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Abstract

The equation of radiative transfer describes the transfer of energy in the
form of electromagnetic radiation through absorbing, emitting and scatter-
ing medium. First of all, a derivation of the equation along with a description
of the related physical processes is provided. The equation of radiative trans-
fer is a space-time-direction-dependent integro-differential equation. In this
thesis, both space and direction are discretised by the finite volume method.
More specifically, a finite volume scheme for the two-dimensional case is de-
rived using unstructured grid systems.

The main focus of the present thesis is the more atypical directional dis-
cretisation. The directional variable is discretised into a finite number of
control angles, where the solution is approximated by constants. When eval-
uating the numerical flux on the boundary of a control volume, the problem
that arises is that the flux might be incoming in one part of a control angle
and outgoing in the other. Usually, the flux is approximated such that it is
assumed to be either incoming or outgoing in the whole control angle. This
is called the bold approximation. Here, a thorough manipulation of control
angle overlap was chosen instead of the more common and less accurate bold
approximation.

The derived scheme is tested on a few exemplary initial-boundary value
problems. A numerical test of convergence is also preformed here.

Keywords

Radiative heat transfer, equation of radiative transfer, finite volume method,
directional discretisation, exact treatment of control angle overlap.



Abstrakt

Transportńı rovnice elektromagnetického zářeńı popisuje přenos elektromag-
netické energie médiem, které zářeńı absorbuje, rozptyluje a samo i vyzařuje.
Nejdř́ıve jsou v této práci popsány tři zmı́něné vlastnosti médíı a následně
odvozena transportńı rovnice elektromagnetického zářeńı. Tato rovnice je
integro-diferenciálńı rovnićı s neznámou, která záviśı na prostorové, časové i
směrové proměnné. V této práci jsou směr i prostor diskretizovány metodou
konečných objemů pro nestrukturované śıtě ve dvoudimenzionálńım př́ıpadě.

Největš́ı pozornost je kladena na neobvyklou diskretizaci směrové proměn-
né. Tuto proměnnou je třeba rozdělit na konečný počet úhl̊u, na kterých se
uvažuje konstantńı řešeńı. Na hraně prvku prostorové śıtě se pak stává, že
numerický tok na části úhlu vtéká do prvku a na jiné z něj vytéká. Toto se
nejčastěji zjednodušuje tak, že se přepokládá, že numerický tok bud’ vtéká
nebo vytéká na celých oblastech jednotlivých úhl̊u (tedy i na těch hraničńıch).
V této práci je každý hraničńı úhel rozdělen na část vtékaj́ıćı a vytékaj́ıćı,
což dává přesněǰśı výsledky.

Odvozené schéma je prověřeno na několika počátečně-okrajových úlohách.
Je zde také proveden numerický test konvergence.

Kĺıčová slova

Přenos tepelné radiace, transportńı rovnice elektromagnetického zářeńı, metoda
konečných objemů, diskretizace směrové proměnné.
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Chapter 1

Introduction

All non-ideal objects constantly emit and absorb electromagnetic radiation,
thereby loosing or gaining some inner energy. The radiation emitted propa-
gates through space at the speed of light until it is absorbed. This process
is called radiative transfer and it differs from other forms of energy transfer
mainly by its high speed of propagation and the fact that it can also take
place inside a vacuum.

The absorptivity and emissivity of an object depends on its material,
where the latter also depends on the object’s temperature. In fact, the
amount of emitted electromagnetic radiation increases substantially with a
rising temperature. Radiative transfer, therefore, becomes an important pro-
cess for applications that deal with high temperatures; examples of which
include combustion in gas turbines, industrial glass cooling and photon ra-
diotherapy. Electromagnetic radiation travels in straight lines through a
vacuum, however, when propagating through a participating medium the
radiation is constantly being scattered into other directions. An equation
that describes the motion of electromagnetic radiation in participating me-
dia while taking emission, absorption and scattering into account, is called
the equation of radiative transfer. We shall derive this equation in Chapter 2,
wherein we also describe emission, absorption and scattering.

The equation of radiative transfer is an integral and first order differ-
ential equation, which differs from classical first order differential equations
by its directional dependence. When numerically solving the equation, the
directional variable must also be discretised. A number of approximation
schemes have been developed for this purpose. In Chapter 3, we briefly
describe two methods for the directional discretisation, namely the discrete
ordinate method and the method of spherical harmonics. The latter is based
on expressing the solution in Fourier series by means of spherical harmonic
functions. Truncating the series may cause oscillations, especially for dis-
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continuous initial and boundary conditions. The discrete ordinate method
is a low order method, which replaces the uncountable number of directions
with a finite number of carefully selected ones. This approach suffers from a
number of defects, particularly from the so called ray effect.

In an attempt to reduce these defects the finite volume method has been
employed to approximate direction. The central objective of the present the-
sis is to derive and apply the finite volume scheme to the equation of radiative
transfer in both space and direction. We shall start off by introducing the
standard finite volume method for the spatial discretisation in Chapter 4
along with numerical tests of convergence.

We shall preform the complete finite volume discretisation in Chapter
5 for unstructured triangulations in two-dimensional space. In this case,
the direction is only one-dimensional. We will construct a partition with
a finite number of control angles. The finite volume method is based on
calculating an approximate solution that is piecewise constant with respect
to the directional partition. The problem here is that on the edge of a
control volume the flux may be incoming in one part of a control angle and
outgoing in the other. In Chapter 5 we deal with the problem by splitting
these control angles into the incoming and outgoing components. We will
conclude this thesis by testing the scheme on a few initial-boundary value
problems and preforming a numerical test of convergence. All the numerical
results presented in this thesis were generated in Matlab, see [18].

Note, that the directional dependence is not exclusive to the radiative
transfer equation. Another (and practically the only other) equation with
this feature is the neuron transport equation. Neuron transport literature is
thus also an excellent source of information for our purposes.
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Chapter 2

Radiative transfer

Radiative transfer is a physical process where energy is transfered in the form
of electromagnetic radiation. When electromagnetic radiation propagates
through a participating medium, some of the radiation is absorbed, some
scattered to other direction and the medium itself emits radiation. Thus,
while mathematically describing radiative transfer, absorption, emission and
scattering must be accounted for. The target of the present chapter is to
derive the equation of radiative transfer. To this end, we will more or less
follow Modest [13].

