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ABSTRACT

In this paper we present an improved approach to full spectral rendering. The technique is optimized for quasi-Monte Carlo ray

tracing, however the underlying physical theory can be applied to any global illumination scheme. We start with explanation

of the necessity of full spectral rendering in any correct global illumination system. Then we present, step by step, a rendering

scheme using full spectrum simulation. First, we give details on a random point sampling as a method of representing spec-

tra, then we introduce improved spectral sampling technique, designed to reduce variance of image of wavelength dependent

phenomena, and finally we show how to integrate the novel sampling technique with selected ray tracing algorithms.

Keywords: Full spectrum, quasi-Monte Carlo, ray tracing, rendering.

1 INTRODUCTION

The color phenomenon is caused by a spectral mix-

ture of light, perceived by the human visual system.

However, the human visual system cannot distinguish

between arbitrary spectral light distributions. Differ-

ent spectra, which are indistinguishable by human ob-

servers, are called metamers. The space of colors rec-

ognizable by human observers contains only three in-

dependent values, hence the popularity of three compo-

nent color models.

There are many color models in computer graphics,

however most are designed for a specific purpose only.

The most common are: RGB designed for displaying

images, CMYK for printing and HSV for easy color

selection by user. All of these models are to some de-

gree hardware dependent. There is, however, a standard

model based on XYZ color space, which is independent

of any hardware and can represent all the colors rec-

ognizable by a human observer. It was defined by the

CIE (Comission Internationale de l’Eclairage) as three

weighting functions to obtain x, y and z components

from arbitrary spectra. Nevertheless, neither of these

models is well suited for rendering, where direct calcu-

lations on spectra are the only way to produce correct

results [4, 9].

2 NECESSITY OF FULL SPECTRUM

The RGB model is often used for rendering color im-

ages. However, this is an abuse of it, since RGB based

rendering does not have any physical justification. The
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model was designed for storage and effective display of

images on a monitor screen, but not for physically ac-

curate rendering. The light reflection computation un-

der the assumption of elastic photon scattering is per-

formed by a multiplication of a spectrum that represents

an illumination and a spectrum describing a surface

reflectance. This multiplication actually must be per-

formed on spectral distribution functions, not on RGB

triplets, in order to get proper results.

The RGB based reflection of white light, or light

with smoothly varying spectrum, from a surface with

smoothly varying reflectance, typically does not pro-

duce substantial inaccuracies. However, when at least

one of spectra has large variation, the simulation us-

ing RGB model becomes visibly incorrect (see Figure

1, for example). Moreover in global illumination, due

to multiple light scattering, even white light becomes

colorful, causing scattering inaccuracies to accumulate.

This makes RGB based global illumination results un-

able to accurately capture the physical phenomena.

Figure 1: Left image: copper sphere illuminated by

a D65 white light. Right image: copper sphere illu-

minated by a triangular spectral distribution stretched

from 535nm to 595nm. Top left half: an RGB model

with 645nm, 526nm and 444nm wavelengths. Right

bottom half: our full spectral model. For clarity, only

diffuse reflection is calculated.

In addition, the most visually distracting error from

using an RGB model appears in simulation of phenom-
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ena like dispersion. Whenever RGB based light, from

a light source with almost parallel output rays, hits a

prism, it is scattered into three bands instead of contin-

uous full spectrum, and the rest of the image remains

dark (see Figure 2), which looks unrealistic. Using a

full spectrum representation gives a continous rainbow

of colors. However, good-looking results may be ob-

tained by an RGB representation if the light source an-

gular distribution is conical and divergent enough. A

similar trick is a basis of a simple Nvidia shader demo

[5]. An address of the texture on a surface, which is

seen through glass, is offseted independently for each

channel. If texture data is blurred enough, the result-

ing ’spectrum’ is smooth. Nevertheless, both of these

methods do not have any physical significance, and ob-

viously are incorrect, but, in some conditions, can look

convincing.

Figure 2: Dispersion on a prism. Top row: RGB model

with 645nm, 526nm and 444nm wavelengths. Bottom

row: physically correct full spectrum. The light colli-

mation is controlled by a Phong-like function I cosn(φ),
with exponent n decreased four times in each subse-

quent column, and intensity I doubled to compensate

light scattering.

3 RELATED WORK

A general description of many popular color models

can be found in Stone [16]. Devlin et al. [1] provide

references related to data structures for full spectral

rendering and algorithms for displaying spectral data.

