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ABSTRACT

We present an adoption of the bucket sort algorithm capable of running entirely on GPU architecture. Our implementation

employs render-to-texture to enable scatter operation. Linked lists of elements in each bucket are build and stored directly in

video memory. We show also the use of this sorting method in a particle-based simulation. Dissipative Particle Dynamics is

the physical model of choice; the simulation is performed entirely on the graphics hardware. GPU bucket sorting is used to

build nearest-neighbour maps on a regular cell-grid which are the input of interparticle interaction computation. Finally we

implement a simple random-number generator which is required by the DPD method.

Keywords: Computer graphics and animation, GPU programming, Nearest-neighbour search algorithm, Fluid simulation

1 INTRODUCTION

One of the fundamental problems in computer simula-

tion of molecular and particle dynamics (e.g. Dissipa-

tive Particle Dynamics [HK92]) is the determination of

interacting atoms or molecules. In order to compute

all forces acting on a single particle a set of interacting

neighbours in a given proximity has to be found.

The straightforward approach of linear scanning

through all particles cannot be applied to any but the

simplest simulation environment. Several solutions

have been proposed to alleviate the problem. Most

of them are based on subdividing the simulation

space and reducing the number of searched elements

[AMN+98], e.g. kd-trees [Ben75], well suited for

unstructured random data. However, when the particles

are almost uniformly distributed in space a simple yet

effective method for nearest neighbour search is to

distribute them into a regular cell grid and to look for

neighbours in spatially close cells. This is the case of

fluid simulation with low compressibility where each

particle has roughly the same number of neighbours.

Particle-based simulation methods require significant

computational power. Through recent years we have

witnessed a growing interest in using commodity

graphics hardware in general-purpose computations.

This is due to its increasing performance as well as
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flexibility in data and instruction handling, allowing

quicker solution than traditional CPU implementations

to a variety of problems [OLG+05]. The problem of

nearest-neighbour search is also an important issue in

ray-tracing and global illumination. Purcell [Pur04] has

demonstrated the use of sorting on a GPU by building

a regular cell-grid where a single cell’s size equals the

search radius and then sorting particles based on the

cell number.

Purcell used bitonic merge sort algorithm [PDC+03]

to order photons by cells. Bitonic merge sort is based

on a sorting network [LKO05]. It doesn’t require arbi-

trary write operation thus allowing straightforward im-

plementation on GPU. Moreover it always executes the

same sequence of steps regardless of the input data.

The downside is the computational complexity, which

is Θ(nlog2n). Cache usage improvements to this al-

gorithm have been introduced by Govindaraju et al.

[GRHM05]. Their memory usage pattern reduces band-

with overhead and allows for optimal throughput re-

sulting in faster sorting times, however the algorithmic

complexity has not been reduced. A recent improve-

ment to GPU sorting by Gress and Zachman [GZ06a]

based on adaptive bitonic sorting achieves optimal com-

plexity of O(nlogn). However using any of the above

mentioned techniques requires further post-processing

with binary search to find a range of neighbours.

Alternative method for particle-based simulation has

been proposed by Amada et al. [AIY+04] where a

neighbourhood map is pre-computed on the CPU and

then at each step transfered to graphics memory to be

used during simulation. Also KD-tree methods have

been successfully implemented on the graphics hard-

ware by Foley and Sugerman [FS05].
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Particle simulation methods which do not require an

explicite nearest-heighbour search have also been in-

vestigated, e.g. by Kolb and Cuntz [KC05] who used

force accumulation on a 3D grid to solve Smoothed Par-

ticle Hydrodynamics equations. A similar approach has

been used by Mueller et al. [MCG03]. SPH-based sim-

ulation has been the foundation of work by Hegeman

et al. [HCM06], however they computed exact inter-

particle interactions by using a dynamic quad-tree to

find particle neighbours. An interesting contribution is

the paper by Kipfer et al. [KSW04] who have build a

particle engine for simulating and rendering large par-

ticle sets on the GPU. Interparticle collisions are ap-

proximated by finding a set of potential colliders in a

2D texture. Nearest-neighbour search on the GPU has

also been investigated by Bustos et al. in [BDH+06] the

context of database operations.

