Services .. 46

5.1.1 SOAP and REST ... 47

5.2 Analysis of Required Functionality .. 48

5.3 Storing Templates .. 49

5.3.1 Database Extension .. 49

5.3.2 Persistent Objects Implementation .. 51

5.4 RESTful Web Services with Spring ... 53

5.4.1 Message Format ... 53

5.4.2 Service Object Implementation .. 54

5.4.3 Controller Implementation ... 56

5.5 Provided RESTful API .. 57

5.5.1 Querying Available Templates .. 57

5.5.2 Transferring Templates .. 58

5.5.3 Transferring Data ... 58

6 Testing 59
6.1 Unit Tests .. 59

6.1.1 Testing Template Generator ... 60

6.1.2 Testing EEGBase Extension ... 62

6.2 Manual Testing .. 63

6.2.1 RESTClient .. 64

6.2.2 Mobile Application for Android ... 65

7 Conclusion 66

List of Abbreviations 68

Used software 69

References 70

Appendix A: Listings 73

Appendix B: CD 76

- 2 -

Chapter 1

Introduction

Our research group at the Department of Computer Science and Engineering takes

part in the electrophysiological research of the human brain. Besides performing

experiments in our laboratory we focus on building required computational

infrastructure and supporting tools.

Neuroscience research involves data collection, their management and processing.

Many data management systems serve this purpose. They usually offer a web-based

user interface, which requires a computer connected to the Internet. But the trend

of recent years are mobile applications. Nowadays they offer similar functionality

to computers, being accessible almost anywhere and anytime. Most people have

their mobile phones always with them, ready to use. It brings flexibility and saves

time. Mobile technologies are very useful for neuroscientists as well. They bring

a quick and simple way to save experimental data which increases efficiency of their

work.

The problem with both web-based and mobile applications is the connectedness

of the user interface with the underlying database structure. User interfaces are

designed for a specific system and cannot be easily reused for another one. If we

want to work with two different data management systems, we will need two

different applications, each of them designed for the specific system.

The goal of this work is to propose and implement a framework which will be able

to automatically generate graphical templates for an arbitrary database structure.

These templates must be general and platform-independent to be compatible

with web, mobile or desktop applications. It will open the way to design

applications interacting with different data management systems and different

database structures using a unified user interface. Such applications will be a useful

tool for the neuroscience research community accessing various experimental

- 3 -

Chapter 1 - Introduction

databases. A researcher will be able to submit experimental data to various data

management systems with a single application in his/her mobile phone.

This work is structured to chapters as follows. Chapter 2 describes the theoretical

background. It introduces neuroscience and electrophysiology research, examines the

state of the art in the field of neuroinformatics and reveals weak points. Chapter 3

clarifies the need of a framework for automatic generation of graphical templates

and proposes their format. Chapter 4 deals with the design and implementation

of a tool which will be able to automatically generate proposed graphical templates.

Chapter 5 describes a use-case deployment of the implemented tool within a data

management system called EEGBase. Chapter 6 deals with testing the implemented

solution, including the tool itself as well as its sample deployment. And finally,

Chapter 7 evaluates achieved results and suggests future enhancements.

- 4 -

Chapter 2

Theoretical Background

Neuroscience is an interdisciplinary science which applies various approaches

to study the nervous system and especially the human brain. One of used methods

is electrophysiology which is described in the following section. Modern

neuroscience takes advantage of the cooperation with the computer science. This

discipline is called neuroinformatics. It is described later in this chapter.

2.1 Electrophysiology Research

Electrophysiology studies electrical activity of biological tissues and cells. These

properties are characterized by electric current and voltage changes. In the field

of neuroscience, electrophysiology is used to examine brain activity by measuring

electrical activity of neurons. The key terms in this area are

• Electroencephalography (EEG), and

• Event-related potentials (ERP).

Electroencephalography, introduced in [Fa05], is a non-invasive diagnostic method

used to record electrical activity of a brain. It records changes in the electrical

polarity of neurons through a set of electrodes placed on the surface of a head.

The electrodes are placed on the scalp either one by one according to a given

scheme or as a part of a special cap. The recording is called electroencephalogram.

EEG is used for diagnosing seizure disorders such as epilepsy, sleep disorders,

degenerative diseases such as Alzheimer's disease or brain damage such as stroke. It

can also be used to monitor the brain during surgery or to determine brain death.

Classic EEG measures the brain activity globally and for that reason the

electroencephalogram contains a mixture of a large amount of different signals

which can be difficult to analyse [Mi13]. Event-related potentials are significant

- 5 -

Chapter 2 - Theoretical Background

changes in the EEG signal, caused by an external stimulus, e.g. sensory one. The

changes are stereotyped responses to the stimulus with typical features detected

as characteristic waveforms in the electroencephalogram. Measuring ERP allows

to reduce the number of required electrodes, because the measured response

appears in a particular part of a brain [Je08]. The resulting record is therefore

simpler and better analysable. ERP allows researchers to study responses to various

stimuli and their manifestation which plays an important role in the neuroscience

research [Je08].

2.1.1 EEG/ERP Experiments

EEG/ERP experiments produce large amounts of data. That includes not only the

record itself but also related metadata such as used hardware configuration,

description of experiment scenario, information about tested subject, weather and

other external conditions. The record has a low value without this information.

According to [Mo14], researchers performing electrophysiological experiments first

propose a hypothesis and design an experiment scenario. Next they perform

experiments according to the defined scenario and record data and metadata.

Finally, they can analyse gathered data, interpret their meaning and publish results.

Now comes the problem if the data are not well-described and it is not defined how

to store them. They are kept in poorly arranged storages in such cases or can even

get lost. A task for neuroinformatics is to provide long-term data storages with

an easy-to-use interface. If researchers use such solutions, they will have their data

available in the future just as immediately after the experiment.

The complication lies in the fact that metadata produced by various research

groups are heterogeneous. But it is very important to share data and knowledge

among researchers in order to increase efficiency of the neuroscience research.

To facilitate this process it is necessary to develop a standardized format. Although

there are several initiatives which address this problem, the current state of the art

lacks a widely accepted one. The most important initiatives are discussed in the

following section.

- 6 -

Chapter 2 - Theoretical Background

2.2 Neuroinformatics

Neuroinformatics is a branch of science standing at the intersection of neuroscience

and informatics. Modern computer science enables utilizing acquired knowledge,

analysing data and building efficient models in any scientific discipline. The task for

neuroinformatics is to support the progress in the neuroscience research by applying

advanced computational tools. According to [Bj07] there are three main fields where

neuroinformatics is helpful:

• shared neuroscience data and knowledge bases

• analytical and modelling tools

• computational models

2.2.1 Metadata Sharing

Neuroinformatics deals with processing, storing and sharing data and metadata

from experiments. This section introduces several transport and storage formats

intended to unify their structure and content.

HDF5

HDF5 is the current version of the Hierarchical Data Format1. It offers a data

model, file format and supporting libraries and tools for storing and managing

scientific data. HDF5 is a universal format, which is not connected with

neuroinformatics, unlike other formats mentioned below.

HDF5 data model is organized in a hierarchical structure. It provides two basic

elements – groups and datasets. A dataset is a multidimensional array of data

elements. They are single units of data such as numbers or strings and the dataset

object manages their storage and access to them. HDF5 groups are containers for

datasets and other groups. They are analogous to file system directories. Addressing

objects in HDF5 uses Unix conventions for filesystem path names, e.g. /org/example

references example from the org group.

HDF5 file format specification defines how to write the data model to a file

by individual bytes. The format is self-describing, i.e. it contains all information

needed to reconstruct the original data objects.

1 HDF5 home page: http://www.hdfgroup.org/HDF5

- 7 -

Chapter 2 - Theoretical Background

MINI

The acronym stands for Minimum Information about a Neuroscience Investigation.

It is not a data format, but rather a set of requirements to electrophysiological

metadata. MINI is a standard proposed by the Carmen consortium (see section

2.2.2). It is described in [Gi09].

BrainML

BrainML2 is an open XML-based format for sharing neuroscience data and

metadata. The project started in 2004. Its purpose is to serve as an open and

non-formal ontology for neuroscience. The BrainML specification3 introduces format

and set of conventions for data models for neuroscience data exchange. The project

also develops a set of protocols for BrainML data transfer.

The BrainML data model is object-oriented, consisting of entities with fields. There

are three types of relationships between entities – inheritance, aggregation and M:N

link. Data models are described in XML Schema documents.

odML

Open Metadata Markup Language (odML), introduced in [Gr11], is another

developing initiative to provide an open and easy-to-use metadata transport format.

This project is the youngest from mentioned ones. However, the format is designed

to be a generic and flexible format (not only) for sharing metadata in various

branches, although the primary use-case was electrophysiology. Because we have

chosen odML for our project, it will be discussed in more detail in chapter 3.2

odML: Open Metadata Markup Language.

Above mentioned formats belong to the most promising ones in the field of sharing

data and metadata from neuroscience experiments. There is a clear tendency to use

open, flexible and human readable metadata formats, often based on XML. Their

significant advantage is the independence from specific software tools. The challenge

for neuroinformatics is to unify existing efforts, which will increase efficiency of data

exchange. A great deal of attention is currently paid to a combination of HDF5 and

odML for sharing experimental data and related metadata respectively [Mo14].

2 BrainML home page: http://www.brainml.org

3 BrainML specification: http://brainml.org/xdocs/specification.pdf

- 8 -

Chapter 2 - Theoretical Background

2.2.2 Organizations and Databases

International Neuroinformatics Coordinating Facility (INCF)

INCF4, described e.g. in [Bj07], is an international organization established in 2005

through the Global Science Forum of the Organization for Economic Co-operation

and Development (OECD)5. Its purpose is to develop the neuroinformatics

infrastructure and to coordinate and facilitate the global development of the field.

The secretariat of INCF is located at Karolinska Institutet and the Royal Institute

of Technology in Stockholm, Sweden. So-called national nodes are located

worldwide in participating countries. INCF holds an annual Neuroinformatics

Congress.

INCF supports collaboration among researchers through the sharing of data within

the project named INCF Dataspace6. It is not a single database, but rather

a unified interface to various neuroinformatics databases distributed worldwide. It

uses iRODS7 which is an open-source data management software providing

functionality independently of storage resources. INCF Dataspace itself provides no

storage, research groups link their own storages in the dataspace instead. All linked

storages are exposed in a single namespace.

G-Node

The German Neuroinformatics Node8 (G-Node), introduced in [He08], is the

German national node within INCF. One of its goals is to develop infrastructure

and tools for neurophysiology data and metadata storage and sharing. The above

mentioned odML format is being developed here. G-Node also offers a portal9 for

neuroscientists to store and manage their data, share data with collaborators or

search for data from other neuroscientists.

4 INCF home page: http://www.incf.org

5 OECD home page: http://www.oecd.org

6 INCF Dataspace: http://www.incf.org/resources/data-space

7 Integrated Rule-Oriented Data System (iRODS), http://irods.org

8 G-Node home page: http://www.g-node.org

9 G-Node Portal: https://portal.g-node.org/data

- 9 -

Chapter 2 - Theoretical Background

Neuroscience Information Framework (NIF)

NIF, introduced in [Ga08], is a dynamic inventory of Web-based neuroscience

resources, established in 2005 by the NIH Blueprint for Neuroscience Research,

which is a cooperative effort among neuroscience researchers in the USA. NIF is

a member of the INCF National Node of the USA. NIF provides discovery and

access to public research data worldwide through the Internet.

Besides other features NIF offers:

• searching for resources not indexed by common search engines,

• tools and standards for data interchange,

• ontologies and vocabularies for the neuroscience domain.

Carmen

The Carmen10 project [Au11], funded by the Engineering and Physical Sciences

Research Council (UK), is an effort to create a virtual laboratory for the

neuroscience. The project provides a web interface called Carmen Portal11, which

allows signed users to store, analyse and share data from their experiments, search

for data shared by other researchers, cooperate with other researchers etc.

CRCNS

Collaborative Research in Computational Neuroscience12 (CRCNS) is a data-sharing

initiative which provides a marketplace and discussion forum for sharing tools and

data in neuroscience. Hosted data include physiological recordings from sensory and

memory systems, as well as eye movement data.

EEGBase

Our department13 is equipped with a laboratory for ERP experiments. The research

group specialises in the research into attention (especially attention of drivers),

children motor activity and blindness of mice. The laboratory is equipped with

a number of devices and software tools, including basic EEG devices, a sound and

10 Carmen home page: http://www.carmen.org.uk

11 Carmen Portal: https://portal.carmen.org.uk

12 CRCNS data sharing: http://crcns.org

13 Department of Computer Science and Engineering, Faculty of Applied Science, University

of West Bohemia, http://www.kiv.zcu.cz

- 10 -

Chapter 2 - Theoretical Background

electrically shielded booth, a car simulator including a car cockpit, wheel and

pedals connected to the computer, projector, and software tools for the simulation

of driving environment and driving itself [Mo14].