Every body with a temperature higher than absolute zero emits electro-
magnetic radiation. The amount of emitted energy depends on the tempera-
ture and the material of the body. Emission is therefore a process where inner
energy of the body is transformed into electromagnetic radiation. Absorp-
tion on the other hand, is a phenomenon where electromagnetic radiation is
transformed into inner energy of the medium, which typically results in an
increase of temperature. This way electromagnetic radiation transfers heat
from one place to another. This mechanism is called radiative heat transfer
or thermal radiation. We may define thermal radiation as electromagnetic
radiation of wavelengths roughly between 0.1 µm and 100 µm (mostly consist
of infrared radiation), as the heat is transfered mostly in this range. To give
an everyday example, the sun warms up all its surrounding planets including
Earth by radiative heat transfer alone and the warmth that we feel coming
out of a fire is caused by this process too. Using infrared vision we can see
the heat which is emitted from animals and people in the form of infrared
radiation.

There are two other mechanisms of heat transfer. One of them is what we
call conductive heat transfer, where faster particles of a particular substance
pass some of their kinetic energy to the slower ones through collisions. Dur-
ing this process the particles do not propagate through the substance, the
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particles only oscillate around their centres of equilibrium. Convective heat
transfer on the other hand is caused by the movement of fluids with various
temperatures. Convection involves the combined processes of diffusion (scat-
tering of molecules in different directions) and advection (transfer due to the
fluid’s bulk motion).

As electromagnetic radiation propagates also through vacuum, radiative
heat transfer does not require the presence of a participating medium as ap-
posed to conductive and convective heat transfer. Other differences between
conductive and convective heat transfer on the one hand and radiation heat
transfer on the other are their ranges of impact, speeds of propagation and
temperature dependences. A photon travels at high velocity known as the
speed of light and its path can be as short as 10−10 m before being absorbed
or it can travel as long as 1010 m (e.g. the sun rays hitting Earth). Radiation
heat transfer is therefore a long-range phenomenon in general. Conduction
and convection are on the other hand short-range phenomena with the speed
of propagation insignificant to the speed of light. Conductive and convective
heat transfer rates are usually assumed to be linearly proportional to the
temperature whereas radiative heat transfer rates are generally proportional
to difference in temperature to the fourth power. Hence, radiative heat trans-
fer becomes more significant with rising temperature and may even become
dominant over conductive and convective heat transfer. For these reasons,
the study of radiative heat transfer is of great importance in vacuum or when
high temperatures are involved, which occurs for instance in astrophysics and
space applications. Concrete applications include photon radiotherapy [6],
combustion in gas turbines [17] and so forth.

2.1 Properties of electromagnetic radiation

Electromagnetic radiation is a form of energy which can be viewed as propa-
gating through space via either electromagnetic waves, or stream of photons.
The latter is the view of quantum mechanics, whereas electromagnetic waves
are predicted by electromagnetic wave theory. Neither of the two views can
describe the observed behaviour completely and neither has been found more
valid then the other. Therefore, they are being used interchangeably in the
scientific community. The speed of light c [m/s] (the velocity of electromag-
netic waves) depends on the medium in which it travels. It can be related to
the speed of light in vacuum c0 by the equality

c =
c0

nc
, c0

.
= 2.998 · 108

[m

s

]
,
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where nc ≥ 1 is the refractive index of the medium. Electromagnetic waves
can be determined by any of the following quantities

frequency ν [s−1],

wavelength λ [m],

wavenumber η [m−1].

The quantities are related by the formulas

ν =
c

λ
= cη.

A photon caries energy ε [J] that is directly proportional to the frequency
of its associated electromagnetic wave, with Planck’s constant hP as the
proportionality constant, that means

ε = hPν, hP
.
= 6.626 · 10−34[J s].

The energy of an electron stays unchanged when entering a new medium.
Thus, the frequency of the electron’s associated electromagnetic wave also
remains constant, while wavelength and wavenumber change depending on
refractive indexes of the two neighbouring media.

2.2 Radiance and irradiance

Radiance is radiative energy transferred per unit time, unit solid angle and
unit area perpendicular to the beam of electromagnetic radiation. Spectral
radiance I is radiance per unit spectral variable. From now on, we will be
using spectral radiance to describe the radiative transfer, as it is the most
appropriate variable for this purpose. Spectral radiance is a function of
location, direction, spectral variable and time. In the most general case,
spectral radiance is 7-dimensional, with three spatial, two directional, one
spectral and one temporal dimensions. Let us note that radiance is often
confusingly called intensity. We will avoid using this terminology as the
most common meaning for intensity in physics is energy transfered per unit
time and area.

Furthermore, we introduce irradiance, which is radiative energy trans-
ferred per unit time and unit area perpendicular to the beam. Spectral ir-
radiance E is analogically defined as irradiance per unit spectral variable.
Spectral irradiance is a function of location, spectral variable and time. Spec-
tral irradiance will be especially helpful when depicting the numerical results.
In some literature, irradiance is also called intensity.
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We will be using only the spectral versions of the quantities above. Let
us sum up their definitions

spectral radiance I =
energy

time * solid angle * spectral variable * proj. area
,

spectral irradiance E =
energy

time * spectral variable * projected area
.

Radiance and irradiance are related through

E =

∫
4π

I dΩ.

and their dependence is as follows

I = I(r, s, t),

E = E(r, t),

where r is the location vector, s is the unit directional vector, and t is time.
Both radiance and irradiance also depend on the spectral variable λ (or ν or
η). As we will see later, the equation of radiative transfer is not coupled with
respect to the spectral variable, hence we will always hide its dependence
from the view for simplicity. Moreover, whenever we talk about radiance
and irradiance in this thesis, we actually refer to the spectral radiance and
spectral irradiance.