There are several works dedicated to simulation of par-

ticular spectral based phenomena. Wilkie et al. [22]

simulated dispersion by means of classic (determinis-

tic) ray tracing. Rendering of optical effects based on

interference attracted a fair amount of attention. Reflec-

tion from optical disks is presented in Stam [15] and

Sun et al. [17]. Algorithms for accurate light reflection

from thin layers can be found in Gondek et al. [7] and

Durikovic and Kimura [3]. The latter paper also shows

how this algorithm can be run on contemporary GPUs.

Many papers present methods for representing and

operating on spectral data. Peercy [12] designed a spec-

tral color representation as a linear combination of basis

functions, chosen in a scene dependent manner. Dif-

ferent algorithm using basis functions is described by

Rougeron and Peroche [14]. It uses adaptive projec-

tion of spectra to hierarchical basis functions. Sun et

al. [18] proposed a decomposition of spectra on smooth

functions and set of spikes. Evans and McCool [4] used

clusters of many randomly selected spectral point sam-

ples. Johnson and Fairchild [9] extended OpenGL hard-

ware rasterization to support full spectra.

Dong [2] points that typically only a part of the scene

needs a full spectral simulation and using RGB together

with full spectrum can accelerate rendering at cost of

only slight quality loss. Ward [21], however, designed a

three-component model optimized for rendering, which

typically produces images with an acceptable yet im-

perfect quality, but the model is not general enough and

cannot simulate wavelength dependent phenomena like

dispersion.

4 REPRESENTING FULL SPECTRA

Full spectral rendering requires an efficient method for

representing spectral data. The most common tech-

niques are based on linear combinations of carefully se-

lected basis functions [12, 14, 18] and point sampled

continuous functions [4]. Effectiveness of the linear

combination approach is strongly dependent on the ac-

tual functions and their match to scene spectral distri-

bution. However, the natural solution in Monte Carlo

based rendering system is a random point sampling.

4.1 Random Point Sampling

Random point sampling produces noise at low sam-

pling rate, but well-designed variants of this technique

converge quickly. Point sampling can effectively han-

dle smooth (like tungsten bulbs) light distributions and

very narrow spikes (like neon bulbs) in the same scene.

The two greatest strengths of this technique are: ran-

domly selected wavelengths and well defined wave-

length value for each spectral sample. The first one

ensures correctness, since when more samples are com-

puted, the more different wavelengths are explored, and

due to the law of large numbers, the rendering result

converges to the true value. The second allows simulat-

ing wavelength dependent effects like dispersion at the

cost of additional color noise.

It is worth to note that wavelength dependent phe-

nomena cannot be simulated correctly with algorithms

based on linear combinations of basis functions with

non-zero extent in wavelength space. Even if spec-

tra are represented by unique non-zero coefficients, the

corresponding basis functions still have some finite ex-

tent, which prevents from doing exact computations

with explicit wavelength required.

The simplest approach to point sampled spectra is

generation of a single spectral sample per light trans-
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port path. However, according to Evans and McCool

[4], this technique is inefficient, since it causes a lot of

color noise. They proposed using a fixed number of

several spectral samples (called a cluster of samples)

traced simultaneously along a single light path, which

substantially reduces variance with minimal computa-

tional overhead.

4.2 Basic Operations

The implementation of multiplication, addition, mini-

mum, etc. operators are obvious, since it is enough to

perform appropriate calculation per component, as in

RGB model. However, when using full spectrum, com-

puting luminance is a bit more difficult. Particularly,

luminace of a spectrum which describes reflectivity of

a surface, by definition must be in [0,1] range.

However, computing luminance as a Monte Carlo

quadrature of product of reflectance spectrum r(λ ) and

scaled CIE y weighting function, may randomly lead

to numerical errors causing luminance to exceed 1.0

threshold. The equation:

L ≈
n

∑
i=1

r(λi)y(λi)

p(λi)

/ n

∑
i=1

y(λi)

p(λi)
, (1)

where r(λ ) is the reflectance, y(λ ) is CIE y weight and

p(λi) is a probability of selecting given λi, solves the

issue. It guarantees that the luminance is in [0,1] range,

provided that r(λ ) is also in the specified range.