Data from experiments are managed with a custom software tool called EEGBase 14.

It comprises a database and a web-based interface. EEGBase enables researchers

to store, manage and interchange data from their experiments. The project started

in 2008 as Petr Ježek's master thesis [Je08] and since then it has been continuously

extended and improved. Technologically, it is a Java Enterprise Edition (J2EE)

application with a standard three-layer architecture. The software is developed

as an open-source. More information about EEGBase can be found in [Je12].

EEGBase is intended not only for the local research but its goal is to contribute

to the global neuroinformatics research as well. The project is a member of the

Czech National Node of INCF.

2.2.3 Mobile Technologies

Another issue related to electrophysiological experiments is the process of collecting

the metadata during experiments. Data management systems often provide

a web-based user interface which allows experimenters to enter their data. But

sometimes the experimenters do not have an active internet connection. In such

a situation they have to note all information in a textual form and later rewrite it

to the system, which is a waste of time. For that reason offline clients are required.

Moreover, researchers may not have a computer available during an experiment.

In such cases mobile applications can be very useful. Nowadays most of modern

mobile phones are suitable for providing an offline client application, enabling

experimenters to enter data when needed and synchronize them later with the

system. One of such solutions is described in [Mi13].

Mobile client applications need to communicate with the server in order to

synchronize data. Web services, described in chapter 5.1 Web Services, offer

a modern, open, platform-independent and easy-to-use way for communication

between mobile applications and a server.

14 EEGBase home page: http://eegdatabase.kiv.zcu.cz

- 11 -

Chapter 3

Automatically Generated Templates

Most data management systems consist of the following two components:

• Database to store the data.

• Web-based interface to enable managing the data by users.

Examples of such systems were given in chapter 2.2.2 Organizations and Databases.

Most of them use relational databases to store the data. Relational databases are a

time-proven and functional solution, but they also bring some disadvantages. The

data model is fixed and cannot be changed easily. Applications using relational

databases are tailored for the concrete database structure and cannot be easily

reused. The result is that every data management system has its own proprietary

application for user access.

This work addresses the described limitation and aims to propose a mechanism for

creating the user interface independently of the database structure. The goal is to

create a framework that will be able to generate templates for graphical user

interface from an arbitrary data model. Generated templates will be used

afterwards by an application running on a client device to present the graphical

interface to a user. Figure 1 shows the scheme description of the proposed

framework.

In order to reach this goal it is necessary to

1. Propose a format of the form templates.

2. Create a tool for generating the templates from a data model.

3. Implement a way to transfer the templates to mobile devices.

4. Create a mobile application capable of using the templates.

- 12 -

Chapter 3 - Automatically Generated Templates

To verify the proposed solution we have chosen the following use-case:

• EEGBase, described in chapter 2.2.2, as the data management system,

• client application for Android.

The client application is out of scope of this work. It is a topic of Jaroslav Hošek's

thesis. This work focuses on the implementation of the template generation tool and

its integration with EEGBase.

The rest of this chapter introduces the format of generated form templates. It was

proposed in collaboration with Jaroslav Hošek, because it concerns both the mobile

client and the server side tool. Chapter 4 Template Generation Tool describes

implementation of the tool and Chapter 5 EEGBase: Implementing Web Services

describes integration of the tool with EEGBase and implementation of the

communication interface for mobile clients.

- 13 -

Figure 1: Scheme of the framework. [Je13]

Chapter 3 - Automatically Generated Templates

3.1 Format Selection

Various platforms, including mobile ones such as Android, iOS or Windows Phone,

use different approaches for describing layout of graphical user interface (GUI).

Their solutions are mostly proprietary and therefore not portable. The primary

requirement for our templates is platform independence. Recently, the combination

of HTML 5 and CSS 3 aims to overcome this gap by providing

a platform-independent way of building GUI. However, HTML does not suit our

needs and we have decided to design our own way of describing graphical layouts.

We have chosen odML as the format for our templates. OdML is currently being

pushed by the neuroinformatics community. Although it was primarily intended to

be a transport format for metadata, it is generic enough to describe a form and its

layout. This decision brings following advantages:

• platform-independence

• simplicity and human-readability

• ability to transfer layouts as well as data with the same format

The first two points result directly from properties of odML, but the last one needs

a better clarification. The basic goal of our work are templates of forms describing

their layout. Purpose of such a form is to allow users to enter data. The data must

be stored and transferred between a client and a server. It is very advantageous to

use one transport format for both layouts and data since it simplifies the

implementation of both server-side and client-side applications considerably.

It is worth mentioning that odML is an abstract model which is independent of a

specific file format. However, XML is the only officially supported one so far. For

that reason we will work with this implementation. Some examples in the following

text will be given using the XML format because of its readability.

3.2 odML: Open Metadata Markup Language

Open Metadata Markup Language is a project within the German Neuroinformatics

Node (G-Node) which is a part of INCF. The home page of the project15 describes

odML as “an initiative to define and establish an open, flexible and easy-to-use

format to transport metadata”. The project is quite young, the odML format was

specified in [Gr11] in 2011.

15 odML home page: http://www.g-node.org/projects/odml

- 14 -

Chapter 3 - Automatically Generated Templates

OdML meets following requirements:

• Ease of use – specification is as simple as possible.

• Human readability – usability without specialised tools.

• Openness – freely available.

• Extensibility and flexibility – prepared for future changes.

• Unrestricted usage – user is not restricted by required entries.

One of key aspects of odML is an independence of its format and content. The

format is defined by a general data model while the content is defined by domain

specific terminologies. Next two sections describe these concepts in more detail.

3.2.1 Data Model

The data model defines the format of odML. It is specified as simple as possible,

being rather general and thus widely usable and customizable. The basic idea of the

model is based on key-value pairs like “name = James”. The model does not define

its implementation, i.e. the syntax for writing it to a document. However the odML

specification [Gr11] came up with a XML implementation. The XML schema can be

found on the enclosed CD (see Appendix B).

The data model is a tree-like structure with four entities depicted in Figure 2. The

core entity implementing the key-value concept is Property. Sections provide means

to group logically related properties and subsections together.

- 15 -

Figure 2: The odML data model. [Gr11]

Chapter 3 - Automatically Generated Templates

As Figure 2 shows, every entity defines several specific elements. Most of them are

optional, i.e. they do not need to be included in a concrete odML document.

A detailed description of supported elements can be found in [Gr11].

3.2.2 Terminologies

The odML data model is very generic and thus in no wise bound to neuroscience

domain. In fact it can be used to transport or store arbitrary data. This flexibility

is very comfortable for users. On the other hand it does not solve the problem of

sharing data using unified terms. This issue is solved with so-called terminologies.

An odML terminology is a set of Section and Property definitions, including their

names, types and meaning. It establishes common naming conventions in a specific

domain which allows collaborators to effectively share their data. The odML project

provides a standardized terminology for the neuroscience domain16, but its usage is

not compulsory. Users can also define their own ones.

3.2.3 Tools

The home page of the odML project offers several tools to handle odML documents.

They are all open-source and can be found in GitHub17 repositories. The most

important ones are libraries providing application programming interfaces (API) for

several programming languages (Java, Python, Matlab). The Java library, called

odml-java-lib, is a reference implementation. It is a small library enabling users to

create the odML tree and serialize/deserialize it to/from a XML file.

Among other tools they offer a simple editor with a graphical user interface (GUI).

The editor is part of the Python library. It can be used under Linux, Windows or

MacOS. Finally the odML project offers XML schema to validate the XML

serialization (see Appendix B) and two style-sheets for displaying metadata and

terminologies using a HTML browser.

16 odML terminologies can be found on http://www.g-node.org/projects/odml/terminologies

17 GitHub is a web-based hosting service that offers repositories for the Git version control

system, https://github.com.

- 16 -

Chapter 3 - Automatically Generated Templates

3.3 Form Templates

A form template defines layout of a form presented to a user by a client application.

A form is a component of a graphical user interface that enables users to input

data. It consists of simple items, such as input text fields, and complex types.

Various frameworks and technologies that are used to build graphical user interfaces

name these items differently or offer specific ones, but in general there is a set of

“standard form items” including textboxes, checkboxes, comboboxes, select-lists and

so on. For each item there should be a description for a user, often called a label.

Every item can be either compulsory for a user to fill it, or it can be blank.

There can be several layouts defined for a concrete form, each of them being

described using a separate form template. They all describe the same form, i.e. each

of them contains the same items, but individual items can be ordered differently,

they can have different labels (thus allowing internationalization) and so on.

3.3.1 Basic Structure

A form and its items are represented using the odML section. The section's

attribute type is used to indicate the type of graphical component represented by

the section. We have defined several section types as listed in Table 1. The set

of defined types can be later extended. The name attribute is used to identify

individual form items, therefore unique names must be used within one form.

OdML properties are used to add required qualities of individual form items. A set

of predefined properties is discussed below. They represent mostly layout-related

properties or input value restrictions for validation purposes.

odML section type Description

form Form, can be also nested as a subform.

textbox Input text field.

checkbox Common checkbox.

combobox Common combobox.

choice Choice from a list of items.

Table 1: odML section types for form templates.

- 17 -

Chapter 3 - Automatically Generated Templates

Form

A section type of which is set to “form” must be the root section of any form

template. It represents the whole form. Its subsections represent individual items

of the form. Their type can be any of the defined section types including “form”.

A subsection of type “form” represents a complex input, that can be entered either

using another form (defined by the subform) or chosen from a list of existing

records.

The form section can have a property named layoutName, which contains a name of

the layout. It should be used only for the root form. As there can be more than one

layout for a given form, they are distinguished by the layout name assigned by this

property.

Textbox

A section with the type attribute set to “textbox” represents an input field for

textual values. This section can have several specific properties listed in Table 2.

Property Description

datatype
Determines the datatype of the input.

Possible values: string, integer, number, date, email

minLength Restricts the minimum length of the input string.

maxLength Restricts the maximum length of the input string.

minValue
Restricts the minimum numerical value of the input (for numerical

input only)

maxValue
Restricts the maximum numerical value of the input (for numerical

input only)

defaultValue Offers a default value.

Table 2: Properties of the textbox section.

The datatype property restricts an input to the given datatype. If the datatype is

for example integer, users are not allowed to input other characters than digits and

plus and minus signs. The minLength and maxLength properties restrict the length

of the input, e.g. a name of a person must not be longer than 50 characters so as

database restrictions are met. MinValue and maxValue are used only for numerical

- 18 -

Chapter 3 - Automatically Generated Templates

input fields, i.e. with combination with the datatype property set to either integer or

number. The defaultValue property is used to provide a default value, which will be

used unless a user gives another one.

Combobox

Combobox offers choice among several predefined values. They are given using

section's property named values containing set of offered values. They are presented

to a user who selects one of them.

Choice

Choice is a component similar to a combobox in the meaning but with different

graphical realization. It can be used to offer a choice among a bigger amount of

values, which would be unsuitable for a combobox. The application could

implement this component e.g. with a scrolling list.

In addition, all section types described above have several common properties listed

in Table 3. However, the set of properties is not restricted to the mentioned ones.

They are intended to serve as a base, but other properties can be arbitrarily added

as needed. An application that uses this template should understand the described

set of properties, but it may add as many own properties as required to include

more information about the layout etc.

Property Description

label The label of the form item.

id A unique identifier of the item within the template.

idTop ID of an item right above.

idLeft ID of an item on the left.

required Determines whether the item can be left blank.

cardinality
Number of values that can be set to this item.

• 1 for a single value

• -1 for unlimited amount of values

Table 3: Common properties.

- 19 -

Chapter 3 - Automatically Generated Templates

The id, idTop and idLeft properties are used to determine position of a form item

relatively to another item. The reason is that the odML tree does not define

ordering of subsections, so the corresponding form items would not have any

defined order. The required property is used to indicate whether the item may be

left blank or not. The cardinality property defines the number of values that a user

may assign to a given form item. For common fields the value is 1, which means

there can be only one value assigned to this item. But sometimes the user may be

allowed to give a set of values for a given form item and the cardinality property

determines the number of different values (-1 being chosen as “unrestricted”).

3.3.2 References to Data Entities

Every subform represents a complex input which cannot be entered as a single

value, but requires a separate form. Moreover, the record may already exist in the

database and a user does not want to fill the information again. Instead, it is

necessary to let the user pick from the set of existing records. We can imagine e.g. a

form collecting data connected to an electrophysiological experiment. One of its

items is the used hardware. Because many experiments are performed with the

same device, an experimenter does not need to fill all details about the device again

and again, but rather pick the existing record.

But the set of existing records cannot be part of the template, because it describes

static layout of a form without any dynamic content. Instead, we need to say the

client application how to obtain the data from the server. For this purpose we use

the reference attribute of a section representing a subform. Its value is used to

download the existing records from the server. The application can cache the

obtained records independently of the form template, for example in its local

database. The transport format is described in section 3.4 Data Transport.