2.3 Black body

When a beam of electromagnetic radiation hits a surface of a medium, some
of the radiation may be reflected and the rest penetrates into the medium. We
refer to an idealised physical body that absorbs all incident electromagnetic
radiation, regardless of frequency or angle of incidence, as a black body. The
amount of emitted electromagnetic radiation of a black body follows Planck’s
law which stays that

Bλ(T, λ) = 2hP c
2λ−5

[
exp

(
hPc

λkBT

)
− 1

]−1

, (2.1)

or

Bν(T, ν) = 2hP c
−2ν3

[
exp

(
hPν

kBT

)
− 1

]−1

, (2.2)

8



or

Bη(T, η) = 2hP c
2η3

[
exp

(
hPcη

kBT

)
− 1

]−1

, (2.3)

where Planck’s function Bλ (or Bν or Bη) is the spectral radiance of electro-
magnetic radiation that is emitted by the black body in all directions, T is
temperature of the body and kB is the Boltzmann constant with the value
of

kB
.
= 1.3807 · 10−23

[
J

K

]
.

Let us remind that hP is the Planck’s constant, c is the speed of light and λ,
ν and η are spectral variables. It follows that the emitted energy by a black
body at a specific frequency depend on the body’s temperature alone and
remains constant in all directions. It can be shown (see [13], Section 1.3) that
a black body is an ideal emitter, which means that it emits as much or more
energy at every frequency than any other body at the same temperature.

2.4 Absorption, emission and scattering

Consider a beam of electromagnetic radiation traveling in a vacuum in the
direction s. Its spectral radiance in the direction s remains constant along its
path (see [13], Section 9.2). On the other hand, when the beam propagates
through a participating medium, absorption, emission and scattering play its
role. In this section, we shall derive the equation of radiative transfer which
mathematically describes propagation of electromagnetic radiation through
absorbing, emitting and scattering medium. We choose λ as the spectral
variable.

If a medium has a constant refractive index, then electromagnetic waves
propagate through the medium along straight lines. On the other hand,
changing refractive index would cause bending of the beam. In the following,
we always consider only media with constant refractive index. Furthermore,
we assume that the media are non-polarising and at local thermodynamic
equilibrium.

2.4.1 Absorption and emission

A beam that travels through a participating medium is constantly attenuated
by absorption and scattering. We will discuss scattering in the next section.
Absorption is a process where electromagnetic energy is taken up by matter
and transformed into internal energy. It has been discovered that the amount
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of absorbed energy, with spectral radiance Ia, is directly proportional to the
spectral radiance I of the beam and to the distance ` which the beam travels
through medium. This can be written as

dIa = σaI d`. (2.4)

The proportionality constant σa is known as the absorption coefficient and is a
function of the spectral variable with units of inverse length. The absorption
coefficient depends on the material of the medium.

Every body with a temperature higher than absolute zero emits electro-
magnetic radiation. In the previous section, we explained that the radiance
of electromagnetic radiation emitted by black body is given by Planck’s func-
tion. Real materials emit electromagnetic radiation at a fraction, called the
emission coefficient, of black-body emissivity (measured by means of its ra-
diance). Using the fact that in thermodynamic equilibrium, the overall radi-
ance must be equal to the radiance of a black body, it can be shown that the
emission coefficient is the same as the absorption coefficient (see [13], Section
10.2, equation (10.16)). Thus, we can write

dIe = σaB d`, (2.5)

where Ie is spectral radiance of the emitted electromagnetic radiation in the
same direction as I and B = Bλ(T, λ) is Planck’s function as defined in (2.1).
If we chose ν or η as the spectral variable, we would take (2.2) or (2.3) as
Planck’s function instead. Combining (2.4) and (2.5) leads us to an equation
describing spectral radiance of electromagnetic radiation in absorbing and
emitting medium, namely

dI

d`
= σa(B − I).

2.4.2 In-scattering and out-scattering

Attenuation due to scattering or out-scattering is a process where a part
of electromagnetic radiation is redirected from the considered direction into
other directions, where it appears as augmentation. Again, the magnitude
of scattered electromagnetic radiation, with spectral radiance Iout, is directly
proportional to I and `. This gives the expression

dIout = σsI d`, (2.6)

with the scattering coefficient σs as the proportionality constant. Just as the
absorption coefficient, the scattering coefficient is a function of the spectral
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variable with units of inverse length and it is associated with the material of
the medium.

The equation (2.6) determines the amount of electromagnetic radiation
that is scattered away from the considered direction, say s. We shall develop a
relation which describes the electromagnetic radiation that is scattered from
other directions into s. This process is called augmentation by scattering or
in-scattering.

Electromagnetic radiation does not necessarily need to be scattered uni-
formly to all directions (that is a special case called isotropic scattering).
For this reason we introduce the scattering face function Ψ which prescribes
rate Ψ(s1, s2)/4π (to any two directions s1 and s2) by which electromagnetic
radiation is scattered from s1 into s2. Moreover, Ψ must obeys the integral
identity

1

4π

∫
4π

Ψ(s1, s2) dΩ2 = 1. (2.7)

The constant 1/4π is introduced in order for the integral identity to be true
if Ψ ≡ 1 (which is the mentioned isotropic scattering). We will explain the
reason for the condition (2.7) later.

Multiplying the right-hand side of (2.6) by the rate Ψ(s′, s)/4π gives us
the spectral radiance Is′→s of electromagnetic radiation scattered from the
direction s′ into s, namely

dIs′→s =
σs

4π
Ψ(s′, s)I(r, s′, t) d`. (2.8)

To add up contributions from all directions, we simply integrate the equality
over the unit sphere with respect to s′, thereby obtaining

dIin =
σs

4π

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′ d`. (2.9)

Here Iin is in-scattering, in other words the spectral radiance of electromag-
netic radiation scattered from all direction into the direction s. Notice that
the relation for in-scattering is considerably more complicated than the re-
lations for absorption, emission or out-scattering. In fact, the term (2.9) is
the only one that couples all directions together, therefore prevents us from
considering each direction separately.