Wavelength dependent effects can be handled as pro-

posed by Evans and McCool [4] for specular dispersion

– by dropping all but one spectral sample from a clus-

ter. This is done by randomly selecting a sample to pre-

serve, with uniform probability. All the samples, except

the selected one, are then set to zero, and the power of

the chosen one is multiplied by the cluster size. Then

the wavelength parameter becomes well defined, and

further computations are performed with usage of its

actual value. However, when simulated phenomena are

not optically perfect, like in Phong-based glossy refrac-

tion, it may be more efficient to trace the whole cluster,

scaling power of each sample independently. We exam-

ine this approach in detail in the next section.

5 SAMPLING OF SPECTRA

Evans and McCool [4] simulate wavelength dependent

phenomena by tracing only one spectral sample per

path. This particular approach is always correct, and

is necessary when a phenomenon is optically perfect,

such as refraction on idealized glass. However, when

the scattering is not ideal, dropping all but one spectral

sample from a cluster, while still being correct, might

be extremely wasteful and inefficient. In this section

we propose a substantially improved technique.

5.1 Single Scattering Model

For testing purpose, a refraction model with an ad-

justable, wavelength dependent refraction and imper-

fection introduced by Phong-based scattering [13], with

controllable glossiness is used. An extension to Walter

et al. microfacet based refraction [20] supporting dis-

persion gives better results, but their model is much

more complicated and therefore would make evaluation

of spectral sampling difficult. Nonetheless, since we

have never made assumptions about scattering model,

our results are general and, as we have tested, applica-

ble to any wavelength dependent phenomena. For clar-

ity, all tests are based on a single scattering simplifica-

tion (i.e. light is refracted once, when it enters into glass

only). The x component in CIE XYZ space in outgoing

direction ωo is then described by the following formula:

ICIEx(ωo) =
∫

Λ

∫

Ω
fs(ωi,ωo,λ )Lλ (ωi,λ ) ·

·wCIEx(λ )dσ⊥(ωi)dλ , (2)

where Λ is the space of all visible wavelengths, Ω is the

space of all direction vectors, Lλ (ωi,λ ) is the radiance

incoming from direction ωi, wCIEx is the CIE weight for

x component, and σ⊥(ωi) is the projected solid angle

measure. The y and z components can be evaluated in a

similar way. In the rest of this section, the Formula (2)

is written in a simplified, still not confusing, form:

I =
∫

Λ

∫

Ω
f (ω,λ )L(ω,λ )w(λ )dσ⊥(ω)dλ . (3)

5.2 Basic and Cluster Based Monte Carlo

Estimators

The Monte Carlo method (Equation 14) can be applied

to evaluate the two integrals from Formula (3), which

leads to the following estimator:

I ≈
1

N

N

∑
i=1

f (ωi,λi)

pΩ(ωi,λi)

w(λi)

pΛ(λi)
L(ωi,λi), (4)

where pΩ is the probability of selection of a given

ωi evaluated with the σ⊥(ω) measure on Ω and pΛ

is the probability of selection of a given λi. Quality

of this estimator, and all the further estimators in this

section, relies on the assumption that scattering model

offers proper importance sampling (Equation 15), i.e.

f (ω,λ ) ∝ pΩ(ω,λ ) is roughly satisfied. However, this

basic estimator is inefficient, because it forces the num-

bers of spectral and directional samples to be equal.

Each directional sample requires additional rays to be

traced, which is computationally expensive, while spec-

tral samples are almost for free. This explains the ad-

vantage of clusters of spectral samples over a single

spectral sample approach.

The main improvement over Evans and McCool

method is tracing a full cluster of spectral samples,
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even when wavelength dependent phenomenon is en-

countered. Wavelength dependence can be defined pre-

cisely as the dependence of pΩ on λ . If scattering is

not wavelength dependent, directional sampling is not

wavelength dependent as well, i.e. pΩ(ω,λ ) ≡ pΩ(ω).
In our method, a particular spectral sample λ s

i is se-

lected at random from a cluster, and its value is used

for sampling ωs
i . This leads to the color estimator in

the form:

I ≈
1

NC

N

∑
i=1

C

∑
j=1

f (ωs
i ,λ

j
i )

pΩ(ωs
i ,λ

s
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) =

=
1

NC

N

∑
i=1

1

pΩ(ωs
i ,λ

s
i )