A recent paper by Harada et al. [HKK07] shows

implementation of limited bucket sorting in Smoothed

Particles Hydrodynamics simulation. Their method al-

lows for a maximum of four particle references in a sin-

gle grid cell.

We present a novel GPU bucket sorting algorithm

that builds linked lists of neighbours from regular cell-

grid with application to nearest neighbour search in par-

ticle based simulation.

2 BUCKET SORT ALGORITHM FOR

THE GPU

Bucket sort [CLR89] algorithm is a sorting algorithm

that runs in linear time. It works by partitioning the

problem domain into a finite number of buckets and as-

signing each element to a bucket. The process may be

repeated recursively or another algorithm may be used

to further sort elements in each bucket. For many ap-

plications however (e.g. nearest neighbour search, see

next section) it may be sufficient just to distribute ele-

ments to buckets. The classical bucket sorting achieves

Θ(n) complexity by scanning only once through the

input data and inserting the elements into lists corre-

sponding to each bucket. This behaviour cannot be

easily reproduced on the GPU due to the limitations in

scatter operation. In this chapter we present a modified

bucket sort algorithm that can be successfully imple-

mented on the resource limited hardware.

Listing 1 shows pseudo code of our algorithm. N and

M parameters are the numbers of element and bucket

count respectively. The array a[N] holds the bucket

identifiers to which the array elements will be put, i.e.

element i will be placed in the bucket pointed to by a[i]
. When the algorithm stops two arrays are returned,

head[M] and next[N], which make up a linked list of

elements in each bucket. The first holds identifiers of

the first element in each bucket while the second one

points to the next element in the same bucket. A spe-

Listing 1: GPU bucket sort algorithm

b u c k e t _ s o r t ( a [N] , head [M] , n e x t [N] )

1 f i l l ( head , NULL)

2 f i l l ( nex t , NULL)

3 f i l l ( v i s i t e d , f a l s e )

4 w h i l e t r u e

5 f i n i s h e d = t r u e

6 f o r i = 0 t o N−1

7 i f n o t v i s i t e d [ i ]

8 head [ a [ i ] ] = i

9 f i n i s h e d = f a l s e

10 i f f i n i s h e d

11 b r e a k

12 f o r i = 0 t o N−1

13 i f n o t v i s i t e d [ i ]

14 i f head [ a [ i ] ] == i

15 v i s i t e d [ i ] = t r u e

16 e l s e

17 n e x t [ i ] = head [ a [ i ] ]

cial NULL value is put at the end of each list (or into an

empty bucket).

The algorithm performs bucket sorting by employing

two simple steps in a loop: (i) the elements, which have

not yet been inserted into any bucket, are put into lists’

heads and then (ii) all items have their next pointers set

to the head element in their buckets (except for the el-

ements that are currently at the head of bucket’s list).

Additionally step (ii) marks the head elements as com-

puted (visited[N] array) thus leaving them out from the

following iterations. The loop terminates when all ele-

ments have been assigned to a list.

Figure 1 visualises the way our algorithm works for

a simple case with eight elements distributed into four

buckets.

The average computational complexity of the pro-

posed algorithm is O(N2/M). In practical case with

a large number of buckets and uniformly distributed

items in the buckets this algorithm can perform very

well. However, the lower bound for the running time

is Θ(N2), which may happen if all elements are to be

put in the same bucket. As mentioned before in our ap-

plication to fluid simulation this will never be the case

thanks to particle repulsion.

2.1 GPU implementation details

The algorithm presented in pseudo-code listing has

been implemented on modern graphics hardware using

OpenGL API, mapped to the following steps:

1. Initialise textures

2. Create points from elements (vertex buffer)

3. Scatter elements to buckets heads
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a) / / / / / / / /

0 2 3 2 0 1 3 3A=

next= / / / /head=

b)

4 3 7 / / / 7 /

Start

4 5 3 7

4 3 6 / / / 7 /

0 5 1 6

0 5 1 2

4 3 6 / / / 7 /

c)

0 5 1 2

0 1 2 3

4 3 6 / / / 7 /

0 2 3 2 0 1 3 3

Figure 1: Algorithm execution example a) content of

input data: A input array with element cell numbers

[0..7] (constant through execution time), head first el-

ement in each bucket, next next element in the same

bucket; a special value "/" (NULL) indicates the end

of a linked list b) execution steps; dark grey elements

of next array have their visited flag set (excluded from

further computation) c) resulting data.

a)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: unused
b)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: unused
c)

R: ID3[0]

G: ID3[1]

B: ID3[2]

A: visited?