Listing 1 gives a sample usage of the reference. The highlighted line is the

important one. An interface provided by the server should enable a way to

download all records for org.example.Hardware. We do not define what exactly this

value means, it is determined by the server-side implementation. In this case it is

the fully-qualified name of the entity in an object-oriented data model.

- 20 -

Chapter 3 - Automatically Generated Templates

3.3.3 Data Previews

The previous section explained why it is necessary to work with existing records

and introduced a way of referencing them in a layout. A client application is now

able to obtain referenced data records from the server and let a user pick from them

when filling in the form. It means that the application must show a kind of list

containing all available records. But how to display every single item of the list?

Different records have different structure and mostly contain too much information

to be completely shown in the list item. Instead, it is necessary to choose some

significant property which will represent the whole record. We call this a preview.

In layouts, data records are connected with sections of type form. We have defined

two properties of a form section:

• previewMajor

• previewMinor

They enable to define at most two fields that will be shown in the preview. Their

value must match a name of one of the fields contained in the form. Fields from

subforms are not permitted.

Listing 2 demonstrates usage of these properties. A list of existing persons will

display their full name and occupation for each record.

- 21 -

Listing 1: Example of the reference to existing records.

<section>
 <type>form</type>
 <name>Experiment</name>

 <section>
 <type>form</type>
 <name>Hardware</name>
 <reference>org.example.Hardware</reference>

 <!-- content of the Hardware subform -->
 </section>

 <!-- other content -->
</section>

Chapter 3 - Automatically Generated Templates

3.3.4 Sample Template

Figure 3 depicts an odML tree of a sample form template. Individual nodes

represent odML sections, the first line shown in the node describes its type and

name using the “type: name” pattern. There are two forms in the tree, a root form

and a subform, filled with the blue colour. Fields are filled with yellow. The further

description in each node contains its odML properties as the “key = value” pair.

- 22 -

Listing 2: Demonstration of the two preview properties.

<section>
 <type>form</type>
 <name>Person</name>
 <reference>org.example.Person</reference>
 <property>
 <name>previewMajor</name>
 <value>
 fullName
 <type>string</type>
 </value>
 </property>
 <property>
 <name>previewMinor</name>
 <value>
 occupation
 <type>string</type>
 </value>
 </property>
 <section>
 <type>textbox</type>
 <name>fullName</name>
 <!-- definition of the fullName field omitted -->
 </section>
 <section>
 <type>textbox</type>
 <name>occupation</name>
 <!-- definition of the occupation field omitted -->
 </section>

 <!-- other items of the Person form omitted -->
</section>

Chapter 3 - Automatically Generated Templates

The presented form enables a user to enter information about a person. It is a very

simplified version for illustrating purposes. The root form consists of two fields,

person's full name and his/her gender, and a subform for adding address. While the

name and gender items are required, the address may be left blank. However, one

can enter more than one address per person (which is determined by the cardinality

property). An address consists of three fields – town, street and number.

An XML serialization of the form template from Figure 3 can be found in Appendix

A. Figure 4 shows a possible GUI implementation of the sample form. It contains

some input data just for illustration.

- 23 -

Figure 3: Sample form template.

textbox: fullName

label = Full name
datatype = string

required = true
cardinality = 1

maxLength = 50
id = 1

form: Form1

label = Person
reference = example.Person
previewMajor = fullName

previewMinor = gender

form: address

label = Address
reference = example.Address

previewMajor = town
required = false
cardinality = -1

idTop = 2
id = 3

combobox: gender

label = Gender
required = true
values = {M, F}

id = 2
idTop = 1

textbox: town

label = Town
datatype = string

required = true
cardinality = 1

maxLength = 50
id = 4

idTop = 6

textbox: street

label = Street
datatype = string

required = true
cardinality = 1

maxLength = 50
id = 5

textbox: number

label = Number
datatype = integer

required = true
cardinality = 1
minValue = 1

id = 6
idTop = 5

Chapter 3 - Automatically Generated Templates

3.4 Data Transport

Besides form templates the framework needs to deal with data transport as well.

There are two main use-cases for data transport:

1. A form template contains a complex item (subform), which in fact represents

a data record. The client application should be able to download existing

records from the server (see chapter 3.3.2 References to Data Entities) and

offer them to a user to pick one.

2. A user has filled in a form and wants to upload the data to the server.

The main purpose of odML is to transport (meta)data, so this feature is much more

straightforward than the above described templates. The only thing we have to

define are rules for assigning types and names of sections and properties.

There is one important thing to realize – the structure of the odML data tree will

copy the structure of the corresponding form template. If a form has ten fields, the

corresponding data record will have ten properties, containing values entered in

those fields. Similarly a subform in the template implies a subsection in the data

tree. After this consideration it is clear, that the simpler way is to keep

corresponding names of fields and subforms in the data tree. The only difference is

the fact, that with templates a form field is represented by a section, but in data it

is reduced to a property.

- 24 -

Figure 4: Possible GUI implementation of the sample form.

Person

Full name:

Gender:

Address:

M

F

Pilsen

Jakub Krauz

Address

Street:

Number:

Town:

Brewery St.

321

Pilsen+ Add...

Form1

address

Chapter 3 - Automatically Generated Templates

This approach cannot be used for section types, because in templates they

determine graphical components of the form. For data, section types should refer to

the record type. Such information is contained in the reference element in templates

(see chapter 3.3.2 References to Data Entities). For that reason section types in

data document should correspond with reference values in form templates.

Listing 3 contains a data record corresponding with the form template given in

chapter 3.3.4 Sample Template.

- 25 -

Listing 3: Example of a data record.

<section>
 <type>example.Person</type>
 <name>Person_1</name>
 <property>
 <name>fullName</name>
 <value>Jakub Krauz<type>string</type></value>
 </property>
 <property>
 <name>gender</name>
 <value>M<type>string</type></value>
 </property>
 <section>
 <type>example.Address</type>
 <name>address</name>
 <property>
 <name>town</name>
 <value>Pilsen<type>string</type></value>
 </property>
 <property>
 <name>street</name>
 <value>Brewery St.<type>string</type></value>
 </property>
 <property>
 <name>number</name>
 <value>321<type>int</type></value>
 </property>
 </section>
</section>

Chapter 4

Template Generation Tool

In the previous chapter we have defined the basic concept of the required

framework and specified format of templates for graphical user interface. Now it is

desirable to create a tool responsible for the process of templates generation. The

tool, hereinafter referred to as the template generator, must be able to parse the

database structure and produce graphical templates of forms which will enable

users to submit data to the database. The template generator should also provide

means to control the generation process.

4.1 Analysis

The tool will be written in Java. It is a modern object-oriented programming

language with a wide range of freely available libraries, frameworks and tools, which

support an effective development. Last but not least, EEGBase, which was chosen

as a use-case for its deployment, is also written in Java. This will enable an easy

integration.

Maven will be used as the project's build tool. It is a popular project management

tool which simplifies dependency management by the concept of public repositories.

Now it is necessary to propose an approach to templates generation. They must be

based on a database structure. Generally, this information can be obtained from

a) database, or

b) object-oriented data model.

The object-oriented data model represents the database structure, but it is much

more comfortable to work with native objects than a raw database. Data objects

simply encapsulate data fields and provide appropriate getters and setters. This

design is called Plain Old Java Object (POJO). It is a standard design of Java

- 26 -

Chapter 4 - Template Generation Tool

applications to provide POJOs representing database tables. For that reason option

b) is more suitable for this project.

However, the data model itself without any additional information would be

insufficient. It is necessary to propose a way of controlling the transformation

process. One might want to define which fields to include in a form and which not,

add some restrictions not detectable from the data model etc. Such information can

be provided by

a) configuration file, or

b) Java annotations.

Configuration files represent a widely used concept, but their biggest disadvantage

is that they are maintained separately from the code they control. It brings

difficulties with maintenance, since changes in the controlled code may require

changes in the configuration file, but it could be easily omitted. For that reason

Java annotations are becoming quite popular. They bring exactly the feature that is

needed since they are placed directly in the source code and do not change its

semantics, which is crucial. We have chosen the annotation-based approach.

4.2 Data Model Annotations

Annotations are part of the Java language since version 5.0 released in 2004.

Although it was quite a new concept without experiences from other languages, it

soon became quite popular. Nowadays many popular frameworks prefer

annotation-driven approach, including for example Spring, Hibernate, JUnit and

many others. More information about annotations can be found in the official Java

documentation or in [Pe05].

The template generator defines six annotation types to be used in data models,

they are all located in the cz.zcu.kiv.formgen.annotation package. They are all

designated for runtime processing, which is ensured by annotating their definitions

with the following meta-annotation:

@Retention(RetentionPolicy.RUNTIME)

The defined annotations are used in the transformation process described in section

4.4 Parsers Implementation.

- 27 -

Chapter 4 - Template Generation Tool

There are three annotations to be used with classes:

• @Form

The @Form annotation is used to mark data entity (POJO class) for which a

form should be generated. There will be generated a separate form for every

annotated entity.

• @FormDescription

This annotation adds a description to a form defined by the annotated

entity. It is useful only for entities transformed to forms.

• @MultiForm

The @Form annotation defines one form per annotated entity. This

annotation can be used to group several entities in one form.

The other three annotations are defined for fields:

• @FormId

This annotation is used to mark the ID field of a data entity.

• @FormItem

The @FormItem annotation marks fields of an entity that should be included

in the generated form. Fields without this annotations will be ignored.

• @FormItemRestriction

This annotations provides means to add various constraints on the value of

annotated data member. It is useful for validation of an input value in the

form later. It should be used only for fields annotated with @FormItem,

otherwise has no effect.

All described annotations except @FormId provide some optional parameters. Table

4 gives an overview of available parameters for each annotation and their meanings.

A sample usage of described annotations in a data model entity is demonstrated in

Listing 4. The entity represents a person (its structure is simplified for

demonstration purposes, a real application would use more complex design). The

class is annotated with @Form, which means the tool will generate a form template

for this entity. The form will be named the same as the class - Person.

- 28 -

Chapter 4 - Template Generation Tool

Annotation Parameter Meaning

@Form label Label of the form.

@FormDescription value The description.

@MultiForm
value Identifier of the form (string).

label Label of the form.

@FormItem

label Label of the item.

required Must the item be filled in? (default: false)

preview Determines items used in data previews.

@FormItemRestriction

minLength Minimum length of the input.

maxLength Maximum length of the input.

minValue Minimum value of numerical item.

maxValue Maximum value of numerical item.

defaultValue The default value.

values Enumeration of possible values.

Table 4: Overview of defined annotations and their parameters.

The form will contain 4 items – name, age, workingGroup and diseases. The id field

will be ignored in the form template, because it is not annotated with @FormItem.

The name field will have its label in the form set to “full name”. This field will be

the only one which cannot be left blank, because the required flag is set to true. The

default value of this flag is false. Moreover, the length of the input for the name

field must be 2 – 50 characters, as set with the @FormItemRestriction annotation.

The second field of the form is age. Its label will be the same as its name, age, and

the input field may be left blank. If filled in, its value must be an integer greater or

equal 0.

The next item is workingGroup labelled with “working group”. Because this field

refers to another data entity, its class WorkingGroup will be parsed the same way as

the Person class and the resulting form will be added as a sub-form to the Person

form. This means that the WorkingGroup class should have its fields annotated with

@FormItem as well. However, the @Form annotation is not required for this class. An

application presenting the Person form to a user should be able either to let the

user choose from existing working groups or to create a new group by filling in the

sub-form. The mechanism for providing existing records will be discussed later.

- 29 -

Chapter 4 - Template Generation Tool

All the fields discussed so far may be assigned just one value (or they can be left

blank, if possible). The cardinality of such form items is set to 1. But the last field,

diseases, represents a collection. It means that a user may fill in 0 – N values. The

cardinality of this form item is set to -1, which means “unrestricted”.

The id field is marked with @FormId. This annotation has no effect for the generated

form template, it will be used for data processing instead. It was already mentioned

that a form can offer selection from existing records. These records are usually

stored in a database system and are referenced with an identifier. The @FormId

denotes such an identifier.

- 30 -

Listing 4: Demonstration usage of defined annotations.

import cz.zcu.kiv.formgen.annotation.*;
import java.util.Set;

@Form
public class Person {

 @FormId
 private int id; // this field won't be part of the form template
 // but it will be used to reference data

 @FormItem(label = "full name", required = true)
 @FormItemRestriction(minLength = 2, maxLength = 50)
 private String name;

 @FormItem
 @FormItemRestriction(minValue = 0)
 private int age;

 @FormItem(label = "working group")
 private WorkingGroup workingGroup;

 @FormItem
 private Set<Disease> diseases;

 private String additionalInfo; // this field will be ignored

 // other content omitted for clarity

}

Chapter 4 - Template Generation Tool

4.3 Internal Model

The template generator needs to work with an object representation of generated

forms. Hereinafter this representation will be referred to as the internal model.