Let us explain the reason for the condition (2.7). Integrating (2.8) over
the unit sphere with respect to s gives us spectral radiance of all the elec-
tromagnetic radiation that is scattered away from s′. That is nothing else
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than out-scattering which is already described by (2.6). This lead us to the
requirement

σs

4π

∫
4π

Ψ(s′, s) dΩ I(r, s′, t) d` = σsI(r, s′, t) d`.

We obtain the condition (2.7) by dividing the equation by σsI(r, s′, t) d`.

2.5 Equation of radiative transfer

We shall derive the radiative transfer equation in a slightly different manner
than Modest [13]. We make an energy balance on a beam traveling from r1

to r2 in the direction s which leaves r1 at time t1. Let the beam reaches r2

at time t2 and let `12 = ||r1 − r2|| denote the distance between r1 and r2.
We obtain the change in radiance I∆ by summing augmentation by emission
(2.5) and in-scattering (2.9) and subtracting the attenuation by absorption
(2.4) and out-scattering (2.6), i.e.

I∆ = Ie − Ia − Iout + Iin.

Integrating I∆ over the distance between r1 and r2 we receive the change
in radiance between the points r1 and r2 (hence also between the times t1
and t2), namely

I(r2, s, t2)− I(r1, s, t1) =

`12∫
0

dI∆ =

`12∫
0

(dIe − dIa − dIout + dIin)

=

`12∫
0

[
σaB − (σa + σs)I(r, s, t) +

σs

4π

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′
]
d`. (2.10)

Electromagnetic radiation travels in straight lines at the speed of light c,
therefore the functions

r(`) = r1 + `s,

t(`) = t1 +
`

c
,

describe respectively the position and time of the beam at the distance `
from r1. Clearly we have

r(0) = r1, r(`12) = r2,

t(0) = t1, t(`12) = t2.
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Assuming that radiance I has the spatial derivative in the direction s and
the time derivative along the line between r1 and r2, we rewrite the very
left-hand side of (2.10) as follows

I(r2, s, t2)− I(r1, s, t1) = I
(
r(`12), s, t(`12)

)
− I
(
r(0), s, t(0)

)
=

`12∫
0

dI

d`
(r, s, t) d` =

`12∫
0

[
s∇I(r, s, t) +

1

c

∂I

∂t
(r, s, t)

]
d`,

where we hide the dependence of r = r(`) and t = t(`) on ` for transparency.
We employed the chain rule in the last equality. Plugging the received ex-
pression into (2.10) we derive the integral energy balance

`12∫
0

[
s∇I +

1

c

∂I

∂t

]
d` =

`12∫
0

[
σaB − (σa + σs)I +

σs

4π

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′
]
d`.

Whenever we do not show the dependence of I, we assume I = I(r, s, t). Ap-
plying the mean value theorem to the integrals on either side of the equation,
while assuming continuity of the integrands, leads us to the differential form
of the energy balance, namely

1

c

∂I

∂t
+ s∇I = σaB − (σa + σs)I +

σs

4π

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′. (2.11)

This equation, called the equation of radiative transfer, is the central equation
of the whole thesis. The unknown function is spectral radiance I = I(r, s, t)
which also depends on the spectral variable λ, however the equation is not
coupled with respect to this variable. Therefore, we can solve the equations
for each value of λ separately and so we do not explicitly show the spectral
variable. The material coefficients σa and σs also depend on the spectral vari-
able and may vary with location, since rays may penetrate through different
media consisting of different materials. Planck’s function B = Bλ(T, λ), de-
fined by (2.1), depends on temperature T = T (r, t) and the spectral variable.
Let us sum up the dependences:

σa = σa(r, λ),

σs = σs(r, λ),

B = Bλ(T, λ),

T = T (r, t).
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Note that in this section we use λ, however we may substitute it for an
alternative spectral variable ν or η or even for energy ε = hPν, if it is more
convenient. We then also must substitute Planck’s function for Bν or Bη,
which are defined by (2.2) or (2.3), respectively.

In the present thesis, we do not deal with realistic boundary conditions
for the equation of radiative transfer. Instead, we consider only non-reflective
wall, also called the black surface. In this case, we have the Dirichlet bound-
ary condition (for incoming radiance) given by external radiation and emis-
sion of the wall. Boundary conditions for a number of reflective surfaces were
described by Modest (see [13], Section 9.7).

Temperature field

A question that arises is where we get the temperature field T = T (r, t),
which we need to plug into Planck’s function. We assumed that the change
in temperature due to all processes other than radiative heat transfer (con-
vective and conductive heat transfer) is given. In general, electromagnetic
radiation also influences temperature. During absorption, electromagnetic
radiation transforms into inner energy of the material, which results in the
increase of temperature. Emission on the other hand is the opposite process.
This phenomenon is described by the so called material energy equation,
which forms a coupled system with the equation (2.11), the radiative trans-
fer equation.

If the heating and cooling of the material due to absorption and emis-
sion of electromagnetic radiation is small, we can neglect it and consider
only the given change in temperature. In this thesis, we always assume the
temperature given, hence we do not solve the material energy equation.

Cold medium

Typically, if the temperature of a body is low, then the amount of emitted
electromagnetic radiation by the body is also relatively low. Hence, when
electromagnetic radiation propagates through a cold medium, the amount of
emitted electromagnetic radiation may be negligible compare to the amount
of incoming electromagnetic radiation. This means that B ≈ 0 and the first
term on the right-hand side of the equation (2.11) disappears. In this case,
the dependence of the radiative transfer equation on temperature vanishes
completely.
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Assumptions

We made a number of simplifications during the development of the equation
of radiative transfer. We assume that the refractive index is constant and
that the medium is at local thermal equilibrium. Moreover, we consider only
homogeneous and non-polarising media that are at rest in comparison with
the speed of light. Radiation transfer equation for a medium with varying
refractive index was given by Pomraning [16].
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Chapter 3

Directional approximation

In this chapter, we introduce a few methods that approximate direction in
directional dependent equations and demonstrate them on the equation of
radiative transfer, which we derived in the previous chapter in the form
(2.11), namely

1

c

∂I

∂t
+ s∇I = σaB − (σa + σs)I +

σs

4π

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′. (3.1)

To be specific, we will introduce the discrete ordinate method, the method of
spherical harmonics and the diffusion method. We shall devote it a separate
chapter to the finite volume method, as it is the centre of focus of the present
thesis.

