
Normal Mapping for Surfel-Based Rendering

Mathias Holst
University of Rostock

Albert-Einstein-Str. 21

18059 Rostock, Germany

mholst@informatik.uni-rostock.de

Heidrun Schumann
University of Rostock

Albert-Einstein-Str. 21

18059 Rostock, Germany

schumann@informatik.uni-rostock.de

ABSTRACT

On the one hand normal mapping is a common technique to improve normal interpolation of low tesselated tri-

angle meshes for a realistic lighting. On the other hand today’s graphics hardware allows texturing of view plane

aligned point primitives. In this paper we illustrate how to use textured points together with normal mapping to

increase surfel splatting quality, especially when using larger splats on lower level of detail. In combination with

a silhouette refinement this results in a significant decimation of needed surfels with small visual disadvantages

only. Furthermore, we explain how to create a normal map for points within a point hierarchy.

Keywords
Normal Mapping, Surfel Splatting, Point-Based Rendering, GPU-Programming.

1 INTRODUCTION

In recent years point-based rendering has been proven

to be effective and efficient for rendering highly de-

tailed complex geometric models. Point-based ren-

dering bases on the idea, that polygonal representa-

tions get less efficient with increasing polygon number,

because in this case each polygon covers only a few

pixels in image space [LW85]. Additionally triangle

meshes, or polygonal meshes in general, are not easy

to handle and to simplify because of their connectivity.

Points on the other side do not have any connectivity

and can be stored and merged very easily using simple

subdivision schemes [PGK02].

Since points only have a position but no dimension,

they are parameterized with other attributes that de-

scribes their look. Usually these are a normal and a

radius to represent circular disks in 3D (see fig. 1),

known as surfels (from surface elements). With surfels

a dense, opaque and smooth surface approximation can

be described.

To get a high quality rendering result small and many

surfels have to be used. However, the number of ver-

tices (e.g. points) that is processed by the GPU is a

framerate limiting factor. Thus, it is useful to render

fewer but larger surfels instead. To attenuate the loss of

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

P

n

r

Figure 1: Surfel geometry.

surface features we propose to apply normal mapping.

This is possible, because today’s graphics hardware al-

lows texturing point primitives. This texturing is given

for image space only. Therefore we show in this paper

how object-space texture coordinates can be obtained

by adding only a 2D texture coordinate and a scaling

factor as additional surfel attributes. Of course, normal

mapping does not decimate the total number of pix-

els/fragments to shade but in the case of non-parallel

vertex-fragment processing this results in a significant

framerate increase.

When working with normal mapping normal maps

have to be associated to the lower levels of detail of

the original object. In this paper an algorithm is pre-

sented to get normal maps for surfels of point hierar-

chies. In past several point hierarchies has been devel-

oped. Therefore, we take the two most popular hierar-

chies into account: point and hybrid bounding-sphere

hierarchies.

Since normal mapping only affects the shading of

pixels, but not the shape of the underlying geometry,

the silhouette looks very coarse when using low tesse-

lated polygonal or point-based models. Therefore, it

is useful to enhance the rendering process by silhou-

ette refinement using more primitives at these surface

parts. In contrast to polygonal-based approaches sil-

houette refinement can be easily done using point hier-

Journal of WSCG ISSN 1213-6972 9 ISBN 978-80-86943-00-8

(a) (b) (c)

255k Surfels 32k Surfels (b) + normal mapping

Figure 2: Rendering of the Igea model with 255k surfels (a). Same model rendered with only 32k surfels

and silhouette refinement (b). Same LOD rendered using normal mapping (c).

archies, because no connectivity has to be considered.

We use normal cones for this purpose, which results in

a high-quality rendering as it can be seen in fig. 2(c).

2 Previous Works
Relevant works that inspired this paper can be catego-

rized into three groups: surfel-based rendering, point

hierarchies and point-based silhouette refinement.