There are two basic approaches:

a) Using directly the odML model. It means that the library would internally

work with the odML tree.

b) Designing own internal model used by the library. There would be an extra

conversion needed between the model and the corresponding odML tree

when writing the model as an odML template.

The a) option is easier to implement because the odML tree is created directly

during processing the data model and no additional conversion is needed. However,

the option b) is more general. In this case the library internally represents

generated forms with its own model and an additional step is needed when writing

a form in the odML template. Should the library later support another template

format, the only required change to implement is the conversion between the

internal model and this new format. For this reason the approach mentioned as

option b) was implemented.

It is worth mentioning that except for the layout model there is one another model

not mentioned yet. The other model represents data filled in a form. As generated

form templates may contain references to complex data (e.g. the workingGroup item

from Listing 4) the library should also be able to provide existing records along

with the form template so as a user can choose an existing record instead of

creating a new one.

4.3.1 Templates

A form template represents a form with its layout. A form in our concept consists

of fields and sub-forms. A field is a type of a form item used for simple,

unstructured input values such as text, number, date etc. The graphical

representation of a form field is typically one input box. Another type of form items

are sub-forms. These items represent complex values which require their own form

with several more items to be filled. Sub-forms are of the same structure as

top-level forms.

- 31 -

Chapter 4 - Template Generation Tool

This abstraction leads to the design at UML class diagram in Figure 5. The

FormItem interface defines common methods for objects that can be added to a

form, i.e. fields and sub-forms. They are implemented by the FormField and Form

classes respectively. The AbstractFormItem class implements their common

behaviour in order to minimize code duplicity.

- 32 -

Figure 5: UML class diagram of the internal form model.

Chapter 4 - Template Generation Tool

4.3.2 Data

The data model has two fields of usage:

a) It represents form data.

b) It represents database records offered to a user in a form.

However, both cases represent the same kind of data because forms are generated

from a database structure. Moreover, those records being offered in a form are

defined by a sub-form, so it does not matter whether the data has been just entered

by a user or whether they were loaded from a database.

The data model structure copies the architecture of the form model described

in section 4.3.1 Templates. The difference is that data model objects encapsulate

input values instead of describing form layout. Their purpose is to represent data

in a hierarchical structure corresponding to the structure of a related form. The

data model is depicted in the UML class diagram in Figure 6.

- 33 -

Figure 6: UML class diagram of the internal data model.

Chapter 4 - Template Generation Tool

The FormDataItem interface defines a data item which can be either simple

(obtained from a form field) or complex (obtained from a sub-form). The simple one

is implemented by FormDataField. This object encapsulates an input value typed to

java.lang.Object, but it should be either a primitive datatype or one of defined

“simple” types like java.lang.String or java.util.Date. Complex data items are

implemented by the FormData class. Their values are composed of other data items

the same way as sub-forms are composed of form items. In order to avoid code

duplicity, an abstract class, AbstractFormDataItem, is used again.

4.4 Parsers Implementation

This chapter describes creation of the internal model from an object-oriented data

model. The data model must be annotated as described in section 4.2 Data Model

Annotations. The crucial concept in this phase is reflection.

According to [Fo05], reflection is “the ability of a running program to examine itself

and its software environment, and to change what it does depending on what it

finds”. [Fo05] gives a thorough description of all features provided by the reflection

API in Java. Reflection is used in many popular applications and frameworks such

as Apache Tomcat, Spring, Hibernate, JUnit and many others.

Reflection is a very powerful tool but it has its drawbacks. The most important

ones are performance and security issues. Reflective method invocation has

considerably poorer performance than statical method calls since types are resolved

at runtime. Security issues include restrictions if running under a security manager

and possible impacts of accessing code which is not supposed to be accessed directly

(private members). Last but not least, a reflective solution is much worse readable

and maintainable than a corresponding statically typed code.

4.4.1 Class Parser

The most important use-case of the template generator library consists in

generating form templates from an object-oriented data model. The data model is

made up of POJOs or, more exactly, JavaBeans. These classes must be annotated

as described in chapter 4.2. Form templates are generated according to the

structure of these classes. For this reason the generator does not need any instances

in this phase, the form model is generated completely from class objects. The

- 34 -

Chapter 4 - Template Generation Tool

library is generic, it parses any data model. It is obvious that such classes cannot be

known at compile-time, which is a clear indication for reflection.

Let's suppose we have a class object to be parsed. Figure 7 depicts the basic flow

chart of this process.

The parser first checks if a @Form annotation is present for the class being parsed. If

not, the process ends. If @Form was found, a new form model is created. Next the

parser iterates over all fields marked with a @FormItem annotation. If the type of

the field is simple, an appropriate form field is added to the form. Otherwise, the

field's class is parsed the same way and the resulting form is added as a sub-form.

Types are considered simple if a user can input their values in one input box. It

includes primitive Java types, their object wrappers, strings and dates. An overview

of simple field types and their mappings gives Table 5.

All objects involved in the transformation process are implemented in the

cz.zcu.kiv.formgen.core package. The class parser is implemented by

ClassParser. This object uses TypeMapper which implements mapping from Table

5. In addition, TypeMapper provides convenience methods for detecting wrapper

classes of primitive types and converting them in both directions.

- 35 -

Figure 7: Flow chart of the class parsing process.

Chapter 4 - Template Generation Tool

Field's type in Java Type of form item

byte, java.lang.Byte

short, java.lang.Short

int, java.lang.Integer

long, java.lang.Long

textbox (integer)

float, java.lang.Float

double, java.lang.Double
textbox (number)

boolean, java.lang.Boolean checkbox

char, java.lang.Character

java.lang.String
textbox (string)

java.util.Date textbox (date)

Table 5: Simple types and their mapping.

ClassParser provides a public method with the following signature

Form parse(Class<?> cls);

which is responsible for running the parsing process. It returns a Form object

generated from the cls class. This method calls a private recursive method

_parse() from Listing 5.

The _parse() method is the core of the whole process. First it creates a new Form

object for the class being currently parsed. Next it iterates over all fields annotated

with @FormItem. The ReflectionUtils.annotatedFields() method is a convenience

method which returns a collection of fields annotated with a specified annotation.

An instance of TypeMapper is used to determine whether the current field is simple

type. If so, an appropriate FormField object is created and added to the form.

Special handling is required for collections since they are mapped to form items

with cardinality set to -1, which indicates multiple values. These items are created

by the createFormSet() method. The generic collection type must be

parameterized so as the createFormSet() method can determine type of contained

objects and create a proper type of form item. Finally, if the field is neither

a simple type nor a collection, a sub-form is created by recursively calling the

_parse() method.

- 36 -

Chapter 4 - Template Generation Tool

4.4.2 Data Parser

The template generator library is able to process the data itself, not only their

structure. The model was described in section 4.3.2 Data. It is closely related to a

form template since it represents data entered in this form.

- 37 -

Listing 5: The core method of the parsing process.

private Form _parse(Class<?> cls, String formName, int id) {
 Form form = createForm(formName, cls); // create the form model object
 form.setId(id++); // id is unique for every item in a form template

 // iterate over all fields annotated with @FormItem
 for (Field f : ReflectionUtils.annotatedFields(cls,
 cz.zcu.kiv.formgen.annotation.FormItem.class)) {

 if (mapper.isSimpleType(f.getType())) {
 FormField item = createFormField(f, id++); // create form field
 form.addItem((FormItem) item);
 if (isPreviewField(f)) // check whether the field is preview
 setPreviewField(form, item, f);

 } else if (Collection.class.isAssignableFrom(f.getType())) {
 FormItem set = createFormSet(f, id++); // create a set
 form.addItem(set);
 id = set.getId() + 1;

 } else {
 // parse the referenced object recursively
 Form subform = _parse(f.getType(), f.getName(), id++);
 form.addItem(subform);
 id = subform.highestItemId() + 1;

 // process the @FormItem annotation
 cz.zcu.kiv.formgen.annotation.FormItem annotation =
 f.getAnnotation(cz.zcu.kiv.formgen.annotation.FormItem.class);
 if (!annotation.label().isEmpty())
 subform.setLabel(annotation.label());
 subform.setRequired(annotation.required());
 } // end if
 } // end for

 return form;
}

Chapter 4 - Template Generation Tool

The process of converting data to the internal model is implemented in DataParser.

It uses an algorithm similar to converting classes to form templates as described in

the previous section. The main difference consists in parsing instances of data

POJOs instead of their classes. However, it is necessary to inspect the class

structure with reflection just as in the previous case. Having an object reference,

say obj, its class object can be obtained very easily:

Class<?> cls = obj.getClass();

Now we have the class object and can iterate over its fields annotated with

@FormItem. The algorithm follows that one from the _parse() method, except it is

simpler because it does not deal with form layout issues such as ids, labels, field

restrictions and so on. It only needs the field's name and its value. Having an object

reference obj and its field object field, the value is obtained using the value()

method from Listing 6. This method is implemented in the ReflectionUtils class.

- 38 -

Listing 6: The value() method for retrieving value of a field reflectively.

public static Object value(Field field, Object obj) {
 if (field == null || obj == null)
 return null;

 // first try to get the value using its getter method
 try {
 // getterName() returns getter's name using standard conventions
 Method getter = obj.getClass().getMethod(getterName(field));
 return getter.invoke(obj); // invoke the getter method

 } catch (Exception e) {

 // check the field's accessibility
 if (!Modifier.isPublic(field.getModifiers()))
 field.setAccessible(true); // set the field accessible

 // try to get the value directly
 try {
 return field.get(obj); // read the field's value
 } catch (Exception e2) { /* log the error here */ }
 }

 return null;
}

Chapter 4 - Template Generation Tool

4.5 Objects Builder

In addition to converting POJOs to form templates and their data, the library

offers a transformation in the reversed direction. It means that the tool is able to

instantiate the original POJOs from an internal data model. This process involves

reflective construction and direct setting values of fields.

The process is implemented in cz.zcu.kiv.formgen.core.SimpleObjectBuilder.

The most important thing the builder needs to know is the class of an object to be

built. This information can be

a) contained in the form-data model, or

b) passed to the builder along with the model.

The main disadvantage of the option a) is that it brings an application-specific

information to the model. For that reason the option b) was implemented.

A disadvantage of this approach is the fact that the caller must know the object's

class. Listing 7 shows the implementation of this approach.

- 39 -

Listing 7: Building original POJOs.

public <T> T buildTyped(FormData formData, Class<T> type)
 throws ObjectBuilderException {
 try {
 // cast the object to required type
 return type.cast(createInstance(type, formData));
 } catch (ClassCastException e) {
 throw new ObjectBuilderException("Build error.", e);
 }
}

// creates a new instance of type and fills it with the specified data
protected Object createInstance(Class<?> type, FormData data)
 throws ObjectBuilderException {
 try {
 Object instance = type.newInstance(); // reflective instantiation
 fill(instance, data); // fill the object with data
 return instance;
 } catch (Exception e) {
 /* log the error here... */
 throw new ObjectBuilderException("Build error.", e);
 }
}

Chapter 4 - Template Generation Tool

The buildTyped() method is a generic method, its return type is determined by the

second argument. SimpleObjectBuilder also offers a build() method which creates

the instance the same way, but the result is typed to java.lang.Object. The line

obj = type.newInstance();

creates a new object of the required type using a reflective construction. The class

type must have a non-parametric constructor so as the object can be instantiated

this way. This condition is always satisfied for JavaBeans. The newly created object

is passed to the fill() method afterwards. This method sets its fields using a

direct reflective access.

Listing 8 gives an example of SimpleObjectBuilder usage.

4.6 odML Serialization

The template generator library is designed to be able to support various transport

formats in the future. Currently the implemented format is odML. Templates in

this format were described in Chapter 3 Automatically Generated Templates.

4.6.1 Odml-java-lib Adaptation

Odml-java-lib is a small open-source library for handling odML. It is written in

Java and its source code is available in a GitHub18 repository. It provides primarily

implementation of objects used in odML - Section, Property and Value. They can

be constructed in various ways and linked together to create the odML tree. In

18 Odml-java-lib on GitHub: https://github.com/G-Node/odml-java-lib

- 40 -

Listing 8: A sample usage of SimpleObjectBuilder.

FormData data;
... // initialize the form-data model

ObjectBuilder builder = new SimpleObjectBuilder();

// let the builder instantiate Person
// the form-data model must represent this entity
Person person = builder.buildTyped(data, Person.class);

Chapter 4 - Template Generation Tool

addition the library offers Writer and Reader able to (de)serialize the odML tree

to/from a XML file. All mentioned objects are located in the odml.core package.