The target of the methods mentioned above is essentially to approximate
a directional dependent equation with a system of equations independent of
direction. We can then solve the received equations by standard methods
for partial differential equations. A brief introduction to the methods as well
as their comparison in the form of numerical experiments was preformed
by Brunner [1]. More thorough description of these methods was given by
Modest [13].

Notation

For a natural number k a k-th moment is defined as
∫

4π
(s⊗ s⊗ . . .⊗ s) dΩ

and the k-th moment of an arbitrary function f is
∫

4π
(s⊗ s⊗ . . .⊗ s)f dΩ,

where we have k − 1 outer products ⊗ in both expressions. Note that an
outer product operates on two vectors to yield a tensor. We analogically
define the zeroth moment as

∫
4π
dΩ. The zeroth, first and second moments
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satisfy ∫
4π

dΩ = 4π, (3.2)

∫
4π

s dΩ = 0, (3.3)

∫
4π

s⊗ s dΩ =
4π

3
I, (3.4)

with the identity tensor I. The first equality is obvious, for the other two see
[Modest [13], Section 15.14, equations (15.27) and (15.29)]. It follows that
irradiance E is the zeroth moment of radiance I. Let us define the radiative
flux F as the first moment and radiation pressure tensor P as the second
moment of I. To sum up we have

E =

∫
4π

I dΩ,

F =

∫
4π

s I dΩ, (3.5)

P =

∫
4π

(s⊗ s)I dΩ. (3.6)

3.1 Discrete ordinate method

In this section, we will derive the discrete ordinate method, which comes
from a simple idea, which is to consider only a finite number of directions
and ignore the rest. This method is famous for its simplicity, however it
suffers from several unphysical numerical side effects, which are to be cov-
ered in Section 3.3. The method of discrete ordinates was first proposed by
Chandrasekhar [2].

As we already mentioned, the discrete ordinate method assumes that par-
ticles can only travel along several particular direction. This approximation
reduces the direction dependent equation of radiative transfer into a sys-
tem of differential equation each of which is independent of direction. The
discrete ordinate method can be viewed as the finite difference method em-
ployed to the directional variable with additional requirements. For instance,
if we desire for the approximation to conserve energy, we cannot choose the
directions arbitrarily, the directions along with their associated quadrature
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weights must satisfy some additional conditions. Furthermore, the directions
and weights are typically chosen to be invariant to any ninety degree rota-
tion. The discrete ordinate method is also described by Modest [13] for the
radiative transfer equation or by Lee [10] for problems in neutron transport
theory.

Let us assume that s1, s2, . . . , sM are arbitrary unit directional vectors
and w1, w2, . . . , wM are their associated quadrature weights. We will discuss
the particular choice of directions and quadrature weights in Section 3.1.1.
Since the radiative transfer equation is integro-differential equation, we need
to approximate the integral describing in-scattering. In general, if f is an
arbitrary function of direction, we approximate its integral by the numerical
quadrature

M∑
m=1

wmf(sm) ≈
∫
4π

f(s) dΩ. (3.7)

We denote the approximation of the spectral radiance I in the direction sm
by Im, where m ∈ {1, . . . ,M}, i.e.

Im(r, t) ≈ I(r, sm, t). (3.8)

Considering only the directions s1, s2, . . . , sM and applying the quadrature
rule (3.7) to the integral in (3.1) we obtain the discrete ordinate scheme for
the equation of heat transfer, namely the system

1

c

∂Im
∂t

+ sm∇Im = σaBλ − (σa + σs)Im +
σs

4π

M∑
n=1

Ψ(sn, sm)In, (3.9)

for all m ∈ {1, 2, . . . ,M}. Each of the M linear differential equations of the
above system is independent of the directional variable. Hence, the system
can be solved by standard method for partial differential equations. Note
that the system (3.9) is coupled through the sum on the right-hand side
which arises from the in-scattering term.

For many problem, only irradiance E is important and radiance I is used
only to calculate it. When (3.9) is solved, irradiance can be approximated
by I1, I2, . . . , IM as

E =

∫
4π

I dΩ ≈
M∑
m=1

wmIm.
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3.1.1 Choice of directions and quadrature weights

As we have already noted, it is desirable for us to choose symmetrical di-
rections and quadrature weights, so that they are invariant to any ninety
degree rotation. We shall demand the zeroth, first and second moments to
be satisfied, that is ∫

4π

dΩ = 4π =
M∑
m=1

wm,

∫
4π

s dΩ = 0 =
M∑
m=1

wmsi,

∫
4π

s⊗ s dΩ =
4π

3
I =

M∑
m=1

wmsis
T
i .

Various sets of directions and weight satisfying the above conditions are tab-
ulated for example by Lee [10].

The discrete ordinate method is also called the SN -approximation, where
N denotes the order of the quadrature rule. In one dimension, the order of
the quadrature is the same as the number of direction and weights used for
the quadrature. In two and three direction, the number of directions is larger
than the order of the quadrature as shown in Table 3.1.

Dimensions Directions
One N
Two 1

2
N2 +N

Three N2 + 2N

Table 3.1: Number of directions M used by quadratures of order N .

3.2 Method of spherical harmonics and other

moment based methods

The method of spherical harmonics, or the PN -approximation, transforms
the equation of radiative transfer into a system of infinite number of partial
differential equations independent of direction. Taking only a finite num-
ber of equations and approximating the variables coupled with the removed
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equations, we obtain an approximate solution of (3.1), the radiative trans-
fer equation. Since we choose an arbitrarily large number of equations, we
have an arbitrarily high order accuracy. The method of spherical harmonics
was developed by Jeans [7]. Kourganoff [9] applied the method to radia-
tive transfer. The method of spherical harmonics was applied to neutron
transport problems by Davison [4] and Murray [14].