Surfel-Based Rendering In general a surfel is

an oriented (n-1)-dimensional oriented object in n-

dimensional space [Her92]. Using surfels as rendering

primitives was first proposed by [PZvBG00]. Here,

objects are rendered by a two pass approach: First

all visible surfels have to be estimated using z-buffer

and secondly, these surfels have to be rendered, called

splatting. This splatting was improved in [ZPvBG01]

by applying a gaussian elliptical kernel as alpha mask

for each surfel in screen space to meet the Nyquist

criterion. In [RPZ02] an hardware supported version

is proposed.

We use a similar technique as proposed in [BK03],

which includes a complete hardware support for fil-

tering and splatting with a minimum CPU overhead.

Moreover we decrease the number of pixel that have

to be shaded by using a more sophisticated splat size

measure in screen space.

Point Hierarchies Continuous LOD is nearly al-

ways integrated in point-based rendering approaches.

This yields from the computational simplicity to cre-

ate point hierarchies using subdivision schemes. A

comparison of point cloud simplification can be found

in [PGK02].

Since point clouds are often generated by sam-

pling triangle meshes, these meshes can be used

as alternative surface representation on the highest

LOD. Such hybrid hierarchies are proposed in [CN01]

and [DVS03] for example. In [CAZ01] a triangle-

based multi-resolution hierarchy is used for higher

LOD and a point hierarchy on top for lower LOD.

In this paper we propose algorithms to generate nor-

mal maps for both kinds of point hierarchies, but in

our implementation we only use a pure point hierarchy

created from an octree-based space subdivision.

Silhouette Refinement In most point-based frame-

works the whole surface is approximated by nearly

equally sized points/surfels to guarantee feature preser-

vation also in the interior without a special silhouette

refinement. A first framework that realizes silhouette

refinement is the POP system [CN01]. In this hybrid

system triangles are used as highest available LOD. If

the normal of a surfel is nearly perpendicular to the

viewing vector, its triangle children will be rendered.

This seems to be too conservative, especially if the ob-

ject is very small in screen space. In this case triangles

cover a few pixels only. Therefore, this may results in

aliasing artifacts.

Another system that uses silhouette refined surface

approximations was proposed in [LH01]. Here the QS-

plat system [RL00] was extended to use normal cones

for silhouette detection and refinement. Using a so-

phisticated perceptual model, surfels lying on the sil-

houette are assumed to cause high frequency and con-

trast in the final image. Thus, they are skipped and

the hierarchy is further traversed top-down until the

expected rendering result is indistinguishable from the

Journal of WSCG ISSN 1213-6972 10 ISBN 978-80-86943-00-8

original. This is an effective approach. Therefore, we

also use normal cones to detect surfels lying on the sil-

houette. We suggest a more simple (and faster) LOD

selection using two radii that limit surfel size for sil-

houette and interior surfels. However, without high ef-

fort this can be extended to use the perceptual model

of Luebke and Hallen.

3 Surfel Rendering
In this section we discuss, how surfels are splatted to

render the object surface and how we integrate normal

mapping into this procedure.

3.1 Splat Sizing
Using today’s graphics hardware points are rendered

as view-plane aligned squares (e.g. aliased OpenGL

points). Thus, for each surfel its bounding square size

has to be calculated either on the CPU or on the GPU

by a vertex shader. Assuming a perspective projection

this size depends basically on surfel eye-space z-value

zeye and orientation. However, most approaches only

consider zeye and assume a view-plane aligned surfel.

But when texturing surfels the size should be as ex-

act as possible to prevent an unrealistic texture scal-

ing. Therefore, also surfel orientation should be con-

sidered. Our method is similar to [ZRB+04] but math-

ematically easier. We approximate the surfel shape in

eye-space by a rotated ellipse function in 2D and cal-

culate its bounding-box. Then the largest dimension of

this box is projected to image space to get the bound-

ing square size in screen-space. In doing so, up to 50%

smaller splat area can be defined, as illustrated in fig.