The problem with the library was that Writer and Reader objects were designed to

work only with files. Such an approach is not very flexible, stream operations are

needed instead. Because of a bad design of Reader and Writer it was not possible to

add the required functionality using inheritance. For that reason the source code of

odml-java-lib was modified and required stream operations were added directly in

this library. One of the goals of this modification was to respect the existing

interface and behaviour of affected objects so as we can raise a pull request to the

original project.

Listing 9 shows basic usage of the odml.core.Writer class after stream operations

were added. Exception handling was omitted for simplicity. This approach is much

more general since streams provide higher level of abstraction than files. A stream

can be easily directed to a file if needed, as the listing shows. The

odml.core.Reader class was modified in the same fashion.

Another feature added to odml-java-lib are redefinitions of equals() and

hashCode() methods for Section, Property and Value classes. These methods are

defined by the java.lang.Object class, but they need to be overriden in custom

classes in order to work properly. They are used when comparing objects for

equality, which is very useful in unit testing (see chapter 6.1 Unit Tests).

- 41 -

Listing 9: Basic usage of the Writer after modification.

Section root;
... // initialize the odML tree here

OutputStream stream; // any output stream can be used
stream = new FileOutputStream("example.odml");

Writer writer = new Writer(root);
writer.write(stream); // write the odML tree to the stream

Chapter 4 - Template Generation Tool

4.6.2 Writer and Reader Implementation

The public API of the template generator offers Writer and Reader interfaces

located in the cz.zcu.kiv.formgen package. Writer provides methods for writing

the internal model to an output stream using a transport format. Reader is able to

read it back from an input stream. Their odML implementations are located in the

cz.zcu.kiv.formgen.odml package. OdmlWriter is able to write the model to an

output stream in the odML format and OdmlReader loads the odML representation

from an input stream. Both of these objects need to convert between the internal

model and the appropriate odML tree. The odML tree can be writen to a stream or

read from a stream using the odml-java-lib API.

The conversion is implemented by cz.zcu.kiv.formgen.odml.Converter. This

object offers following methods:

• Section layoutToOdml(Form)

• Section dataToOdml(FormData)

• Form odmlToLayoutModel(Section)

• Set<FormData> odmlToDataModel(Section)

The first two methods convert the internal model to odML tree. They both return

the root section of the tree. Their implementation details are not very interesting, it

involves iterating over all items of a form and creating appropriate section structure

with defined properties. The other two methods create the internal model from the

odML tree likewise.

Converter is used by both OdmlWriter and OdmlReader. Methods provided by these

objects are all implemented using the same pattern. As an example the

OdmlWriter.writeLayout() method is shown in Listing 10. First it performs some

checks for null values. Next it creates the root section of the odML document. Then

the Converter.layoutToOdml() method is called and its result is added to the root

section. Finally, the odML document is written to the stream using

odml.core.Writer provided by the odml-java-lib API.

- 42 -

Chapter 4 - Template Generation Tool

4.7 Public API

The public API of the template generator library is depicted in the UML class

diagram in Figure 8. It offers several interfaces and their implementations providing

a convenient way to control transformation processes. They provide a facade for

parsers and builders described in chapters 4.4 and 4.5 respectively.

The LayoutGenerator interface offers methods used to generate the internal model

of form templates from class objects of an object-oriented model. It is implemented

by SimpleLayoutGenerator. There are several overloaded load methods:

• load() takes as its arguments class objects to be parsed

• loadClass() takes fully qualified class names

• loadPackage() takes a fully qualified package name (all classes in the

specified package will be parsed)

- 43 -

Listing 10: The OdmlWriter.writeLayout() method.

public void writeLayout(Form form, OutputStream outputStream)
 throws OdmlException {
 if (form == null) // nothing to be written
 return;
 if (outputStream == null) // no stream reference
 throw new NullPointerException("Output stream is null!");

 try {
 // create the root section of the odML document
 Section root = new Section();

 // convert the model and add it to the root section
 root.add(new Converter().layoutToOdml(form));

 // write the odml document to the stream
 odml.core.Writer writer = new odml.core.Writer(root);
 writer.write(outputStream);

 } catch (OdmlConvertException e) {
 throw new OdmlException("Could not convert to odML.", e);
 }
}

Chapter 4 - Template Generation Tool

All these methods return the internal model generated from their arguments. They

can also be called more times and the generator accumulates the internal model.

The whole model can be obtained using getLoadedModel() afterwards. It contains

all templates since the generator has been constructed or since the clearModel()

method has been called.

The DataGenerator interface, implemented by SimpleDataGenerator, is used to

generate the internal model of form data. Its methods follow the same conventions

as the LayoutGenerator interface. There are two load() methods, taking objects as

their arguments, which return the generated form-data model. They can be called

more times again, DataGenerator provides the getLoadedModel() and

clearModel() methods like LayoutGenerator.

The Writer interface is responsible for writing the internal model to an output

stream. It is implemented by OdmlWriter which supports the odML format. There

are two overloaded methods, taking the internal model and the target output

stream as their arguments:

• writeLayout() for writing form templates

• writeData() for writing form data

The Reader interface provides the ability to read the model from an input stream.

The odML format is supported by OdmlReader. Reader provides two methods:

• readLayout() for reading form templates

• readData() for reading form data

The ObjectBuilder interface defines methods used to instantiate original POJOs

from the internal data model. It provides two methods. The buildTyped() method

returns the object typed to its instantiating class, while build() returns

java.lang.Object. The latter must be used if the type is not known at

compile-time. ObjectBuilder is implemented by SimpleObjectBuilder described in

chapter 4.5. PersistentObjectBuilder extends this class to provide the ability of

working with persistent objects. It means that data can contain references to

existing records. A user of PersistentObjectBuilder has to implement

PersistentObjectProvider which is responsible for retrieving persistent objects by

their primary key.

- 44 -

Chapter 4 - Template Generation Tool

- 45 -

Figure 8: The public API of the template generator library.

Chapter 5

EEGBase: Implementing Web Services

The template generator is intended to be used by a server such as EEGBase. The

server works with an underlying database and thus it knows the data model.

Generated templates are used primarily in applications in various mobile devices.

For that reason it is necessary to propose and implement a proper way of transfer

between the server-side application and mobile devices. In the terms of the

Service-Oriented Architecture (SOA) the server application will provide a service

for client ones.

Such a service must meet following requirements:

• universal and platform independent

• available on the Internet

• using open standards

• support for security

• easy to use by mobile applications

The solution that meets all these requirements is called web services.

5.1 Web Services

Web services are considered a new generation of distributed computing. They are

designed to eliminate disadvantages of RPC-like technologies. They communicate

with textual messages (XML or equivalent), are platform-independent and rely on

well-established and non-proprietary protocols. The main difference between web

services and other distributed applications is that web services are typically

delivered over the HTTP protocol.

- 46 -

Chapter 5 - EEGBase: Implementing Web Services

Several features that distinguish web services from other distributed software

systems are mentioned in [Ka13]:

• Open infrastructure

Web services piggyback on existing, standardized and vendor-independent

protocols and languages like HTTP, XML and JSON.

• Platform and language transparency

Web services and their clients can be used in different programming

languages, hardware platforms and operating systems.

• Modular design

Existing web services can be re-used and composed to new ones and so on.

Web services are very useful in the field of mobile technologies. Various mobile

platforms can take advantage of their openness and platform-independence and use

them equally without taking care of implementation details. Clients of web services

are rarely web browsers but rather specialized applications on various networked

devices.

5.1.1 SOAP and REST

Web services are delivered in two flavours – SOAP-style and RESTful ones. Both

approaches are described in [Ka13]. Let's examine which one suits better needs of

this project.

SOAP originally stood for Simple Object Access Protocol, but this acronym was

later officially dropped. SOAP is considered a successor of XML-RPC. It is designed

to be transport-neutral, which means it can be delivered by any transport protocol,

HTTP being the most commonly used one (the reason is that with HTTP there is

no problem passing through firewalls). A description of a SOAP-based web service

is provided in a WSDL (Web Service Description Language) file, which is a XML

document describing the service as a collection of operations, their parameters and

return types. They can be exposed in public UDDI (Universal Description,

Discovery and Integration) registries.

REST stands for Representational State Transfer. Its base principles were proposed

in Roy Fielding's PhD dissertation [Fi00]. The central abstraction in RESTful

architecture is a resource. It can be any entity identified by a Uniform Resource

Identifier (URI). URIs are standardized names for resources and must be structured

according to their specification [RFC05]. In RESTful architecture, the HTTP

- 47 -

Chapter 5 - EEGBase: Implementing Web Services

protocol, apart from being the transport mechanism, can be seen as an API for

manipulating resources using so called CRUD operations, which stands for Create,

Read, Update and Delete.

REST is not standardized as opposed to SOAP. The advantage of RESTful

architecture is its simplicity in comparison to the complexity of SOAP-based web

services. REST completely relies on the HTTP protocol which is widely supported.

With REST there is no need to use WSDL files, client stubs and other related

things, the only needed thing is to know the public API of the service. This feature

makes REST the primary choice for many simple applications because, generally

speaking, it is easier to implement. Another advantage of RESTful approach is the

size of messages being transferred – RESTful ones are usually smaller than with

SOAP due to its complex standards. Finally REST, unlike procedural SOAP, is

stateless and orientated towards data, which complies with the intent of providing

form templates. After this comparison the RESTful approach was chosen.

5.2 Analysis of Required Functionality

The primary purpose of the implemented web service is the transfer of generated

form templates to mobile devices. But form templates, described in Chapter 3, do

not include existing records used when filling a form. It follows that the web service

should be able to provide this data as well. Moreover, a user of a mobile device can

design his own template and it will be useful if he can upload the template to the

server and thus make it available for other devices. Finally, all the form templates

are intended for users to enter new data. The mobile device should be able to

upload this data to the server.

This consideration shows following use-cases:

• managing form templates

• providing existing records

• uploading new data

The first item, managing form templates, includes a complete CRUD API for

templates. A user will be able to download available templates and upload, update

and delete his own ones. The next use-case, providing existing records, involves only

downloading data from the server. Finally the last item, uploading new data,

enables users to upload new data to the server after submitting a form.

- 48 -

Chapter 5 - EEGBase: Implementing Web Services

5.3 Storing Templates

Form templates implemented in this work are XML files, one file per template. The

server can store them

a) in a filesystem, or

b) in a database.

Both these approaches have their pros and cons. The most important issues concern

performance and simplicity of use. Filesystems were designed to manage files. For

that reason it could be considered the best solution. But it brings following

disadvantages:

• It is necessary to choose a proper directory and keep this information (e.g. in

a configuration file). This must be taken into consideration by application

deployment etc.

• Files are stored apart from the rest of data (i.e. the database) which brings

non-uniformity and complicates for example backup processes.

These issues are eliminated with database. On the other hand the database can

grow very quickly, especially with large files.

Another issue is the performance. According to Microsoft Research [Se06] the best

performance for small files (under 250 kB) can be achieved with a database. On the

other hand files greater than 1 MB are typically better handled by a filesystem.

One of reasons is that filesystems mostly have better fragmentation handling.

After this research database was chosen as a more suitable solution for storing the

templates. They are not very large, no more than hundreds of kilobytes. Storing

such files in a database brings more benefits.

5.3.1 Database Extension

The first step was a creation of a new table in the underlying database. EEGBase

currently uses PostgreSQL. Barring ID, the table must contain following items:

• form name which identifies a form

• layout name which identifies a concrete layout

• reference to owner (foreign key)

• content of the template itself

- 49 -

Chapter 5 - EEGBase: Implementing Web Services

A form template is identified by a pair of names – the form name and the layout

name. There can be several templates for one form, i.e. it contains the same items

but their layout is different. The reference to owner serves for access rights.

Listing 11 contains the SQL script that was used to create this table.

The only interesting thing is the way of storing the template file itself. First, it

could be stored either as a textual content or as a binary one. In the terms of Large

Objects (LOBs) it means either the Character LOB (CLOB) or the Binary LOB

(BLOB). CLOBs can be useful for text searching, but they can cause issues with

encoding. Since there is no need to search for text in stored form templates, it is

appropriate to store them in the binary form which avoids mentioned encoding

issues.

PostgreSQL provides two options how the store a binary content:

a) OID which is a reference to a BLOB stored in a special table

b) BYTEA which is a byte array stored directly with the table

If using OID the content is stored in a special system table. The content is split to

parts of the same length that are stored as BYTEA. It is advantageous for very

large content because it can be handled in parts. On the other hand the OID type

- 50 -

Listing 11: The SQL script for PostgreSQL.