·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ), (5)

where N is the number of traced clusters, C is the num-

ber of samples in each cluster, and pΩ is the probability

of selecting scattering direction, calculated for the se-

lected wavelength λ s
i . The estimator (5) can be more

efficient than estimator (4), since it traces C spectral

samples at the minimal additional cost. On the other

hand, it may deteriorate the importance sampling qual-

ity significantly. This happens because all samples with

potentially wildly different f (ωs
i ,λ

j
i ) values are traced,

and just one probability pΩ(ωs
i ,λ

s
i ) which matches the

shape of f (ωs
i ,λ

s
i ) only, is used. Whenever a direc-

tion ωs
i with low probability pΩ(ωs

i ,λ
s
i ) is chosen at

random, and at least one of the f (ωs
i ,λ

j
i ) has a rela-

tively large value in that direction, the value is no longer

cancelled by the probability, leading to the excessively

high variance in the rendered image. Moreover, the esti-

mator (5) is incorrect whenever ∃λ s
i ,ω

s
i : pΩ(ωs

i ,λ
s
i ) =

0 and ∃λ
j

i : f (ωs
i ,λ

j
i ) > 0, particularly when a wave-

length dependent phenomenon is optically perfect, i.e.

its f is described by a δ distribution. Thus, the ini-

tial version of our new approach is not always better

than the traditional technique of tracing only one spec-

tral sample. The question is when the new technique

exhibits lower variance and when it does not.

5.3 Multiple Importance Sampling Esti-

mator

Fortunately, the variance issue can be solved automati-

cally. Simple modification of the estimator (5), which

incorporates Multiple Importance Sampling [19] (see

Appendix A), gives a better estimator with variance as

low as possible in a variety of conditions. The new im-

proved estimator is constructed from the estimator (5)

multiplying each cluster by C and a weight W s
i equal to:

W s
i =

pΩ(ωs
i ,λ

s
i )

∑
C
j=1 pΩ(ωs

i ,λ
j

i )
, (6)

where pΩ(ωs
i ,λ

s
i ) is the probability with which the scat-

tering direction is selected, and the values pΩ(ωs
i ,λ

j
i )

are hypotethical probabilities of selecting the sampled

direction if using λ
j

i value instead. This leads to the

final estimator:

I ≈
1

NC

N

∑
i=1

CW s
i

pΩ(ωs
i ,λ

s
i )

·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) =

=
1

N

N

∑
i=1

1

∑
C
j=1 pΩ(ωi,λ

j
i )

·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ). (7)

Assuming that a scattering model provides proper im-

portance sampling, the estimator (7) leads to a low

variance result. Moreover, the estimator (7) is cor-

rect whenever scattering model is correct, i.e. when-

ever ∀ω,λ : f (ω,λ ) > 0 pΩ(ω,λ ) > 0, so it is appli-

cable even to optically perfect wavelength dependent

phenomena. However, in this case it does not provide

any benefit over estimator (4). The comparison between

the new estimators (5) and (7) and the previous sin-

gle sample estimator (4) is presented in Figure 3. The

glass sphere has linearly varying refraction from 1.35

for 360nm to 1.2 for 830nm and uses Phong based scat-

tering with n = 1000. Images are created using only

two 16-sample clusters, to show error more clearly.

Figure 3: Comparison between new initial estimator

(left), new improved estimator (middle) and previous

method (right). The new initial estimator exhibits more

variance due to lack of proper importance sampling.

The color noise from single sample approach makes the

rightmost image barely legible.

5.4 Generation of Clusters

In order to generate clusters efficiently, two issues have

to be solved, namely: how many samples should a sin-

gle cluster contain, and how to generate them. The

number of spectral samples in a cluster is an important

decision for achieving best possible performance. Un-

fortunately, optimal number of such samples is highly

scene dependent. The more variation emission and re-

flectance spectra have, the more spectral samples a sin-

gle cluster should contain. Assuming that a scene con-

tains rather smoothly varying spectra (this assumption
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Figure 4: Selection of optimal number of spectral samples for a single cluster: 4 samples (left), 8 samples (middle),

12 samples (right). All images were rendered in 640x480, with 200k image samples (i.e. spectral clusters).

typically is satisfied), it is possible to balance excessive

color noise and computational overhead. After a few

tests we have found that eight spectral samples are op-

timal1. Four samples cause significant noise and twelve

give barely visible improvement (see Figure 4). Ren-

dering time differences between these images have been

less than 1%, which confirms the efficiency of a cluster

approach.