3(a).

An ellipse curve with x-axis radius a and y-axis ra-

dius b positioned at the origin can be described by:

f (x) = b ·
√

1− x2

a2
(1)

To get the bounding box of an ellipse which is rotated

by angle γ we have to calculate the maximum y and

x values. One way to get these values is to calculate

the points on f with derivation f ′(x1) = − tan(γ)
and f ′(x2) = cot(γ) and rotate them back by γ .

These points on f are defined by (x1, f (x1))
T and

(x2,− f (x2))
T , with

x1 =
−a2 tan(γ)

√

a2 tan(γ)2 +b2

x2 =
a2 cot(γ)

√

a2 cot(γ)2 +b2
. (2)

After rotating these points by γ we get the maximum x

and y-value by:

xmax = cos(γ)x2 + sin(γ) f (x2)

ymax = sin(γ)x1 + cos(γ) f (x1) (3)

r

nx

ny

rnz
xmax

ymax

γ

size win

size eye

zeyehα

n p

(a) (b)

Figure 3: Comparison of bounding squares of sur-

fel’s bounding sphere vs. ellipse approximation

(a). Projection of eye space square length to screen

space (b).

.

For an oriented surfel in 3D that is transformed to

eye-space with eye-space orientation n and radius r

you get a = r, b = rnz and γ is given by the adjacent

leg nx and opposite leg ny (fig. 3(a)). This yields to

xmax = r

√

1−n2
x , ymax = r

√

1−n2
y (4)

Using this we finally get the point-square dimension in

eye-space by:

sizeeye =2max(xmax,ymax)=2r

√

1−min(nx,ny)2. (5)

After approximating the eye-space square size, this

size is projected into image-space. Assuming that view

frustum’s aspect ratio equals viewport’s aspect ratio

this is done by

sizewin =
sizeeye

zeye

· h

2tan(α
2
)
, (6)

where h is the viewport height in pixel and α the field-

of-view angle as illustrated in fig. 3. We totally com-

pute sizewin by a vertex shader, which only needs a few

instructions more than applying sizeeye = 2r.

3.2 Splat Shaping and Filtering
After resizing the surfel, it is rendered as a view-plane

aligned square. We use the rendering scheme proposed

in [BK03] to get a high quality anti-aliased rendering

result without the typical thickening effect of square

splats. In the following this procedure is briefly de-

scribed.

Today’s graphics cards are able to compute a texture

coordinate t ∈ [−1,1]2 for each splat pixel. Together

with the eye-space surfel normal n a depth offset tz for

every pixel can be computed:

tz = −nx

nz

tx −
ny

nz

ty (7)

as illustrated in fig. 4(a). If ||t|| is less than one the

pixel belongs to the eye-space ellipse area. By using a

Journal of WSCG ISSN 1213-6972 11 ISBN 978-80-86943-00-8

Gaussian kernel G for every surfel an alpha value for

this pixel can be computed by G (||t||). This forms an

ellipse with a smooth alpha value falloff at the border.

If several splats overlap in image-space they are

blended, but only if their z-value in eye-space is suf-

ficiently small. In this case they define a contiguous

surface part. Otherwise splats in front should overdraw

splats behind. Blended pixel values are summed up

weighted with their alpha values (also known as fuzzy

splatting). In the ideal case, these weights sum up to

one, forming an opaque surface. Because this is not

the general case additionally a per pixel normalization

is needed. Efficient algorithms for this purpose using

the possibilities of modern graphics hardware are de-

scribed in [BK03].

3.3 Normal Mapping for Surfels
Our goal is to increase surfel splatting quality by using

normal maps for pixel shading. Therefore, we need

texture coordinates for every pixel of the surfel square

(resp. on the surfel disk). For polygonal meshes tex-

ture coordinates are given for every vertex, and after

rasterization for every pixel its texture coordinate is

interpolated. When texturing surfel splats, for every

pixel such an interpolation is not possible, because sur-

fels are only described by one parameterized vertex.