First we shall derive the popular P1-approximation, as the derivation is
substantially easier than for the general method. Then we shall describe the
diffusion method, which approximates the P1-approximation scheme with a
diffusion equation. At the end of the section, we will discuss the general idea
of the PN -approximation.

3.2.1 P1-approximation

The P1-approximation of the equation (3.1), the radiative transfer equation,
can be derived by taking the zeroth and first moment of (3.1) and decoupling
them from higher moments of (3.1). The decoupling is achieved by assuming
that the radiance vary linearly in direction.

It is very often the case that the desired quantity is irradiance E. Instead
of indirectly calculating E by first solving (3.1) for I, we can manipulate the
radiative transport equation to obtain an equation with E as the unknown
function. Integrating (3.1) over the solid angle of 4π yields

1

c

∂E

∂t
+∇ · F = 4πσaB − (σa + σs)E +

σs

4π

∫
4π

∫
4π

Ψ(s′, s) dΩ I(r, s′, t) dΩ′.

The condition (2.7) stays that
∫

4π
Ψ(s′, s) dΩ = 4π, thus the equation above

simplifies to

1

c

∂E

∂t
+∇ · F = σa(4πB − E), (3.10)

where in-scattering and out-scattering cancel each other out. Let us realise
that this equation is the zeroth moment of the equation (3.1). The equation
(3.10) has a new unknown, radiative flux F defined by (3.5). We obtain an
equation for F by taking the first moment of the equation (3.1) (multiplying
the equation by s and integrating it over all directions), i.e.

1

c

∂F

∂t
+∇ · P = −(σa + σs)F +

σs

4π

∫
4π

s

∫
4π

Ψ(s′, s)I(r, s′, t) dΩ′ dΩ.

20



When we assume the scattering to be isotropic, that is Ψ ≡ 1, this equation
simplifies further into the form

1

c

∂F

∂t
+∇ · P = −(σa + σs)F. (3.11)

Here, we have employed the fact that the first moment
∫

4π
s dΩ is equal to

zero, see (3.3). This equation again contains a new unknown, the radiation
pressure tensor P as defined by (3.6). We could continue this procedure and
take higher and higher moments of (3.1), but each equation will always be
coupled to the next higher moment of (3.1).

The idea of P1-approximation is to approximate the tensor P in order to
decouple the system from moments of (3.1) higher than one. To this end, we
assume that the radiance varies linearly in direction, that is

I = a(r) + b(r) · s. (3.12)

Radiance and the radiative flux consequently satisfy

E =

∫
4π

I dΩ = a(r)

∫
4π

dΩ + b(r)

∫
4π

s dΩ = 4πa(r),

F =

∫
4π

s I dΩ = a(r)

∫
4π

s dΩ + b(r)

∫
4π

s⊗ s dΩ =
4π

3
b(r)I,

where we use the momentum values (3.2), (3.3) and (3.4). Replacing the
functions a and b in (3.12) yields

I =
1

4π
E +

3

4π
s · F.

We plug this particular form of radiance into the radiation pressure tensor
and thereby derive

P =

∫
4π

(s⊗ s)I dΩ =
1

4π
E

∫
4π

s⊗ s dΩ +
3

4π
F

∫
4π

s dΩ =
1

3
EI.

Plugging the approximation of the radiation pressure tensor into (3.11) and
leaving (3.10) unchanged we arrive to a system of two equations and two
unknowns independent of direction, namely

1

c

∂E

∂t
+∇ · F = σa(4πB − E), (3.13)

1

c

∂F

∂t
+

1

3
∇E = −(σa + σs)F. (3.14)
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This is called the P1-approximation. An implication of the P1-approximation
is that there can be more energy moving, than the amount of energy that
there actually is, since the magnitude of the flux F is not bounded by irradi-
ance E. This conflict with reality is a substantial source of problems for the
P1-method.

3.2.2 Diffusion approximation

The diffusion method is based on the idea to approximate the system of
equations (3.13) and (3.14) by a diffusion equation. We shall assume that
the flux F varies slowly with time in comparison to spatial gradient, that is

1

c

∂F

∂t
� ∇E.

Using this assumption in (3.14) we obtain Flick’s low

F = − 1

3(σa + σs)
∇E.

Plugging Flick’s low into (3.13) gives us the diffusion equation

1

c

∂E

∂t
+∇ ·D∇E = σa(4πB − E), (3.15)

with the diffusion coefficient D = 1/3(σa + σs).
The diffusion approximation makes substantial changes in the nature of

the equation. The equation of radiative transfer or (3.1) is a hyperbolic
partial differential equation, therefore describes particles traveling at a finite
speed. The diffusion equation (3.15) is parabolic, which means that any
change in the solution at a given place and time effect solution at all other
places after an arbitrarily small instant. This is due to ignoring the time
derivative in (3.14).

3.2.3 PN-approximation

The derivation of the PN -approximation is similar to the procedure we did in
Section 3.2.1 to get the P1-approximation of (3.1), the equation of radiative
transfer. The difference is that instead of taking only the zeroth and first
moments of (3.1) we can take as many moments as we need for an accurate
solution. Moreover, instead of taking moments of (3.1) with respect to s,
we take the moments with respect to functions of s, namely the spherical
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harmonic functions. That is why this method is also called the method of
spherical harmonics. We define the spherical harmonic functions as

Y m
l (s) = (−1)

m+|m|
2

[
(l − |m|)!
(l + |m|)!

] 1
2

eimψP
|m|
l (cos θ),

where θ and ψ are respectively the polar and azimuthal angles of the vector s
and Pm

l are associated Legendre polynomials. The spherical harmonics have
the advantage of being orthogonal to one another, which is due to the use of
Legendre polynomials.

We will explain only the general idea of how the method of spherical
harmonics is derived for (3.1), the equation of heat transfer, as a detailed
derivation is highly complicated. A thorough derivation of PN -method in
the tree-dimensional Cartesian coordinate system has been preformed by
Cheng [3]. The extension to general coordinate systems has been given by
Ou and Liou [15].