The efficient generation of spectral samples proves to

be more difficult. Spectra should be importance sam-

pled, but there are at least three factors, which should

affect choice of pΛ, namely: sensor (camera, human

eye, etc.) sensitivity, light source spectral distribution

and reflectance properties of materials. However, of-

ten only sensor is taken into account, and it is assumed

that its sensitivity is well described by CIE y weighting

function. Unfortunately, despite producing good qual-

ity grayscale images, importance sampling wavelength

space with respect to the y function causes excessive

color noise, and, contrary to common knowledge, is

suboptimal. Ideally, a sampling probability should take

into account all three x, y, and z components. After

some experiments, we found that following probability

gives good results:

pΛ(λ ) = N−1 fΛ(λ ), fΛ(λ ) =
1

cosh2(A(λ −B))
, (8)

where A = 0.0072nm−1 and B = 538.0nm are empiri-

cally evaluated constants and N =
∫ λmax

λmin
fΛ(λ )dλ is a

normalization factor. Results of this improved tech-

nique are presented in Figure 5.

Moreover, since spectra are typically smooth, sam-

pling them with quasi-Monte Carlo (QMC) low dis-

crepancy sequences instead of random numbers im-

proves results. However, care must be taken when

QMC sampling is applied to cluster based spectra.

When a wavelength dependent effect is to be simulated,

a single sample from the cluster has to be chosen. This

choice is tricky due to peculiarities of QMC sampling.

In case of true random numbers, selection of first sam-

1 Due to Intel SSE instruction set optimization, our implementation re-

quires the number of samples to be divisible by four.

ple from a cluster always works correctly. On the other

hand, it is a serious error to select an every nth sample

from a low discrepancy sequence. In the latter case, we

assign a separate (pseudo)random sequence for a such

selection of a spectral sample, in addition to sequence

used for randomizing cluster samples. Results of QMC

sampling are presented in Figure 5.

Figure 5: Various methods of sampling spectra. Top

row: 2000K blackbody radiation. Bottom row: D65

spectrum. Left column: spectra sampled using random

numbers and our importance sampling, with various

numbers of samples. Middle column: comparison of

luminance based importance sampling (top halfs) with

our pΛ (bottom halfs) using 128 spectral samples. Right

column: spectra sampled using Sobol low discrepancy

sequence and our pΛ, using 4 and 8 spectral samples.

5.5 Results and Discussion

Some more comparison between single spectral sample

approach and improved technique is presented in Fig-

ure 6. Images in top row use previous settings (refrac-

tion coefficient from 1.35 for 360nm to 1.2 for 830nm

and glossiness coefficient n = 1000). Next, images in

bottom row use much sharper settings (refraction coef-

ficient from 1.5 for 360nm to 1.2 for 830nm and glossi-

ness coefficient n = 4000). Images from first and sec-

ond column are rendered to have approximately the

same quality, and images from second and third col-

umn are rendered with the same number of samples (i.e.
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Figure 6: Imperfect refraction with dispersion. Top left

image uses previous approach with a massive number

of 900 samples per pixel. Top middle image uses new

technique with just 50 samples per pixel, yet it has sim-

ilar quality. Top right image again uses previous ap-

proach, but with 50 samples per pixel. However, gains

from using the new technique are less spectacular when

glossiness or dispersion is increased. Bottom row im-

ages use 900, 100, and 100 samples, respectively.

Settings C MIS SSS

n = 1000

η = [1.35,1.20]

1 1.26 ·10−1 2.47 ·10−1

4 6.67 ·10−2 2.02 ·10−1

16 2.63 ·10−2 1.34 ·10−1

64 1.22 ·10−2 7.56 ·10−2

256 5.32 ·10−3 3.83 ·10−2

n = 4000

η = [1.50,1.20]

1 2.07 ·10−1 2.46 ·10−1

4 1.33 ·10−1 1.96 ·10−1

16 7.39 ·10−2 1.29 ·10−1

64 3.84 ·10−2 7.37 ·10−2

256 1.74 ·10−2 3.72 ·10−2

Table 1: Comparison of error of our method (MIS) and

a single spectral sample approach (SSS), for C 8-sample

spectral clusters per pixel. The error is evaluated as a

difference between the tested image and the reference

image, averaged over all pixels and color components.

The pixel values are normalized to [0,1] range.

traced rays). The average numerical error for various

numbers of rays for scene from Figure 6 is summarized

in Table 1.