Thus, we calculate this texture coordinate using the

given pixel parametrization t (see last section 3.2) par-

ticulary calculated by the graphics card together with

a texture coordinate ts and a scaling factor ws for the

normal map which are static for the whole surfel and

which are passed as vertex/fragment attribute. How

these values can be determined is explained in section

4.3.

Since for every surfel only its normal n is given to

describe its orientation, no exact mapping is possible

from t to the surfel plane. Instead there is a circle of

possible solutions. Thus, we need another orientation

normal o1, which is orthogonal to n and describes the

rotation angle around n. We suggest to compute o1 by

a simple scheme:

o1 =







(

nz√
1−n2

y

,0, −nx√
1−n2

y

)T

, if |ny| < 1

(0,0,1)T ,else.

(8)

In addition a third orthonormal vector o2 can be calcu-

lated by

o2 =
o1 ×n

||o1 ×n|| (9)

to define a local coordinate system on the surfel plane

with projection matrix S = [o1 o2 n], as illustrated in

fig. 5. Note, that o1 and o2 are generic and can also

be computed in a vertex shader from object-space sur-

fel normal n without additional attributes and memory

effort.

When projecting a surfel to eye-space using mod-

elview matrix M this local coordinate system is pro-

jected to eye-space, too, by S′ = SM. To get the texture

coordinate in surfel space, t has to be projected back by

t′ = S′−1t as it can be seen in fig. 4(b). Since t′ lies on

the surfel plane t′z = 0. Hence, only the first two rows

of S′−1 have to be computed, which can be done by:

1

|S′|













∣

∣

∣

∣

o2y ny

o2z nz

∣

∣

∣

∣

∣

∣

∣

∣

nx o2x

nz o2z

∣

∣

∣

∣

∣

∣

∣

∣

o2x nx

o2y ny

∣

∣

∣

∣

∣

∣

∣

∣

ny o1y

nz o1z

∣

∣

∣

∣

∣

∣

∣

∣

o1x nx

o1z nz

∣

∣

∣

∣

∣

∣

∣

∣

nx o1x

ny o1y

∣

∣

∣

∣













. (10)

If ||t|| < 1 then surfel base texture coordinate t′ is in

[−1,1]2. Thus, (t′x, t
′
y)

T can be used easily to get the

final normal map texture coordinate tn of the shaded

pixel using a linear mapping:

tn =
ws −1

2
t′ + ts, (11)

where ws is the width (resp. height) of the area a sur-

fel disk covers in the normal map and ts is the surfel

texture coordinate in the center of this area (fig. 4(c)).

Finally, tn can be used to address the texel in the nor-

mal map, that contains the normal to use for shading

the surfel at this pixel, as illustrated in fig. 4(d).

4 Normal Map Estimation
After developing a rendering algorithm for surfel splats

using normal mapping now we explain how a normal

map for different surfel hierarchies can be generated.

Recent point-based level of detail approaches either

use a large point set [RL00] or a triangular mesh (e.g.

[CN01]) to describe the object on the highest LOD.

Based on this model a point tree is generated by a sub-

division scheme. In the next sections we give algo-

rithms for normal map creation for point and hybrid

point hierarchies.

4.1 Normal Map for Point Hierarchies
To create a normal map of a point hierarchy two steps

have to be performed for every surfel: Firstly, the surfel

has to be rasterized and secondly for every raster point

a ray has to be shot to obtain all surfels on the highest

LOD (called base surfels, Sbase) that affect the normal

of the raster point.

For rasterization of a surfel s the same orientation

vectors o1, o2 are applied as for normal mapping (see

section 3.3). If an area of ws ×hs texel is preserved in

the normal texture for surfel s for every texel (x,y) ∈
[0,ws)× [0,hs) a position on the surfel disk is given by:

Px,y = Ps + rs

(

2x+1

ws

−1

)

o1 + rs

(

2y+1

hs

−1

)

o2(12)

where rs is the surfel radius, as illustrated in fig. 6.