First of all, we need to expand the scattering phase function into series of
Legendre polynomials. Now, multiplying (3.1) by each Y m

l and integrating
over all directions, we get infinitely many coupled equations, unknowns of
which are moments of I with respect to Y m

l . We denote the moment of I
with respect to Y m

l as

Iml (r, t) =

∫
4π

Y m
l (s)I(r, s, t) dΩ. (3.16)

Since Y 0
0 = 1 we have that I0

0 = E. Each moment Iml is coupled to six other
moments, namely all Im

′

l′ , with l′ = l ± 1 and m′ = m + {−1, 0, 1}. We can
now express the radiance I in terms of generalised two-dimensional Fourier
series

I(r, s, t) =
∞∑
l=0

l∑
m=−l

Iml (r, t)Y m
l (s). (3.17)

To get a finite number of equations with a finite number of unknowns Iml ,
we choose an approximation order N and assume that Iml = 0 for l > N . In
other words, we truncate the Fourier series (3.17). The resulting system can
be written as follows (see [12]):

1

c

∂E

∂t
+ Ax

∂E

∂x
+ Ay

∂E

∂y
+ Az

∂E

∂z
= S− (σa + σs)E, (3.18)

where E is a vector of moments Em
l , S is the source vector containing the in-

scattering and emission terms and Ax, Ay and Az are matrices that prescribe
how the moments Em

l are coupled.
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3.3 Numerical defects

In this section we shall discuss unphysical numerical defects we might en-
counter when solving the equation of radiative transfer approximately. Typ-
ical drawbacks of approximation methods that are based on discretisation of
variables are false scattering and the ray effect, which are respectively cause
by spatial and directional discretisation. We can therefore expect discrete
ordinate method to suffer exactly from these defects. The wave effect on the
other hand is due to truncating the Fourier series in the method of spherical
harmonics.

3.3.1 False scattering

False scattering (for different types of equations also called numerical diffu-
sion) is a defect which arises from spatial discretisation. Although spatial
discretisation is not of our concern in this chapter, we discuss it, because
the effect results in additional unphysical scattering, which is a directional
phenomenon.

In reality, when a single beam of electromagnetic radiation penetrates
through a non-scattering medium, it travels in a straight line until it gets
absorbed or reflected. When numerically computing this process, the beam
widens, which means that part of the radiation was slightly redirected from
the initial direction of the beam. This is due to the way we compute the
numerical flux on the elements of the spatial partition, instead of calculating
the real physical flux.

Therefore, we may observe scattering during numerical experiments in
a non-scattering medium. In case of scattering medium, we then observe
additional unphysical scattering. This is the reason why this effect is called
false scattering. In case of other types of equations, the same effect appears
as a different phenomenon, for instance diffusion.

When we employ the discrete ordinate method to solve the equation of
radiative transfer, we need to solve the system (3.9) by standard methods,
which typically discretise space. Hence, when applying discrete ordinates
method, we must take false scattering into account.

Note that false scattering is a typical phenomenon that occurs due to low
order discretisation in space. Higher order methods suffer from other defects,
for instance from the phase error. We do not cover this phenomenon, as we
will apply finite volume method, order of which is one. For more information
about the phase error see [11].
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3.3.2 Ray effect

The ray effect is caused by the directional discretisation, which allows the
particles to travel only in selected directions. This effect is typical for discrete
ordinate method.

The ray effect becomes apparent, for instance, when we are further from
a high emission source of particles. Suppose we have a spatial partition.
Event though in reality, the source emits radiation to all directions equally,
the ray effect may cause the rays to become so far apart that there are two
adjacent elements of the partition, one with no radiance at all and the other
with plenty of radiance coming from the source. This results in large spatial
oscillations in irradiance E. This effect can be reduced either by increasing
the number of directions or by taking a sparser spatial partition with larger
elements.

Hence, when refining the spatial partition, we need to increase the number
of considered directions accordingly, in order to prevent the ray effect to
become significant.

3.3.3 Wave effect

The wave effect is a defect of the method of spherical harmonics. In vacuum,
for the zero right-hand side, the system (3.18) becomes a wave equation,
which allows negative irradiance. This unphysical phenomenon may occur
even in regions where a participating medium is present.
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Chapter 4

Finite volume method for the
transport equation

In the previous chapter, we summarised a few numerical method that dis-
cretise only direction. The main target of this thesis is to derive and apply
the finite volume method for the equation of radiative transfer in both two-
dimensional spatial and one-dimensional directional variables.

In this chapter, we will introduce the finite volume method for the spa-
tial discretisation. The directional approximation will be dealt with in the
following chapter. As the equation of radiative transfer is first order lin-
ear partial differential equation in space, we will derive the method for a
two-dimensional transport equation, namely

ut + px(u) + qy(u) = f , (4.1)

which is of course also first order and linear, so we can conveniently apply
the acquired knowledge for the equation of radiative transfer in the follow-
ing chapter. Here, u is the unknown function, p and q are given physical
fluxes in the direction x and y, respectively, and f is a given source function.
The finite volume method was also described by Leveque [11] and in many
other standard textbooks.

4.1 Notation

We first introduce some notation regarding especially the spatial partition.
Let Ω be a domain in R2 and Ωh an approximation of Ω with a piecewise
linear boundary. Let Th = {Ωi}i∈J , J = {0, 1, . . . ,m}, be a triangle partition
of Ωh. In other words, Ωi, i ∈ J , are triangles with mutually disjoint interiors
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such that

Ωh =
⋃
i∈J

Ωi.

The length of the longest edge in Th will be denoted as h. We say that Ωi

is a neighbour of Ωj, if the intersection `ij = Ωi ∩ Ωj is a line segment and
we denote the set of indexes of neighbours of Ωi by Ni, i.e. Ni = {j ∈ J :
Ωi ∩ Ωj is a line segment}. Let {`b−1, `

b
−2, . . . , `

b
−k} be the set of all the line

segments of ∂Ωh such that each line segment is a face of a triangle in Th and
let us denote J b = {−1,−2, . . . ,−k}. Note that J ∩ J b = ∅ and

∂Ωh =
⋃
j∈Jb

`bj.