Figure 2: Data representation using texture memory:

a) mapping texture: element bucket mapping (3ID) b)

head texture: first element in each bucket (3ID) c) next

texture: next element in the same bucket (3ID) and a

visited flag.

4. Occlusion query of step 2: STOP if nothing drawn

5. Update next pointers

6. Mark elements in buckets’ heads as visited

7. Repeat from step 2

First, texture memory is initialised for data structures

(see Figure 2). RGBA texture format is used with 8-bit

precision per channel. Bucket and elements identifiers

are encoded using 3 bytes into R, G and B colour chan-

nel respectively. A special value of (255,255,255) in-

dicates the end of a linked list or empty bucket (NULL

value). This scheme allows for effective number of

16777215 item identifiers. The mapping texture is ini-

tialised with user provided data while head and next

textures are initially filled with NULLs.

A simple scatter operation is employed in order to

assign elements to buckets heads. Mapping texture is

copied to a vertex buffer, using copy-to-vertex buffer

OpenGL extension GL_ARB_pixel_buffer_object, and

then used to render points on the head texture. If multi-

ple points end up in the same bucket, all except one will

be overwritten and the same operation will be repeated

for the remaining points. During point rendering occlu-

sion is queried to count drawn points. If it is zero the

algorithm is stopped.

At the end of each iteration next pointers of unvisited

elements are updated and elements currently in bucket

head are marked as visited.

A simple optimisation has been added to the scatter

step to reduce the amount of overwritten buckets. The

vertex buffer with elements is divided into a number

of equal parts, each has an occlusion object attached.

During the initial step only the first sub-vertex buffer is

used. In subsequent steps other sub-buffers are added

to rendering only if the previous one’s not visited ele-

ment count reaches a predefined threshold. If a occlu-

sion query indicates that for a sub-buffer no points are

being drawn this buffer is excluded from future render-

ing. The algorithm stops if there are no more elements

to draw in any of the vertex buffers (all queries returned

zero pixels drawn). This partial-update approach allows

for significant performance boost.

2.2 Re-sort algorithms

The presented algorithm has a useful property in that

it allows for efficient re-sorting of input data. This is

important for many applications which need to initially

sort their data and then periodically update the list to

accommodate changes in element order.

Our algorithm is able to re-sort the sequence by alter-

ing only the elements which are not in their destination

buckets. At first, elements’ lists are scanned for ele-

ments that should be moved to another buckets. Such

elements are removed from the list by updating next

pointers of sibling elements and clearing the visited flag

for such elements. After this operation the sorting algo-

rithm is started as described above but the number of

elements that needs sorting is smaller resulting in a low

number of iterations.

Partial buffer update optimisation needs to be ad-

justed depending on the count of elements that need

re-sorting. When the number is small only a few (or

even one) vertex buffer may be used.

2.3 Application to nearest neighbour

search

One of the possible applications of our sorting algo-

rithm is to the problem of nearest neighbour search. An

example of such application, Dissipative Particle Dy-

namics simulation, is presented in the following chap-

ter. In our sample a set of particles representing phys-

ical fluid are simulated in three dimensional space. In

order to compute particle-particle interaction for each

particle a set of neighbours needs to be found in a spec-

ified radius. To accomplish this the simulation space

is evenly divided along each axis into cubes with edge

length equal to neighbour search distance. Each cube
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has a unique sequential identifier assigned. Cube num-

bering first goes along the x axis, then increases along y

axis and finally by z axis.

All particles from the simulation domain are assigned

to corresponding cubes based on their spatial location.

Because of the cell numbering scheme introduced it’s

a straightforward task to compute cell number for each

one. Particles are marked with their corresponding cell

identifier.

Now our bucket sort algorithm is employed to sort

the particles. This results in two arrays:

• there is a link between each cell and the first particle

which belongs there,

• each particle has an identifier of a next one in the

same cell.

These arrays form a linked list of particles for each cell.

Nearest neighbours of a particle can now be narrowed

down to the particles in the current cell and neighbour-

ing cells (27 total for 3D space). These may however

include more particles than desired, so an additional

distance check needs to be performed in order to get

the exact neighbours set.