Journal of WSCG ISSN 1213-6972 12 ISBN 978-80-86943-00-8

Figure 4: Normal mapping steps: Original texture coordinate t with calculated depth value (a). Texture

coordinate t′ projected to surfel space (b). Mapping to normal map texture coordinate tn (c). Final result of

surfel shading (d).

P

n

r

o
1

o
2

Figure 5: Extended surfel geometry.

o1

o2

P s r s-r s

r s

-r s

P1,0

Figure 6: Rasterization of a surfel disk using a uni-

form raster.

To estimate the normal for every texel we choose a

simple raycasting approach. We estimate all surfels on

the highest LOD, which intersect the line l given by

position Px,y and surfel normal ns. Note that we do not

use a ray, because base surfels "behind" s have to be

considered, too. This is illustrated in fig. 7(a) in 2D

for a raster position P0,1 of surfel s1 for which line l

intersects base surfels s4,s7 and s8.

Base surfels that are far away from Px,y should not

be considered for the normal at this point, because they

do not belong to the surface part approximated by s. A

first attempt could only consider base surfels that are

also children of s (in fig. 7(a) this is only s4). But

this is not sufficient generally, because surfels over-

lap. Thus, we choose a top down approach. Starting

at the root surfel of the point hierarchy, surfels are de-

termined top down, whose bounding sphere intersects

with the bounding sphere of s (i.e. s1 in fig. 7(a)).

If a surfel is also a base surfel and it intersects line l

it will be considered for normal computation at point

Px,y. In fig. 7(a) these are s4 and s7. This algorithm is

s
1

s
2

s
4

s
7

s
6

s
8

l

P
0
,1

P'

P''

n
s

n
s

n
s

d
4

d
7

s
1

s
2

s
4

s
3

s
3

s
5

s
6

s
7
 s
8

s
5

...

...

...

(a)
 (b)

Figure 7: Geometry for line-surfel intersection

(here in 2D). Line l intersects base surfels s4,s7 and

s8 but only s4,s7 are used for normal estimation at

point P0,1 due to additional bounding sphere test

(a). The corresponding point hierarchy (b).

very fast, because for ray intersection the space subdi-

vision given by the point hierarchy is used (fig. 7(b)).

Thus, only a small number of surfels have to be tested

for bounding sphere intersection and line intersection,

respectively.

After a set of base surfels Sx,y ⊆ Sbase is found for

a given pixel Px,y on surfel s, the normal nx,y at posi-

tion Px,y is estimated from this. Widely used for this

purpose is a weighted and normalized sum:

nx,y =
∑s′∈Sx,y

ws′ns′

∑s′∈Sx,y
ws′

, (13)

where ws′ weights the contribution of each base sur-

fel. Since splats are blended in image space using an

alpha mask defined by a Gaussian Gs for every surfel

s (see section 3.2), we choose this Gaussian to get the

weights ws′ . Therefore the distance ds′ of the base sur-

fel s′ center to the intersection point with line l is mea-

Journal of WSCG ISSN 1213-6972 13 ISBN 978-80-86943-00-8

Algorithm 1 Algorithm to get the normal for a line by

intersection with base surfels.
SurfelLineIntersec(Line l, Surfel s1, Surfel s2, Normal n)

d := ||Ps1
−Ps2

||;
if (d < rs1

+ rs2
)

// bounding spheres of s1 and s2 intersect

if (s2 ∈ Sbase)

P := IntersectionPoint(l, s2);

d := ||P−Ps2
||;

if (d < rs2
)

// l intersects s2

n := n+Gs2
(d) ·ns2

;

end if

else

for each child surfel c of s2 do

SurfelLineIntersec(l, s1, c, n);

end for

end if

end if

end

NormalForLine(Line l, Surfel s, Normal n)

n := (0,0,0)T ;

SurfelLineIntersec(l, s, rootSur f el, n);

n := n/||n||;
end

sured (see d4 and d7 in fig. 7(a)). Then the weights ws′

are given by:

ws′ = Gs(ds′). (14)

The final procedure to get the normal nx,y of a raster

point Px,y that forms together with the surfel normal n

a line is summarized in algorithm 1. Finally the normal

nx,y is coded to RGB values and stored in the normal

map.