Analysis of two limit cases could give more insight

into how this new technique works, and when it is most

effective. The analysis is based on the assumption that

f (ω,λ ) ∝ pΩ(ω,λ ) is roughly satisfied. Otherwise, the

multiple importance cannot help much in reducing vari-

ance. First, when wavelength dependence is negligible,

all the scattering probabilities become more and more

independent on λ : pΩ(ωs
i ,λ

j
i ) ≈ pΩ(ωs

i ). The weight

W s
i then becomes:

W s
i =

pΩ(ωs
i ,λ

s
i )

∑
C
j=1 pΩ(ωs

i ,λ
j

i )
≈

pΩ(ωs
i )

∑
C
j=1 pΩ(ωs

i )
→

1

C
, (9)

and the estimator:

I ≈
1

N

N

∑
i=1

Wi

pΩ(ωs
i ,λ

s
i )

·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) →

→
1

NC

N

∑
i=1

C

∑
j=1

f (ωs
i ,λ

j
i )

pΩ(ωs
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ),(10)

which is an estimator of a simple, wavelength indepen-

dent, scattering. On the other hand, when scattering

becomes more and more glossy and wavelength depen-

dence is significant, with probability close to one the f

becomes close to zero for all directions except ωs
i . The

rare cases, when f (ω j
i ,λ

j
i ) is large and j 6= s, have low

weight W s
i , and therefore cannot affect the estimator

much. Moreover, all the probabilities but the selected

one go to zero, and therefore W goes to one, which

leads to estimator equal to:

I ≈
1

N

N

∑
i=1

W s
i

pΩ(ωs
i ,λ

s
i )

·

·
C

∑
j=1

f (ωs
i ,λ

j
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ) →

→
1

N

N

∑
i=1

f (ωs
i ,λ

s
i )

pΩ(ωs
i ,λ

s
i )

w(λ j
i )

pΛ(λ j
i )

L(ωs
i ,λ

j
i ), (11)

which is equivalent to the one sample estimator. This

behaviour of estimator (7) is presented in Figure 7.

The former approach to spectral rendering separates

scattering into two cases: wavelength independent scat-

tering, and costly simulation of wavelength dependent

phenomena using single spectral sample estimator. On

the other hand, our method does not depend on such

classification. Due to automatically computed weights,

it adjusts itself to these two limit cases, and to the

broad spectrum of intermediate cases, when scattering

is wavelength dependent, but imperfect. The computa-

tional cost of our method depends on strength of wave-

length dependence and optical perfection of material.

These factors cause the cost to increase, but it never ex-

ceeds the cost of single spectral sample estimator.

6 SAMPLING OF LIGHT TRANSPORT

PATHS

In this section we describe an integration of our full

spectral sampling with selected light transport algo-

rithms – a case when there is more than one wave-

length dependent scattering encountered on the same

light path. The extension of single scattering approach

for Path Tracing [10] and Bidirectional Path Tracing

[19] is, however, obvious. The wavelength λ s
i is se-

lected once for a whole path, and reused at each scat-

tering. The weight W s
i is therefore computed for the
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Figure 7: Analysis of behaviour of estimator (7) with increasing glossiness and wavelength dependence of scat-

tering. Wavelength independent scattering (leftmost image). Optically perfect wavelength dependent scattering

(rightmost image). Intermediate cases (middle). All the images are rendered with just four clusters.

whole path, using products of probabilities instead of

probabilities of single scatterings. Assuming that the

sampled path is build by recursively sampling fs and

tracing rays in sampled directions, the W s
i is given by

the following expression:

W s
i =

∏
m
k=1 pΩ(ωs

ki,λ
s
i )

∑
C
j=1 ∏

m
k=1 pΩ(ωs

ki,λ
j

i )
, (12)

where k is the number of a scattering event and m is the

length of the sampled path. Intuitively, a weight W s
i is a

ratio of probability of generating the whole path using

selected wavelength λ s
i to the sum of probabilities of

generating such a path using each wavelength from a

cluster. If a light transport algorithm generates a path

in a different way, or does not use a concept of light

transport paths, the weight W s
i has to be computed in a

different manner.

The notable case, where spectral sampling causes dif-

ficulties, is Jensen’s Photon Mapping, designed to work

with RGB triplets [8]. There are two issues: first, there

are no light transport paths, which connect light source

and camera, and second, millions of individual photons

have to be stored, causing excessive memory consump-

tion if full spectrum is used to describe them. A recent

work [11] addresses memory issues. Unfortunately, this

algorithm converts photons’ spectra to RGB prior to

storing them in a map, and converts RGB to spectra

again when searching through photons.