3 EXPERIMENTAL RESULTS

Our test environment included a GeForce 6800 graph-

ics card with 256MB of video memory. The CPU was a

Pentium IV 3.0 GHz. OpenGL 2.0 has been used as the

graphics API and all pixel and vertex shaders have been

implemented using GLSL. Benchmarking data comes

from the particle-based simulation described in the fol-

lowing chapter.

The first set of tests measured the performance

of bucket sort algorithm for several grid sizes and

particle-per-cell numbers. Table 1 shows the obtained

results. As expected computation time increases with

data count. Also, when the particle count/cell number

ratio is high more iterations are executed.

Re-sorting times have also been tested. This is an im-

portant issue e.g. in particle simulations where usually

only a fraction of the total number changes their cell lo-

cation. Table 2 shows the results for a 1048576 particle

set-up, with a 643 grid. This test included two steps.

The former consisted of bucket sorting the input data

the normal way. With sorted data some particles were

displaced to other cells and the re-sorting algorithm has

been applied.

We have also compared our solution with another

GPU sorting algorithm: GPUSort version 2.0 by Govin-

daraju et al. [GRHM05]. This is a general purpose sort-

ing algorithm which produces an ordered array out of

arbitrary data. To achieve the results of bucket sorting

input data is first sorted by grid cell key followed by a

binary search to locate the first and the last element in

each cell. Such approach has been employed by Purcell

Particles 1/Cell 2/Cell 4/Cell 8/Cell 16/Cell

65536 13.28 16.15 19.84 28.01 38.17

131072 23.33 28.21 34.7 45.33 62.03

262144 43.27 50.26 60.24 76.86 109.02

524288 85.1 94.79 112.36 145.57 203.58

1048576 206.15 213.25 227.66 274.73 361.52

Table 1: Sorting times on a GeForce 6800 Ultra with

different average particle to cell number ratio.

Moved particles Sort Re-sort

0 231.26 78.07

256 231.26 92.63

4096 231.26 106.4

20971 231.26 120.73

209715 231.26 195.87

419430 231.26 233.13

1048576 231.26 369.75

Table 2: Re-sorting times on a GeForce 6800 Ultra

compared to full sorting when certain number of par-

ticles has been moved to another cell.

and Donner [PDC+03] to global illumination render-

ing. On the other hand our algorithm produces lists of

particles for each cell so no additional step is required.

Comparison results are shown in table 3. We have also

included the timing of re-sorting with 2% of particles

moved to another grid cells.

4 APPLICATION EXAMPLES

As it has been mentioned in the introduction, sorting

algorithm has been included into particle simulation

model. The simulation itself is performed on GPU as

well, thus our approach is entirely computed on graph-

ics processor. The choice of the particle model is quite

arbitrary here, as we treat it mainly as a “wrapper” for

the sorting algorithm. On the other hand it seems rea-

sonable to pick up simulation that would give results

understandable without deep insight into physical na-

ture of the problem, and which wouldn’t need too much
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Particle Count GPUBuck 2% re-sort GPUSort

65536 19.34 7.68 17.67

131072 33.81 16.5 40.36

262144 58.61 31.27 90.75

524288 111.06 61.59 202.27

1048576 233.69 121.23 450.42

Table 3: GPUSort by Govindaraju compared to our

bucket sorting implementation on a GeForce 6800 Ul-

tra.

computing time. Having in mind three common particle

models, namely Molecular Dynamics, Smoothed Parti-

cle Hydrodynamics and Dissipative Particle Dynamics,

we have decided to rely on the latter one.

In this section we introduce briefly basic concepts of

DPD model, the numerical method and the simulation

conditions. Then we apply it to demonstrate the mixing

of two immiscible fluids, driven by the Rayleigh-Taylor

instabilities in a rectangular box, as well as to show the

process of phase separation of two fluids.