4.2 Normal Map for Hybrid Hierarchies
If the highest available LOD in the hierarchy is a trian-

gular mesh, then an algorithm similar to that for pure

point hierarchies will be used. Since triangles do not

overlap in well-formed triangular meshes only the tri-

angle that intersects the line l through raster point Px,y

have to be found, instead of a set of base surfels. If

this triangle t = (A,B,C) was found, the normal at the

intersection point is interpolated using barycentric co-

ordinates c = (u,v,w)T at this point:

nx,y = unA + vnB +wnC (15)

The pseudo-code for this procedure is shown in algo-

rithm 2.

4.3 Normal Map Size
To create a normal map for a point hierarchies a raster

size (ws,hs) has to be selected for every surfel s in ad-

dition to the algorithms described before. Since surfel

Algorithm 2 Algorithm to get the normal for a line by

intersection with a triangle that is a surfel child node.

PrimitiveIntersec(Line l, Surfel s, Primitive p, Normal n)

B := BoundingSphere(p);

d := ||Ps −MB||;
if (d < rs + rB)

// bounding spheres of s and p intersect

if (p is triangle)

if (l intersects p)

P := IntersectionPoint(l, p);

C := BarycentricCoordinates(P, p);

n := uCnpA
+ vCnpB

+wCnpC
;

end if

else

for each child surfel c of p do

PrimitiveIntersec(l, s, c, n);

end for

end if

end if

end

NormalForLine(Line l, Surfel s, Normal n)

PrimitiveIntersec(l, s, rootSur f el, n);

end

2x2 4x4

8x8 16x16

Figure 8: Comparisons of images of a meteoroid

model allowing surfels up to a radius of 16 pixel in

the interior and using different normal map sizes.

disks are circular it is natural to choose hs = ws. For

base surfels of a pure point hierarchy we only need one

pixel (ws = 1), to store the surfel normal itself. For

every inner surfel of the point hierarchy the same ws

can be choosen, because surfel size in image space is

limited by a quality threshold (see section 5). As it can

be seen in fig. 8 this ws should exceed at least the half

of this threshold to preserve features.

Journal of WSCG ISSN 1213-6972 14 ISBN 978-80-86943-00-8

(a) (b)

Figure 9: Bunny rendered using normal mapping

without silhouette refinement (a). Same rendering

with silhouette refinement (b).

Since today’s graphics cards allow non power-of-

two texture sizes, a proper normal map size wnm,hnm

can be determined by:

wnm =
⌈

√

|S \ Sbase|
⌉

ws (16)

hnm =

⌈ |Sbase|
wnm

⌉

+wnm. (17)

If hnm exceeds the maximum supported texture size,

the normal map will have to be split to multiple tex-

tures. In this case for every surfel a normal map index

is needed in addition.

After finding a proper normal map size, for every

surfel s, its texture coordinate ts can be assigned, that

is used for normal mapping as described in section 3.3.

The surfel size in normal map (ws,hs) can be assigned

as additional surfel attribute. But since it is static we

decide to pass it as constant to the fragment shader for

texturing.

5 Silhouette Refined LOD Selection
As known from multi-resolution techniques for polyg-

onal meshes even the best texturing does not prevent

a rough looking silhouette when choosing a low tesse-

lated model. The same problem appears in point-based

rendering using normal maps, as illustrated in fig. 9(a).