CREATE TABLE form_layout (
 form_layout_id INTEGER PRIMARY KEY NOT NULL,
 form_name VARCHAR(50) NOT NULL,
 layout_name VARCHAR(50) NOT NULL,
 content BYTEA NOT NULL,
 person_id INTEGER
);

ALTER TABLE form_layout
 ADD CONSTRAINT form_layout_unique_idx
 UNIQUE (form_name, layout_name);

ALTER TABLE form_layout
 ADD CONSTRAINT form_layout_person_fk
 FOREIGN KEY (person_id) REFERENCES person (person_id)
 ON DELETE SET NULL;

Chapter 5 - EEGBase: Implementing Web Services

is not handled transparently as a standard table column unlike the BYTEA type.

Since form templates are generally small in size, BYTEA is used.

5.3.2 Persistent Objects Implementation

EEGBase takes advantage of the Object-Relational Mapping (ORM) provided by

Hibernate19. ORM enables an object-oriented code to work with persistent objects.

Describing this concept and Hibernate is out of scope of this work. A very thorough

description can be found in [Pe06].

In EEGBase, data-layer objects are located in the cz.zcu.kiv.eegdatabase.data

package. It contains several subpackages, POJOs being located in the pojo

subpackage and DAOs in the dao subpackage.

Listing 12 shows interesting parts of the implemented FormLayout entity which

represents stored templates. It contains fields corresponding to the form_layout

database table described in the previous section. Hibernate mapping is controlled

using an annotation-based approach.

19 Hibernate home page: http://hibernate.org

- 51 -

Listing 12: The FormLayout entity.

@Entity
@Table(name = "FORM_LAYOUT")
public class FormLayout implements Serializable {

 private int formLayoutId;
 private String formName;
 private String layoutName;
 private byte[] content;
 private Person person;

 // constructors (including a non-parametric one)

 @Column(name = "FORM_NAME", nullable = false, length = 50)
 public String getFormName() {
 return formName;
 }

 // other getters and setters

}

Chapter 5 - EEGBase: Implementing Web Services

The next step is to implement the DAO object. Its interface is defined by

FormLayoutDao and implementation is provided by the SimpleFormLayoutDao class.

The interface defines methods for accessing and manipulating FormLayout persistent

objects. SimpleFormLayoutDao implements those methods using Hibernate. There

are two possibilities of querying for data records with Hibernate – Hibernate Query

Language (HQL) or Criteria. HQL is a query language similar to SQL except it

works with objects. Criteria provides an object-oriented API which is better

especially for dynamic queries where HQL would require uncomfortable string

concatenation.

For that reason Criteria were used. An example is given in Listing 13. The

getLayoutsCount method returns number of layouts for a given form owned by a

specified person. If either the owner or the formName or both arguments are null, the

corresponding restriction is not applied, i.e. the method can be used to count all

layouts regardless of their owner and the form they describe.

- 52 -

Listing 13: The getLayoutsCount method demonstrating usage of Criteria.

public int getLayoutsCount(Person owner, String formName) {

 // create the criteria object
 DetachedCriteria criteria = DetachedCriteria.forClass(type);

 // count records
 criteria.setProjection(Projections.rowCount());

 // add the owner restriction
 if (owner != null)
 criteria.add(Restrictions.eq("person.personId",
 owner.getPersonId()));

 // add the form restriction
 if (formName != null)
 criteria.add(Restrictions.eq("formName", formName));

 // query and return as single integer
 return DataAccessUtils.intResult(
 getHibernateTemplate().findByCriteria(criteria));

}

Chapter 5 - EEGBase: Implementing Web Services

5.4 RESTful Web Services with Spring

EEGBase takes advantage of the Spring Framework20. Although being lightweight,

Spring offers a very rich functionality. Describing this framework in more detail is

out of scope of this work, a reader is referred to [Wa08] instead. The following

sections expect some knowledge of this domain.

Some RESTful services were already implemented in EEGBase last year by Petr

Miko. They are described in [Mi13]. Their implementation is located in the

cz.zcu.kiv.eegdatabase.webservices.rest package. The new service is placed in

its subpackage named forms and conventions established by Petr Miko's work are

followed.

5.4.1 Message Format

If a client calls a web service the result is often an object, i.e. a complex type. This

object must be written in the HTTP message by the sender and read by the

receiver. Terms marshalling and unmarshalling are commonly used for this

processes respectively. The representation of an object in the message must have a

standardized format. In REST, XML and JSON are typically used. JSON, although

originating from the Javascript language, is an open, language-independent and

human-readable data format, specified in RFC document [RFC14]. Recently this

format has became popular thanks to its simplicity and lower verbosity compared

to the older XML. Our web service supports both of them, if possible. However,

odML currently defines only XML serialization, for that reason JSON is not

supported for the transfer of the odML templates themselves.

In EEGBase the Java Architecture for XML Binding (JAXB) is used for XML

marshalling. The only required thing for this purpose are data containers provided

with JAXB annotations. The data containers are conventionally placed in the

wrapper subpackage of the concrete RESTful service's package. Following containers

were implemented:

• AvailableFormsDataList – list of available form names

• AvailableLayoutsData – form name and layout name of a form template

• AvailableLayoutsDataList – list of AvailableLayoutsData

20 Spring Framework: http://projects.spring.io/spring-framework

- 53 -

Chapter 5 - EEGBase: Implementing Web Services

The conversion to JSON is provided by the Jackson21 library. This library requires

no special annotations for the data containers, the JAXB-annotated ones mentioned

above can be used without changes.

5.4.2 Service Object Implementation

A service in Spring is a special bean which provides defined functionality to other

components. According to the Domain-Driven Design it is “an operation offered as

an interface that stands alone in the model, with no encapsulated state”. It is usually

used as an intermediate layer between the data layer and controllers (see next

section). The service object should contain the logic of a web service itself while the

controller contains the logic related to HTTP requests handling.

The FormService interface defines methods for manipulation form templates and

related data records. If appropriate, they return marshallable data containers

described in the previous section. The interface is implemented by the

FormServiceImpl class. Listing 14 shows a snippet of this class. The code was

slightly adjusted in order to point out important things.

The @Transactional annotation is used to wrap execution of an annotated method

in a database session. If used for the whole class it is applied to every method

within this class. The readOnly parameter indicates that no writes will be

performed during the session. Methods that need write access to persistent objects

must be annotated with the following line

@Transactional(readOnly=false, propagation=Propagation.REQUIRES_NEW)

which overrides the @Transactional annotation which is used for the whole class.

The service bean implements two extra interfaces – InitializingBean and

ApplicationContextAware. The first one defines the afterPropertiesSet() method

which is called during the creation of the bean. This is done by Spring during the

start of the application. It is utilized to re-generate form templates. The body of

afterPropertiesSet() contains code that loads data model classes, generates

corresponding form templates and updates them in the persistent storage. Since the

data model cannot change during runtime it is sufficient to perform this once at the

application's startup.

The ApplicationContextAware interface defines the setApplicationContext()

method. It is used to pass an instance of the ApplicationContext during the

21 Jackson JSON Processor: http://wiki.fasterxml.com/JacksonHome

- 54 -

Chapter 5 - EEGBase: Implementing Web Services

creation of the bean again. Having access to the application context, the bean can

interact with the Spring container. Since the web service provides access to any

data records used in any of defined forms, it would be uncomfortable to write

specialised methods for every data entity. Moreover, if a new form was defined in

the data model, it could cause a need to modify the web service implementation so

as it would be able to provide data records required by the new form. For that

reason a generic solution was introduced, which is based on retrieving a DAO for

the required data entity dynamically from the container. This approach is possible

thanks to the fact that all DAOs in EEGBase implement the GenericDao interface

which provides sufficient functionality for the web service.

- 55 -

Listing 14: The FormServiceImpl class.

@Service
@Transactional(readOnly = true)
public class FormServiceImpl implements FormService,
 InitializingBean, ApplicationContextAware {

 @Autowired private FormLayoutDao formLayoutDao;
 @Autowired private PersonDao personDao;
 private ApplicationContext context;
 // other fields omitted

 public void afterPropertiesSet()
 { /* method body */ }

 public void setApplicationContext(ApplicationContext ctx)
 { /* method body */ }

 // get the number of available forms
 public RecordCountData availableFormsCount() {
 RecordCountData count = new RecordCountData();
 count.setPublicRecords(formLayoutDao.getAllFormsCount());
 count.setMyRecords(formLayoutDao
 .getFormsCount(personDao.getLoggedPerson()));
 return count;
 }

 // other methods

}

Chapter 5 - EEGBase: Implementing Web Services

5.4.3 Controller Implementation

The purpose of a controller in Spring is to handle HTTP requests. In our case it

defines endpoints of the web service. The FormServiceController class was

implemented for this purpose. Listing 15 shows a snippet of this class. The

controller is responsible only for handling HTTP communication. The logic of the

web service is placed in the FormService object as described in the previous section.

The availableLayoutsCount() method is used to handle GET requests for the

/form-layouts/count path. The value of the @RequestMapping annotation is simply

appended to the controller's URL. This methods is used to get number of available

layouts stored in the server's database. It returns the RecordCountData object,

which is a marshallable data container, because there are two numerical values to

be returned – number of public layouts and number of user's own layouts. The

@ResponseBody annotation tells Spring that the return value should be marshalled

in the body of the response.

- 56 -

Listing 15: The FormServiceController class.

@Controller
@RequestMapping("/form-layouts") // URL mapping
@Secured("IS_AUTHENTICATED_FULLY") // users must be authenticated
public class FormServiceController {

 /** The service object providing data. */
 @Autowired private FormService service;

 @RequestMapping(value = "/count", method = RequestMethod.GET)
 @ResponseBody
 public RecordCountData availableLayoutsCount(
 @RequestParam(value = "form", required = false) String form) {

 if (form == null)
 return service.availableLayoutsCount();
 else
 return service.availableLayoutsCount(form);
 }

 // other content omitted

}

Chapter 5 - EEGBase: Implementing Web Services

The method has one argument named formName. It is annotated with

@RequestParam. This annotation indicates that the value will be obtained from the

URL as the value of a parameter named “form”. It may or may not be present, null

is passed in formName in the latter case. The URL may be e.g.

/form-layouts/count?form=someFormName

In this case the availableLayoutsCount() method is called with the formName

argument's value set to “someFormName”. The service object is used afterwards to

obtain the return value.

5.5 Provided RESTful API

5.5.1 Querying Available Templates

Following URLs provide means to discover which templates are available on the

server. They support only the GET method. Both XML and JSON responses are

supported, XML being the default one. JSON can be requested using the Accept

header in the HTTP request:

Accept: application/json

Description of individual supported URLs follows.

• /rest/form-layouts/count[?form=<formName>]

This URL returns number of available templates. There are two values –

number of templates owned by the current user and number of all templates.

The optional form parameter restricts result to a given form (there can be

more templates for one form).

• /rest/form-layouts/available[?form=<formName>&mineOnly=true]

This URL returns a list of available templates. Every entry of the list

contains the name of the form and name of the layout. The optional form

parameter restricts results to a given form. Another optional parameter is

mineOnly. If set to true, only templates owned by the current user are

returned.

• /rest/form-layouts/form/count

Functionality of this URL is similar to the first one, but this one returns

number of distinct forms for which at least one template is available.

- 57 -

Chapter 5 - EEGBase: Implementing Web Services

• /rest/form-layouts/form/available[?mineOnly=true]

This URL is similar to the second one, except this one returns list of names

of distinct forms for which at least one template is available. The mineOnly

parameter can be used again.

5.5.2 Transferring Templates

Only the XML format is supported. The URL is following:

/rest/form-layouts?form=<formName>&layout=<layoutName>

A client can use all CRUD operations:

• GET downloads a template from the server.

• POST uploads a new template to the server.

• PUT updates a template owned by the current user.

• DELETE deletes a template owned by the current user.

For POST and PUT requests the content-type must be application/xml.

5.5.3 Transferring Data

The URL is following:

/rest/form-layouts/data?entity=<entityName>[&id=<recordId>]

It supports only the XML format again. Unlike with templates, only two operations

are supported for this URL:

• GET downloads an odML document with all records of the given entity, or

with just one record specified by the optional id parameter.

• POST uploads an odML document with a new record to the server.

In addition the service provides two more URLs so as a client can query for existing

data records similarly to querying for available templates. They support both the

XML and JSON responses.

• /rest/form-layouts/data/count?entity=<entityName>

This URL returns the number of records for the given entity.

• /rest/form-layouts/data/ids?entity=<entityName>

Returns a list of all records' IDs (for the given entity).

- 58 -

Chapter 6

Testing

Testing is an integral part of the software development process. It is also the most

often neglected part. The most primitive way of testing, manual testing or

debugging, consumes too much time and human resources and is much less reliable

than automated testing. The only exception is the manual testing end-user

interface, which often needs a human interaction.

This chapter describes how the implemented solution was tested. Unit testing was

used primarily. It is described in the following section. In addition, a standalone

software tool was used for the purpose of manual testing the implemented RESTful

web service's endpoint. It is also described later in this chapter.