4.1 Numerical model

In the DPD model [HK92] the discrete particles move

about within the confines of a rectangular box with a

height h and basis of Lx and Ly length. Periodic bound-

ary conditions are imposed along the x- and y-direction,

while reflecting boundary conditions are employed in

the vertical z-direction. We have divided the box into

two parts, with the upper (smaller) part of the box filled

up with heavy fluid particle (H) and the lower part filled

with lighter fluid particles (L). An external gravity field
~G pointing downwards is present. The particles are

defined by the mass Mi, position ri, and momentum

pi. We use classic two-body, short-ranged DPD force
~FT = ~FC +~FB +~FD. This type of force consists of con-

servative FC, dissipative FD and Brownian (stochastic)

FB components. The value of FC = FB = FD = 0 for

ri j > rc. Otherwise, we apply the following definitions:

FC = πω1(ri j)ei j,

FD = γMω2(ri j)(ei j ·vi j)ei j,

FB =
σΘi j√

∆t
ω1(ri j)ei j

where: ω1() and ω2() - are the weight functions de-

fined such that

nD

∫ rc

0
ωm(r)d(r) = 1 for m = 1,2.,

ri j – the distance between particles i and j, rc – a

cut-off radius, for which ω1(r) = ω2(r) = 0, nD – an

average particle density in D-dimensional system (D–

dimension of the system), ei j – a unit vector pointing

from particle i to particle j, π – the scaling factor for the

conservative part of collision operator, γ – the scaling

factor for the dissipative force, σ – the scaling factor

for the Brownian motion, Θi j – a random variable with

a zero mean and actually normalised variance.

We assume that the normalised weight functions

ω1(ri j) and ω2(ri j) are linear as it is in [ESZ97]). Ac-

cording to the fluctuation-dissipation theorem they are

chosen such that ω2(ri j) = [ω1(ri j)]
2 [CN96].

The temporal evolution of the particle ensemble

obeys the Newtonian equations of motion. For inte-

grating them we employ the “leap-frog” algorithm

in time-steping for the particle positions rn
i and the

Adams-Bashforth scheme for the particle velocities vn
i

and momenta pn
i . For the two-component fluid, where

k = g(i) and l = g( j) denote the types of particle i and

j (while k, l ∈ H,L), the equations of motion in 2-D

space can be represented in the following discretized

form.

p
n+ 1

2
i = p

n− 1
2

i + ∑
i 6= j

[

πklω1(r
n
i j)

− γklMklω2(r
n
i j) · (eij •vn

i j)

+
σklΘi j√

∆t
ω1(r

n
i j)

]

ei j ·∆t

rn+1
i = rn

i +
p

n+ 1
2

i

M
∆t

pn
i =

p
n+ 1

2
i +p

n− 1
2

i

2

Below we present snapshot from two DPD runs with

16384 particles. In the first run in figure 3 we demon-

strate the process of two phase separation of particles in

rectangular box. In the second simulation (figure 4) the

gravity force acting downwards is added in the entire

box. Starting from configuration, where heavier parti-

cles are placed in the top layer, we observe a develop-

ment of Rayleigh-Taylor instability [Mik89].

4.2 Random number generator on the

GPU

Dissipative Particle Dynamics method includes a Brow-

nian component. To compute it on the GPU we used

a random number generator which has been designed
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Figure 3: Simulation of phase separation using DPD model with 65536 particles.

Figure 4: Simulation of Rayleigh–Taylor instability using DPD model, 65536.

to test floating-point behaviour of computer systems

[Kar85]. The forumla is presented below:

x = 1.000005(ri +
√

3)5

ri+1 = x−bxc

where the random-number ri+1 is computed from the

previous value ri. The initial value r0 = 0. Its numerical

properties are adequate to our needs and it can be easily

implemented in a vertex or fragment shader.

5 CONCLUSIONS

We presented a novel way to implement bucket sort-

ing on current graphics hardware. The results obtained

are much faster than previous methods for at least some

specific applications. Further we have shown the ap-

plication of our algorithm to nearest neighbour search,

which has been used in physical simulation. We used

Dissipative Particle Dynamics to simulate fluids in real-

time. We have also presented a random-number gener-

ated implementation on the GPU, which is required by

the DPD.

Recently there has been another sorting algorithm

published by Gress and Zachman [GZ06b] which out-

performs GPUSort. Their implementation is a modified

and optimised adaptive bitonic merge sort with a opti-

mal complexity of O(nlogn). We would like to com-

pare our approach with these results in nearest future.

We also consider comparing OpenGL implementation

with CUDA version on the new NVIDIA 8000 family.
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