Thus, the silhouette has to be rendered using smaller

but more splats (fig. 9(b)).

Detecting the exact global silhouette is complex and

computational slow, therefore we apply a local silhou-

ette estimation using normal cones. This is very fast

but as expected in some case surface parts within the

object are wrongly specified to lie at the silhouette.

A normal cone is a spherical cap of the unit sphere

that can be described by a normal and an opening an-

gle. To get surfels on the silhouette every surfel s con-

tains a normal cone as additional attribute, which con-

tains its normal and the normal cones of all surfels be-

low s in the hierarchy. To get this normal cone, we use

the algorithm developed in [BE05]. In case of a per-

spective view with normalized viewing vector d and

Algorithm 3 Silhouette refined LOD selection using

radius rsil to limit size for silhouette surfels and rinner

for silhouette surfels, respectively.

TraverseHierarchy(Surfel s)

if normal cone of s contains front facing normals

if (s ∈ Sbase)

DrawSplat(s);

else

r := size of s in viewport;

b f := n.c. of s contains back facing normals;

if (b f ∧ r ≤ rsil) ∨ (!b f ∧ r ≤ rinner)
DrawSplat(s);

else

for each child surfel c of s do

TraverseHierarchy(c);

end for

end if

end if

end if

end

field-of-view angle α a normal cone (n,β) contains

frontfacing normals if nd ≤ sin(α +β) and backfacing

normals if nd > −sin(α +β), respectively. A surfel s

belongs to the silhouette if its normal cone contains

frontfacing and backfacing normals. We can also very

efficiently integrate backface culling by culling all sur-

fels, whose normal cone only contains backfacing nor-

mals.

Based on this, a top down LOD selection algorithm

can be constructed according to [RL00] using two

maximum sizes rsil ,rinner for surfels at and not at the

silhouette (see alg. 3). Note, that base surfels never lie

on the silhouette, because their normal cones only con-

tain one normal. However, this can be ignored apply-

ing top down traversal, because base surfels are always

drawn if they are reached.

6 Implementation and Results

We have implemented our framework on a Athlon64

system with a NVidia Geforce 6800 graphics card us-

ing OpenGL. For texturing we calculate the inverse

surfel base matrix S′−1 (see equ. 10) for every surfel

in the vertex shader and pass it as fragment attribute.

Note, that S′−1 is generic and we only need the surfel

normal for its calculation. The surfel texture coordi-

nate ts and the scaling factor ws are coded into one

additional 3D vector and passed as additional vertex

attribute to the vertex/fragment shader.

In table 10 you can see an exemplary framerate com-

parison for the Igea model that shows the number of

surfels in relation to the framerate with and without

normal mapping. If using no normal mapping also the

interior of the object has to be rendered by many sur-

fels. Thus, the same threshold radius to limit surfel size

as for the silhouette (alg. 3) has to be choosen. As you

Journal of WSCG ISSN 1213-6972 15 ISBN 978-80-86943-00-8

ws size surfels fps

2 0 250k 20

2 0.34M 250k 17

4 1.1M 119k 37

8 4.1M 70k 59

16 16.2M 49k 85

Figure 10: Framerate results for using normal

mapping vs. no normal mapping (first row) when

rendering the Igea model in 1024x1024. The surfel

size is limited to rinner = ws (e.g. rsil = 2). The final

images for the first row is shown in 2(a) and for the

last row in 2(c).

can see we benefit from less surfels, which yields to a

significant increase in framerate especially when using

larger normal maps.

This table also shows the normal mapping over-

head caused by additional vertex/fragment shader op-

erations used for S′−1 and texturing (first and second

row). On the one hand calculating S′−1 needs many

operations in the vertex shader. On the other hand the

number of vertices is very decimated, which more than

compensates these overhead. On the other side in the

fragment stage not much more fragments have to be

shaded when using fewer large splats than many small.