Our approach, on the other hand, is designed to con-

verge always to the true result with increased number

of photons, and therefore significant compression of

spectral data is unsuitable. We trace and store clus-

ters of photons with different wavelengths, instead of

describing them by RGB triplets. First, in order to

explore wavelength space properly, each emitted pho-

ton cluster must have individually chosen wavelengths.

The obvious place for optimization is that one emitted

photon cluster typically corresponds to several stored

photon clusters, and therefore cluster wavelengths are

stored once for each emission. Moreover, for storing

energy, one can experiment with a non-standard float-

ing point format instead of IEEE single precision. Us-

ing 8-sample clusters requires 32B of data for individ-

ual stored photon, not to mention an additional 32B for

Figure 8: Full spectral rendering of a non-trivial scene.

Dispersion is slightly exaggerated to render spectral

sampling quality more prominent.

each emission, which is far more than 12B required by

an RGB based implementation. If a compact float for-

mat with shared exponent is used, the latter can be com-

pressed even to 4B, however, with potential loss of im-

age quality. We have left this for further research.

When a photon is about to be stored, its energy is

multiplied by weight given by Equation (12), which ac-

counts for all encountered wavelength dependent scat-

tering events. In the second pass, rendering of photon

map is performed. Camera rays should be weighted

similarly prior to photon map lookups. In the classic

Photon Mapping, photons are searched in a sphere cen-

tered around the intersection point. The sphere radius

should be chosen carefully: too small causes noise and

too large – blurriness. We extend this approach to wave-

length search as well. If a photon cluster is decided to

be used in a flux estimate by a sphere test, additional

tests are performed on individual photons (with associ-

ated wavelengths) using a spectral search distance in a

wavelength space. Similarly as with the spatial radius,

the spectral distance must be chosen carefully.

7 CONCLUSIONS

We have presented an improved approach to full spec-

tral rendering. Full spectral algorithms realize a model
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which is necessary to achieve physically plausible il-

lumination in 3D scenes. The result image rendered

with proposed spectral sampling, extended Walter et al.

microfacet refraction [20], and Bidirectional Path Trac-

ing is presented in Figure 8. The computational cost of

a full spectral simulation in comparison with an RGB

model is significant only for simple scenes containing

few primitives. The computational complexity of ray

tracing typically is logarithmic with respect to the num-

ber of primitives, and independent of a color represen-

tation. Therefore, when a scene becomes sufficiently

complex, the overhead of a physically correct algorithm

becomes negligibly small. On the other hand, the mem-

ory overhead depends on a particular algorithm. It is

negligible for Path Tracing and Bidirectional Path Trac-

ing, but is substantial for Photon Mapping.

A MONTE CARLO ESTIMATORS

This section briefly describes Importance and Multiple

Importance Sampling methods. Consult [6] and [19],

for more details. Let I be the integral to evaluate:

I =
∫

Ψ
f (x)dµ(x). (13)

The basic Monte Carlo estimator of this integral is:

Ĩ ≈ FN =
1

N

N

∑
i=1

f (Xi)

p(Xi)
, (14)

where ∀x : f (x) 6= 0 p(x) > 0.

A variance of estimator (14) usually can be decreased

if the p is made near proportional to f , or at least to a

part of it. This technique is called Importance Sam-

pling. Particularly, when p ∝ f , the variance is zero.

However, to obtain normalization constant, f must be

integrated analytically. This is impossible, otherwise

Monte Carlo integration would not be necessary.

Suppose that there are i potentially good probability

densities pi for sampling f . If Importance Sampling is

used, the pi used for sampling f (x) has to be chosen at

algorithm design time. This can have disastrous conse-

quences, if the pi poorly matches the actual f (x) shape.

In this case, Importance Sampling can actually increase

variance over sampling with uniform probability. How-

ever, Multiple Importance Sampling [19] has been de-

signed to improve the Importance Sampling when the

appropriate pi cannot be chosen at the design time. The

algorithm samples from each of these pi and calculates

the final estimator as a weighted sum of these samples:

Ĩ =
n

∑
i=1

1

m

m

∑
j=1

wi(Xi j)
f (Xi j)

pi(Xi j)
, ∀x

n

∑
i=1

wi(x) = 1. (15)

The appropriate choice of weights wi:

wi(x) =
pi(x)

∑
n
j=1 p j(x)

(16)

is crucial for obtaining low variance results.