6.1 Unit Tests

Unit testing is a method of testing individual code units separately. In the

object-oriented world the unit is usually an object. These objects are tested in

isolation, without worrying about its role in the surrounding system [Ra06]. The

goal is to verify that each object behaves correctly, which increases the probability

of the correct behaviour of the whole system considerably.

According to [Ra06] unit tests must be:

• Automated, i.e. they can be run by a computer.

• Repeatable, i.e. that executing the same test under the same conditions

must give the same result.

• Self-verifying, i.e. the test itself must know the expected result and decide

whether it passed or failed.

There are many frameworks for unit testing in Java. JUnit, being one of the most

popular ones, was used in this work. JUnit is very thoroughly described in [Ra06].

- 59 -

Chapter 6 - Testing

6.1.1 Testing Template Generator

The template generator library respects the standard Maven directory structure, i.e.

tests are located under the src/test/java directory. Test cases for individual objects

are placed in classes named after the tested class with the “Test” suffix. For example

test cases for ClassParser are located in the ClassParserTest class. Test classes

are placed in the same package hierarchy as the tested ones.

Unit tests are usually based on the evaluation whether a returned value equals an

expected one. In Java objects are compared to equality using the equals() method.

The first thing necessary to start writing tests is to implement the equals() and

hashCode() methods in value objects. Value objects are those returned by methods

as their results. In the template generator library, value objects constitute the

internal model, i.e. they are located in the cz.zcu.kiv.formgen.model package.

After implementing equals() and hashCode() it is important to test these methods

before using them in other tests. According to [Ra06] writing tests for equals() is

quite complex, but a solution is to use EqualsTester provided by an open-source

project GSBase22. Listing 16 shows how to test equals() with EqualsTester.

Next it is advisable to test as much functionality as possible, the more the better.

The only exception are methods that are too simple to break. They are typically

getters and setters. [Ra06] suggests not to test individual methods, but rather

a behaviour or a use-case. This can be equal to testing a method, but not always.

Testing a concrete behaviour includes at least testing a regular successful usage and

a proper extreme case. The latter may be expected to throw an exception. Listing

17 shows such a test case for ClassParser. The parser is asked to parse null and

22 GSBase: http://gsbase.sourceforge.net

- 60 -

Listing 16: Testing Form.equals() with EqualsTester.

@Test
public void testEquals() {
 Form a = new Form("name"); // control object
 Form b = new Form("name"); // object equal to the control one
 Form c = new Form("anotherName"); // not equal object
 Form d = new Form("name") { /* trivial subclass */ };
 new EqualsTester(a, b, c, d); // test the equals() method
}

Chapter 6 - Testing

add it as a subform to form. It should throw an exception, which is first caught and

form is checked whether it was not modified. The exception is then thrown. If the

exception's type is NullPointerException, the test passes.

Table 6 gives an overview of implemented test cases for individual objects.

Package Tested object
Number of

test cases

cz.zcu.kiv.formgen.core ClassParser 6

DataParser 2

PersistentObjectBuilder 1

SimpleDataGenerator 4

SimpleLayoutGenerator 11

SimpleObjectBuilder 7

cz.zcu.kiv.formgen.model Form 2

FormData 2

FormDataField 1

FormField 2

cz.zcu.kiv.formgen.odml Converter 4

OdmlReader 2

OdmlWriter 3

Table 6: Overview of tested objects and implemented test cases.

- 61 -

Listing 17: Expecting a test case to throw an exception.

@Test(expected = NullPointerException.class)
public void testParse_addToFormNull() throws Exception {
 Form form = new Form("superForm");
 try {
 new ClassParser().parse(null, form);
 } catch (Exception e) {
 assertEquals(new Form("superForm"), form);
 throw e;
 }
}

Chapter 6 - Testing

All implemented tests can be run using the following command line

mvn test

which runs all tests and prints their results. It should be run after every

modification in the source code in order to verify that it has not caused a defect.

Currently all tests are successful.

6.1.2 Testing EEGBase Extension

EEGBase, like the template generator library, is a standard Maven project, i.e. tests

are located under the src/test/java directory. It follows the same naming conventions,

appending the “Test” suffix after the name of a tested object.

Running tests for EEGBase requires Spring's context, because tested objects are

designed to live inside Spring's container.. For this purpose a special test context is

used. Beans and other required components are created within this context as

usual, but it is possible to define some special configuration for the testing

environment. For example the H2 in-memory database23 is used instead of the

Postgres database used for deployment.

During this work five types of objects were created in EEGBase – controller, service

object, DAO object, data entity and marshallable data containers. The last two,

data entity and containers, do not require any testing since they contain no logic.

The controller provides an end-user interface of the web service and will be tested

manually (see section 6.2 Manual Testing). It follows that the only objects for unit

testing are the service and DAO objects.

The DAO object, SimpleFormLayoutDao, extends SimpleGenericDao which

implements basic CRUD operations. For that reason they do not need to be tested

within SimpleFormLayoutDao. The service object, FormServiceImpl, contains logic

of the implemented web service. It uses the SimpleFormLayoutDao object to access

stored templates. For that reason the DAO object was tested first. Test cases for

service object assume DAO working correctly. An alternative approach would be

usage of a mock DAO object.

Table 7 gives an overview of implemented test cases together with a short

description. All implemented test cases pass successfully. They can be run with the

maven command line mvn test.

23 H2 Database Engine: http://www.h2database.com/html/main.html

- 62 -

Chapter 6 - Testing

Tested object Test-case method Tested behaviour

SimpleFormLayoutDao testFormAccess() Querying for names and counts of

stored forms.

testLayoutCounts() Querying for counts of stored

templates by specified criteria.

testGetLayout() Retrieving a specified template.

FormServiceImpl testAvailableForms() Querying for available forms.

testAvailableLayouts() Querying for available templates.

testGetLayout() Retrieving a specified template.

testCRUDLayout() CRUD operations for templates.

testGetOdmlData() Retrieving data records.

Table 7: Overview of test cases implemented in EEGBase.

6.2 Manual Testing

The implemented web service's endpoint was tested manually in addition to unit

tests described in the previous section. A standalone application called

RESTClient24 capable of testing web services was used especially in the initial stage

of development. Furthermore, the service was tested using a mobile client developed

by Jaroslav Hošek within his master thesis.

Following scenarios were used for the purpose of manual testing:

Scenario 1: Templates manipulation

1. Query available templates.

2. Download a chosen one.

3. Upload the template under a different name.

4. Query available templates to verify it was saved.

5. Update the template from step 3 by uploading a different content.

6. Download the updated template.

7. Delete the template.

8. Query available templates.

24 WizTools.org RESTClient: http://code.google.com/p/rest-client

- 63 -

Chapter 6 - Testing

Scenario 2: Data manipulation

1. Download all records of any type referenced by a generated template.

2. Upload a new record.

3. Download the record from step 2 by its ID.

6.2.1 RESTClient

RESTClient is a Java application and a framework to test RESTful web services.

The application offers both command line and graphical interface. It is capable to

test variety of HTTP communications. Its features include support for all common

HTTP methods, setting headers, cookies and body of a request, authentication,

encryption with SSL and many other things.

Figure 9 depicts the graphical user interface after a successful query for the count of

available layouts. The URL is entered in the upper part of the application window.

In the central part the GET method is chosen from the combo-box. The lower part

of the window shows the response from the server.

- 64 -

Figure 9: RESTClient - graphical user interface.

Chapter 6 - Testing

The graphical application is easy to use and provides all required functionality to

test the implemented web service. Although some requests can be tested in a web

browser as well, it is not sufficient to test the whole public API. The only supported

HTTP method after entering a URL in a web browser is GET, but the RESTful

API supports also POST, PUT and DELETE. RESTClient allows a user to choose

the required method very easily. It is also very simple to add required request

headers, such as Accept: application/json, which is impossible or at least difficult to

achieve with a browser.

6.2.2 Mobile Application for Android

Jaroslav Hošek has been developing a mobile application for Android in parallel

with this project. The application will be described in his master thesis. It allows

users, to design their own forms and use them to enter data from their experiments.

This functionality is similar to a mobile application described in [Mi13]. In addition

to that, the new application is also a client of the RESTful web service created

within this work. During the development we have closely cooperated, mainly with

defining the format of templates.

The developed mobile application was used to test the implemented RESTful API

as its dedicated client. Revealed bugs, shortcomings and additional requirements

were continuously fixed.

- 65 -

Chapter 7

Conclusion

The goal of this thesis was to propose and implement a framework for automatic

generation of platform-independent graphical templates. They enable users to work

with different data management systems without the need to implement a

specialised application for each of them. The problem was presented in the context

of collecting metadata from neuroscience experiments.

The very first challenge in this work was the selection of a format for the mentioned

templates. After an exploration of the current state of the art we have ascertained

there is not a satisfactory solution. For that reason we have decided to propose our

own specification of required graphical templates. We have selected odML with its

XML serialization as the underlying format. This selection has brought the

advantage of using the same format for the transfer of both graphical templates and

related data records (which is a primary purpose of odML).

The next step was a proposal and implementation of a tool for automated

templates generation from an arbitrary data model. It was implemented using the

Java programming language, which brought the advantage of working with

an object-oriented data model. An analysis showed that the data model needs to be

annotated so as the generation process can be controlled. Java annotations were

used for this purpose. The tool parses the data model using reflection and provides

odML templates output.

A use case verifying the implemented solution was also presented in this work. The

tool has been deployed in a data management system for electrophysiological

experiments called EEGBase. A communication API for client applications using

RESTful web services was created. Besides template manipulation the web service

also offers means to transport related data. A client application for Android has

been developed in parallel within a separate thesis. The mobile client has

successfully verified the implemented solution.

- 66 -

Chapter 7 - Conclusion

The goals of this thesis were achieved. Beyond the assignment it dealt with data

transport which forms an integral part of all graphical templates use-cases. Both

the template generation tool and the EEGBase extension were thoroughly tested

and revealed bugs were fixed. The source code is clearly arranged and provided with

documentation comments, and thus ready for future modifications and extensions

by other programmers.

Possible future enhancements of the proposed solution includes an extension of the

graphical templates specification. The presented one covers basic needs of our

project, but some extra features might be useful, e.g. defining more types of form

items. An alternative approach to enhancing the proposed format is to add support

for another one such as HTML. The template generation tool was designed with

regard to this possibility.

- 67 -

List of Abbreviations

API Application Programming Interface

BLOB Binary Large Object

CLOB Character Large Object

CRUD Create, Read, Update, Delete

DAO Data Access Object

EEG Electroencephalography

ERP Event-Related Potentials

GUI Graphical User Interface

HQL Hibernate Query Language

INCF International Neuroinformatics Coordinating Facility

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

LOB Large Object

MIME Multipurpose Internet Mail Extension

ODML Open MetaData Markup Language

ORM Object-Relational Mapping

POJO Plain Old Java Object

RDF Resource Description Framework

REST Representational State Transfer

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

WSDL Web Service Description Language

WADL Web Application Description Language

XML Extensible Markup Language

- 68 -

Abbreviation Meaning

Used software

Eclipse 4.3 Java IDE

GNU/Linux 3.2 Operating system

LibreOffice 4.2 Office suite

RESTClient 3.2 Tool for manual testing RESTful web services

- 69 -

Software Description

References

[Au11] AUSTIN, Jim, Tom JACKSON, Martyn FLETCHER, Mark JESSOP,
Bojian LIANG, Mike WEEKS, Leslie SMITH, Colin INGRAM and Paul
WATSON. CARMEN: Code analysis, Repository and Modeling
for e-Neuroscience. Procedia Computer Science. [online].
1-3 June 2011, vol. 4, p. 768-777. ISSN 1877-0509. [accessed 25 Apr 2014].
DOI 10.1016/j.procs.2011.04.081. Available:
http://www.sciencedirect.com/science/article/pii/S1877050911001396.

[Bj07] BJAALIE, Jan G. and Sten GRILLNER. Global Neuroinformatics: The
International Neuroinformatics Coordinating Facility. The Journal of
Neuroscience. [online]. 4 Apr 2007, 27(14), 3613-3615. [accessed 24 Jan
2014]. DOI 10.1523/JNEUROSCI.0558-07.2007. Available:
http://www.jneurosci.org/content/27/14/3613.full.

[Fa05] FALLON, L.. Electroencephalography. Gale Encyclopedia of Neurological
Disorders. 2005. Encyclopedia.com. [accessed 13 May 2014]. Available:
http://www.encyclopedia.com/doc/1G2-3435200133.html.

[Fi00] FIELDING, Roy Thomas. Architectural Styles and the Design of
Network-based Software Architectures. Irvine, 2000. Doctoral dissertation.
University of California.

[Fo05] FORMAN, Ira R. and Nate FORMAN. Java Reflection in Action.
Greenwich: Manning, 2005, 273 p. ISBN 19-323-9418-4.