In addition, texturing surfels only needs a few addi-

tional operations (see 3.3) in the fragment shader. This

is important, because fragment shading is still a bottle-

neck especially of point-based rendering. We can con-

clude that normal mapping only causes an appreciable

overhead by the required texture memory for the nor-

mal map.

7 Conclusion and Future Work

In this paper we proposed an approach to decrease the

number of surfels in the interior of the object surface

without visual disadvantages by using normal mapping

and silhouette refinement. This results in a significant

increases in framerate. We also shown how to cre-

ate normal maps for several types of point hierarchies

using a ray-casting approach. This is accelerated by

using the recursive space subdivision provided by the

point hierarchy.

Although our framework supports nearly all kind of

point-based surface descriptions there are opinions for

future works. When needing more than one normal

map (e.g. in the case of many surfels in the hierarchy)

an intelligent grouping of surfels to be rendered is nec-

essary to avoid many graphic library procedure calls to

select the proper map. Another working topic is to save

texture memory. One way to achieve this is to estimate

surfels with nearly the same normal map or with a nor-

mal map that can be tiled. Such surfels can mostly be

found on a surface part with no or low curvature.

REFERENCES
[BE05] G. Barequet and G. Elber. Optimal bound-

ing cones of vectors in three dimensions. Inf.

Process. Lett., 93(2):83–89, 2005.

[BK03] M. Botsch and L. Kobbelt. High-quality point-

based rendering on modern gpus. In PG’03

conf.proc., page 335. IEEE Computer Society,

2003.

[CAZ01] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hy-

brid simplification: combining multi-resolution

polygon and point rendering. In Vis’01

conf.proc., pages 37–44. IEEE Computer Soci-

ety, 2001.

[CN01] B. Chen and M. X. Nguyen. Pop: a hybrid

point and polygon rendering system for large

data. In Vis’01 conf.proc., pages 45–52. IEEE

Computer Society, 2001.

[DVS03] C. Dachsbacher, C. Vogelgsang, and M. Stam-

minger. Sequential point trees. ACM Trans.

Graph., 22(3):657–662, 2003.

[Her92] G.T. Herman. Discrete multidimensional jor-

dan surfaces. CVGIP: Graph. Models Image

Process., 54(6):507–515, 1992.

[LH01] D. Luebke and B. Hallen. Perceptually driven

interactive rendering. Technical Report #CS-

2001-01, University of Virginia, 2001.

[LW85] M. Levoy and T. Whitted. The use of points

as a display primitive. Technical Report 85-

022, Computer Science Department, University

of North Carolina at Chapel Hill, 1985.

[PGK02] M. Pauly, M. Gross, and L. P. Kobbelt. Effi-

cient simplification of point-sampled surfaces.

In VIS ’02 conf.proc., pages 163–170, Washing-

ton, DC, USA, 2002.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and

M. Gross. Surfels: surface elements as ren-

dering primitives. In SIGGRAPH’00 conf.proc.,

pages 335–342, New York, NY, USA, 2000.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: a mul-

tiresolution point rendering system for large

meshes. In SIGGRAPH’00 conf.proc., pages

343–352. ACM Press/Addison-Wesley Publish-

ing Co., 2000.

[RPZ02] L. Ren, H. Pfister, and M. Zwicker. Object

space ewa surface splatting: A hardware accel-

erated approach to high quality point rendering,

2002.

[ZPvBG01] M. Zwicker, H. Pfister, J. van Baar, and

M. Gross. Surface splatting. In SIGGRAPH’01

conf.proc., pages 371–378. ACM Press, 2001.

[ZRB+04] M. Zwicker, J. Räsänen, M. Botsch, C. Dachs-

bacher, and M. Pauly. Perspective accurate

splatting. In GI’04 conf.proc., pages 247–254,

University of Waterloo, 2004.

Journal of WSCG ISSN 1213-6972 16 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	G59-full.pdf
	H61-full.pdf
	A47-full.pdf