REFERENCES
[1] Kate Devlin, Alan Chalmers, Alexander Wilkie, and Werner

Purgathofer. Tone reproduction and physically based spectral

rendering. In State of the Art Reports, Eurographics 2002,

pages 101–123, September 2002.

[2] Weiming Dong. Rendering Optical Effects Based on Spectra

Representation in Complex Scenes. In Computer Graphics In-

ternational, pages 719–726, 2006.

[3] Roman Durikovic and R. Kimura. GPU Rendering of the Thin

Film on Paints with Full Spectrum. In Proceedings of the IEEE

Conference on Information Visualization, pages 751–756, 2006.

[4] Glenn F. Evans and Michael D. McCool. Stratified wavelength

clusters for efficient spectral monte carlo rendering. In Graphics

Interface, pages 42–49, 1999.

[5] Randima Fernando and Mark J. Kilgard. The Cg Tutorial:

The Definitive Guide to Programmable Real-Time Graphics.

Addison-Wesley, Boston, MA, USA, 2003.

[6] George S. Fishman. Monte Carlo: Concepts, Algorithms and

Applications. Springer-Verlag, New York, USA, 1999.

[7] Jay S. Gondek, Gary W. Meyer, and Jonathan G. Newman.

Wavelength dependent reflectance functions. In SIGGRAPH

1994 Proceedings, volume 28, pages 213–220, 1994.

[8] Henrik Wann Jensen. Realistic image synthesis using photon

mapping. A. K. Peters, Ltd., Natick, MA, USA, 2001.

[9] Garrett M. Johnson and Mark D. Fairchild. Full-spectral

color calculations in realistic image synthesis. IEEE Computer

Graphics and Applications, 19(4):47–53, 1999.

[10] James T. Kajiya. The rendering equation. In SIGGRAPH 1986

Proceedings, pages 143–150, New York, NY, USA, 1986.

[11] Gorm Lai and Niels Jorgen Christensen. A compression method

for spectral photon map rendering. In WSCG 2007 Proceedings,

pages 95–102, 2007.

[12] Mark S. Peercy. Linear color representations for full spectral

rendering. In SIGGRAPH 1993 Proceedings, volume 27, pages

191–198, 1993.

[13] Bui Tuong Phong. Illumination for computer generated pic-

tures. Communications of the ACM, 18(6):311–317, 1975.

[14] Gilles Rougeron and Bernard Peroche. An adaptive represen-

tation of spectral data for reflectance computations. In EGRW

1997 Proceedings, pages 127–138, 1997.

[15] Jos Stam. Diffraction shaders. In SIGGRAPH 1999 Pro-

ceedings, pages 101–110, New York, NY, USA, 1999. ACM

Press/Addison-Wesley Publishing Co.

[16] Maureen Stone. A Field Guide to Digital Color. AK Peters,

Natick, MA, USA, 2003.

[17] Yinlong Sun, David F. Fracchia, Mark S. Drew, and Thomas W.

Calvert. Rendering iridescent colors of optical disks. In EGRW

2000 Proceedings, pages 341–352, 2000.

[18] Yinlong Sun, David F. Fracchia, Mark S. Drew, and Thomas W.

Calvert. A spectrally based framework for realistic image syn-

thesis. The Visual Computer, 17(7):429–444, 2001.

[19] Eric Veach and L. J. Guibas. Optimally combining sampling

techniques for monte carlo rendering. In SIGGRAPH 1995 Pro-

ceedings, pages 419–428, 1995.

[20] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Ken-

neth E. Torrance. Microfacet Models for Refraction through

Rough Surfaces. In Eurographics Symposium on Rendering,

pages 195–206, Grenoble, France, 2007.

[21] Gregory J. Ward and Elena Eydelberg-Vileshin. Picture Perfect

RGB Rendering Using Spectral Prefiltering and Sharp Color

Primaries. In EGRW 2002 Proceedings, pages 117–124, 2002.

[22] A. Wilkie, R. Tobler, and W. Purgathofer. Raytracing of Dis-

persion Effects in Transparent Materials. In WSCG 2000 Con-

ference Proceedings, 2000.

Journal of WSCG 16 ISSN 1213 – 6972 


	!_J_WSCG2009_Numbered.pdf
	A43-full