[Ga08] GARDNER, D. et al. The Neuroscience Information Framework: A Data
and Knowledge Environment for Neuroscience. Neuroinformatics.
September 2008, vol. 6, iss. 3, pp. 149-160. DOI 10.1007/s12021-008-9024-z.
Available: http://link.springer.com/article/10.1007/s12021-008-9024-z.

[Gi09] GIBSON, F., P. OVERTON, T. SMULDERS, S. SCHULTZ, S. EGLEN, C.
INGRAM, S. PANZERI, P. BREAM, M. WHITTINGTON, E.
SERNAGOR, M. CUNNINGHAM, C. ADAMS, C. ECHTERMEYER, J.
SIMONOTTO, M. KAISER, D. SWAN, M. FLETCHER and P. LORD.
Minimum Information about a Neuroscience Investigation (MINI):
Electrophysiology. Nature Precedings. [online]. 9 Apr 2009. [accessed 15 Apr
2014]. Available: http://hdl.handle.net/10101/npre.2009.1720.2.

- 70 -

References

[Gr11] GREWE, J., T. WACHTLER and J. BENDA. A Bottom-up Approach
to Data Annotation in Neurophysiology. Frontiers in Neuroinformatics.
[online]. 30 Aug 2011, vol. 5, 18 p. ISSN 1662-5196.
[accessed 3 Feb 2014]. DOI 10.3389/fninf.2011.00016. Available:
http://www.frontiersin.org/Journal/10.3389/fninf.2011.00016/full.

[He08] HERZ, Andreas V. M., R. MEIER, M. P. NAWROT, W. SCHIEGEL
and T. ZITO. G-Node: An integrated tool-sharing platform to support
cellular and systems neurophysiology in the age of global neuroinformatics.
Neural Networks. [online]. 2008, vol. 21, ISSN 1070-1075. [accessed 24 Feb
2014]. DOI 10.1016/j.neunet.2008.05.011. Available:
http://www.g-node.org/publications/NN2436.pdf.

[Je08] JEŽEK, Petr. Design of application for EEG processing (Návrh aplikace
pro zpracování EEG signálů). Pilsen, 2008. Master thesis. University of
West Bohemia, Faculty of Applied Sciences.

[Je12] JEŽEK, Petr. Ontology Development in EEG/ERP Domain. Pilsen, 2012.
Doctoral dissertation. University of West Bohemia, Faculty of Applied Sciences.

[Je13] JEŽEK, Petr, R. MOUČEK, Y. Le FRANC, T. WACHTLER and
J. GREWE. Framework for automatic generation of graphical layout
compatible with multiple platforms. Visual Languages and Human-Centric
Computing (VL/HCC), 2013 IEEE Symposium on. 15-19 Sept 2013, pp.
193-194. DOI 10.1109/VLHCC.2013.6645264. Available: http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=6645264&isnumber=6645226.

[Ka13] KALIN, Martin. Java Web Services: Up and Running. 2nd ed.
Sebastopol (California): O'Reilly, 2013, 338 p. ISBN 978-144-9365-110.

[Mi13] MIKO, Petr. Mobile system for management of EEG/ERP experiments.
Pilsen, 2013. Master thesis. University of West Bohemia, Faculty of
Applied Sciences.

[Mo14] MOUČEK, R., P. JEŽEK, L. VAŘEKA, T. ŘONDÍK, P. BRŮHA, V.
PAPEŽ, P. MAUTNER, J. NOVOTNÝ, T. PROKOP and J. ŠTĚBETÁK.
Software and hardware infrastructure for research in electrophysiology.
Frontiers in Neuroinformatics. [online]. 7 Mar 2014, vol. 8. [accessed
5 Apr 2014]. DOI 10.3389/fninf.2014.00020. Available: http://www.
frontiersin.org/Neuroinformatics/10.3389/fninf.2014.00020/abstract.

- 71 -

References

[Pe05] PECINOVSKÝ, Rudolf. Java 5.0: Novinky jazyka a upgrade aplikací.
Brno: Computer Press, 2005, 152 p. ISBN 80-251-0615-2.

[Pe06] PEAK, Patrick and Nick HEUDECKER. Hibernate Quickly.
Greenwich: Manning, 2006, 425 p. ISBN 978-193-2394-412.

[Ra06] RAINSBERGER, J. B. and Scott STIRLING. JUnit Recipes: Practical
Methods for Programmer Testing. Greenwich: Manning, 2005, 721 p.
ISBN 19-323-9423-0.

[RFC05] RFC 3986 (STD 66). Uniform Resource Identifier (URI): Generic Syntax.
2005. [online]. [accessed 2 Apr 2014]. Available:
http://tools.ietf.org/html/rfc3986.

[RFC14] RFC 7159. The JavaScript Object Notation (JSON) Data Interchange
Format. 2014. [online]. [accessed 4 Apr 2014]. Available:
http://tools.ietf.org/html/rfc7159.

[Se06] SEARS, Russell, Catharine VAN INGEN and Jim GRAY. To BLOB
or Not To BLOB: Large Object Storage in a Database or a Filesystem.
Microsoft Research. 2006, 10 p. [online]. [accessed 8 Apr 2014]. Available:
http://research.microsoft.com/pubs/64525/tr-2006-45.pdf.

[Wa08] WALLS, Craig and Ryan BREIDENBACH. Spring in Action. 2nd ed.
Greenwich: Manning, 2008, 730 p. ISBN 19-339-8813-4.

- 72 -

Appendix A: Listings

- 73 -

Appendix A: Listings

The following listing contains a XML serialization of the sample form template from

chapter 3.3.4 Sample Template (Figure 3).

<section>
 <type>form</type>
 <name>Form1</name>
 <reference>example.Person</reference>
 <property> <name>label</name> <value>Person<type>string</type></value> </property>
 <property> <name>previewMajor</name> <value>fullName<type>string</type></value> </property>
 <property> <name>previewMinor</name> <value>gender<type>string</type></value> </property>
 <section>
 <type>textbox</type>
 <name>fullName</name>
 <property> <name>label</name> <value>Full name<type>string</type></value> </property>
 <property> <name>datatype</name> <value>string<type>string</type></value> </property>
 <property> <name>required</name> <value>true<type>boolean</type></value> </property>
 <property> <name>cardinality</name> <value>1<type>int</type></value> </property>
 <property> <name>maxLength</name> <value>50<type>int</type></value> </property>
 <property> <name>id</name> <value>1<type>int</type></value> </property>
 </section>
 <section>
 <type>combobox</type>
 <name>gender</name>
 <property> <name>label</name> <value>Gender<type>string</type></value> </property>
 <property> <name>required</name> <value>true<type>boolean</type></value> </property>
 <property>
 <name>values</name>
 <value>M<type>string</type></value>
 <value>F<type>string</type></value>
 </property>
 <property> <name>id</name> <value>2<type>int</type></value> </property>
 <property> <name>idTop</name> <value>1<type>int</type></value> </property>
 </section>
 <section>
 <type>form</type>
 <name>address</name>
 <reference>example.Address</reference>
 <property> <name>label</name> <value>Address<type>string</type></value> </property>
 <property> <name>previewMajor</name> <value>town<type>string</type></value> </property>
 <property> <name>required</name> <value>false<type>boolean</type></value> </property>
 <property> <name>cardinality</name> <value>-1<type>int</type></value> </property>
 <property> <name>id</name> <value>3<type>int</type></value> </property>
 <property> <name>idTop</name> <value>2<type>int</type></value> </property>
 <section>
 <type>textbox</type>
 <name>town</name>
 <property> <name>label</name> <value>Town<type>string</type></value> </property>
 <property> <name>datatype</name> <value>string<type>string</type></value> </property>
 <property> <name>required</name> <value>true<type>boolean</type></value> </property>
 <property> <name>cardinality</name> <value>1<type>int</type></value> </property>
 <property> <name>maxLength</name> <value>50<type>int</type></value> </property>
 <property> <name>id</name> <value>4<type>int</type></value> </property>
 <property> <name>idTop</name> <value>6<type>int</type></value> </property>
 </section>

- 74 -

Appendix A: Listings

 <section>
 <type>textbox</type>
 <name>street</name>
 <property> <name>label</name> <value>Street<type>string</type></value> </property>
 <property> <name>datatype</name> <value>string<type>string</type></value> </property>
 <property> <name>required</name> <value>true<type>boolean</type></value> </property>
 <property> <name>cardinality</name> <value>1<type>int</type></value> </property>
 <property> <name>maxLength</name> <value>50<type>int</type></value> </property>
 <property> <name>id</name> <value>5<type>int</type></value> </property>
 </section>
 <section>
 <type>textbox</type>
 <name>number</name>
 <property> <name>label</name> <value>Number<type>string</type></value> </property>
 <property> <name>datatype</name> <value>integer<type>string</type></value> </property>
 <property> <name>required</name> <value>true<type>boolean</type></value> </property>
 <property> <name>cardinality</name> <value>1<type>int</type></value> </property>
 <property> <name>minValue</name> <value>1<type>int</type></value> </property>
 <property> <name>id</name> <value>6<type>int</type></value> </property>
 <property> <name>idTop</name> <value>5<type>int</type></value> </property>
 </section>
 </section>
</section>

Listing A.1: XML serialization of the sample form template.

- 75 -

Appendix B: CD

- 76 -

Appendix B: CD

The enclosed CD contains source codes of the implemented solution and other

related electronic resources. Its content is following (directories are enclosed

in square brackets):

• [EEGBase] – snapshot of the EEGBase project (14 May 2014)

• [Source code] – complete source code

• eegdatabase-2014-05-14-SNAPSHOT.war – compiled WAR archive

• [odML] – odML related resources

• odml.xsd – XML schema for odML

• [odml-java-lib adaptation] – adaptation of the odml-java-lib library

• [Release] – release of the adapted library

• [Source code] – complete source code

• [Sample templates] – sample odML templates from EEGBase

• experiment.odml – generated form template for saving experiments

• data.odml – sample document with data records

• [Template generator] – final version of the implemented tool

• [Example] – example of use

• [Javadoc] – javadoc documentation

• [Release] – release of the tool including required dependencies

• [Source code] – complete source code

• [Thesis] – this thesis

• [Source] – source text of this thesis including used images

• MasterThesis_JakubKrauz.pdf – text of this thesis in PDF

• [Tools] – various software tools used during this work

• [Apache Ant] – build tool used in odml-java-lib

• [Apache Maven] – project management tool

• [RESTClient] – tool for testing RESTful web services

- 77 -

	Contents
	Chapter 1 Introduction
	Chapter 2 Theoretical Background
	2.1 Electrophysiology Research
	2.1.1 EEG/ERP Experiments

	2.2 Neuroinformatics
	2.2.1 Metadata Sharing
	HDF5
	MINI
	BrainML
	odML

	2.2.2 Organizations and Databases
	International Neuroinformatics Coordinating Facility (INCF)
	G-Node
	Neuroscience Information Framework (NIF)
	Carmen
	CRCNS
	EEGBase

	2.2.3 Mobile Technologies

	Chapter 3 Automatically Generated Templates
	3.1 Format Selection
	3.2 odML: Open Metadata Markup Language
	3.2.1 Data Model
	3.2.2 Terminologies
	3.2.3 Tools

	3.3 Form Templates
	3.3.1 Basic Structure
	Form
	Textbox
	Combobox
	Choice

	3.3.2 References to Data Entities
	3.3.3 Data Previews
	3.3.4 Sample Template

	3.4 Data Transport

	Chapter 4 Template Generation Tool
	4.1 Analysis
	4.2 Data Model Annotations
	4.3 Internal Model
	4.3.1 Templates
	4.3.2 Data

	4.4 Parsers Implementation
	4.4.1 Class Parser
	4.4.2 Data Parser

	4.5 Objects Builder
	4.6 odML Serialization
	4.6.1 Odml-java-lib Adaptation
	4.6.2 Writer and Reader Implementation

	4.7 Public API

	Chapter 5 EEGBase: Implementing Web Services
	5.1 Web Services
	5.1.1 SOAP and REST

	5.2 Analysis of Required Functionality
	5.3 Storing Templates
	5.3.1 Database Extension
	5.3.2 Persistent Objects Implementation

	5.4 RESTful Web Services with Spring
	5.4.1 Message Format
	5.4.2 Service Object Implementation
	5.4.3 Controller Implementation

	5.5 Provided RESTful API
	5.5.1 Querying Available Templates
	5.5.2 Transferring Templates
	5.5.3 Transferring Data

	Chapter 6 Testing
	6.1 Unit Tests
	6.1.1 Testing Template Generator
	6.1.2 Testing EEGBase Extension

	6.2 Manual Testing
	Scenario 1: Templates manipulation
	Scenario 2: Data manipulation
	6.2.1 RESTClient
	6.2.2 Mobile Application for Android

	Chapter 7 Conclusion
	List of Abbreviations
	Used software
	References
	Appendix A: Listings
	Appendix B: CD