Let i ∈ J . We use the following notation

N b
i = {j ∈ J b : `bj ⊂ ∂Ωi}.

For i ∈ J and j ∈ N b
i we set `ij = `bj. Hence, `ij is either a common face

between Ωi and Ωj (if j ∈ J), or a face of Ωi on ∂Ωh (if j ∈ J b). The
length of `ij is denoted by |`ij| and its unit outer normal by nij = (nxij, n

y
ij).

Furthermore, the area of Ωi is |Ωi|.
Let 0 = t0 < t1 < . . . < tMt = T be a partition of the interval [0, T ] where

Mt ∈ N and T > 0. We call τk = [tk, tk+1] a time step and |τk| is its length.

4.2 Numerical flux

Before we start with the derivation of the finite volume method, we shall in-
troduce the numerical flux, which we will use later. We consider the physical
fluxes p in the direction x and q in the direction y from (4.1). If Jp and Jq
are respectively the Jacobi matrices of p and q, then

P(u,n) = p(u)nx + q(u)ny, (4.2)

is the physical flux in the direction n and its Jacobi matrix is

JP(u,n) = Jp(u)nx + Jq(u)ny.

The physical flux P(u,n) is the amount of the considered substance passing
trough a unit line segment perpendicular to n per unit time. In this section,
we shall define numerical flux, which is the same quantity as the physical
flux in the discrete scheme.
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Before we diagonalise the matrix JP , let us define what a diagonalisable
matrix means. A square matrix M is called diagonalisable if it is similar to a
diagonal matrix, say D, i.e. if there exists a matrix V such that V−1MV = D.
The characterisation of diagonalisable matrices is the following: An n × n
matrix M is diagonalisable if and only if it has n linearly independent eigen-
vectors. Suppose that this is the case and let v1,v2, . . . ,vn be eigenvectors
corresponding respectively to the eigenvalues λ1, λ2, . . . , λn of M. Then for
the matrix V = (v1,v2, . . . ,vn) there exists its inverse V−1 and V−1MV = D
where D = diag(λ1, λ2, . . . , λn). Note that we can comfortably use Matlab
built-in routine eig in order to diagonalise matrices.

Let us suppose that JP(u,n) is diagonalisable matrix with real eigenval-
ues. Then there is a matrix V such that

JP = V−1DV, D = diag(λ1, λ2, . . . , λn).

We separate JP and D into the positive and the negative parts as follows

J±P = V−1D±V, (4.3)

D± = diag(λ±1 , λ
±
2 , . . . , λ

±
n ),

with

λ+
i = max(0, λi),

λ−i = min(0, λi).

Clearly
JP = J+

P + J−P .

The absolute value of JP will be understood as

|JP | = V−1|D|V, |D| = diag(|λ1|, |λ2|, . . . , |λn|).

4.2.1 Examples of numerical fluxes

We will list a few fluxes that are widely used (see also [5], Section 4.4.4).

(a) Steger-Warming numerical flux:

H(u,v,n) = J+
P(u,n)u + J−P(v,n)v. (4.4)

(b) Vijayasundaram numerical flux:

H(u,v,n) = J+
P

(
u + v

2
,n

)
u + J−P

(
u + v

2
,n

)
v.
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(c) Lax-Friedrichs numerical flux:

H(u,v,n) =
1

2

[
P(u,n) + P(v,n)− 1

c
(v − u)

]
,

where c > 0 is suitably chosen and independent of u and v.

(d) Van Leer numerical flux:

H(u,v,n) =
1

2

[
P(u,n) + P(v,n)−

∣∣∣∣JP (u + v

2
,n

)∣∣∣∣ (v − u)

]
.

(4.5)

4.2.2 Properties of the numerical flux

The numerical flux is essential for the correct functioning of the whole algo-
rithm. Often the schemes vary mainly by the choice of the numerical flux.
Let D be the domain of definition of p and q and S1 the unit sphere. We
must be careful for our chosen numerical flux to satisfy the following three
conditions (see also [5], Section 4.4.3):

(1) Continuity:

H is defined and continuous on D ×D × S1.

(2) Consistency:

H(u,u,n) = P(u,n).

(3) Conservativity:

H(u,v,n) = −H(u,v,−n).

Note that these conditions are not implicitly true or false for a given nu-
merical flux. Their satisfaction also depends on the given equation, more
precisely on the properties of the physical fluxes p and q.

4.3 Derivation of a finite volume scheme

We consider the following problem for the equation (4.1):
Find u : Ω× [0, T ]→ Rd, d ∈ N, such that

ut + px(u) + qy(u) = f(x, y, t) in Ω× (0, T ], (4.6)
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which is subject to the initial condition

u = u0(x, y) in Ω× {0}, (4.7)

and the boundary condition

u = b(x, y, t), (4.8)

that needs to be satisfied for each equation of the system on its inlet part
of the boundary. Here the boundary function b, initial function u0, source
function f and physical fluxes p and q are given functions with d components.

4.3.1 Temporal discretisation

At first, we will discretise the time variable by the explicit Euler method.
Integrating the equations (4.6) over τk = [tk, tk+1] yields

u(r, tk+1)− u(r, tk) +

∫
τk

[
px(u) + qy(u)

]
dt =

∫
τk

f(r, t) dt

where r = (x, y) is the location vector. Following the Euler method, we
approximate the integral on the left-hand side by the left endpoint rule and
join the equations (4.7) and (4.8) to obtain the semi-discrete scheme:

uk+1 = uk − |τk|
[
px(u

k) + qy(u
k)
]

+

∫
τk

f(r, t) dt in Ωi, (4.9)

which is subject to the initial and boundary conditions

u0(r) = u0(r) r ∈ Ωi, (4.10)

uk(rb) = b(rb, tk) rb ∈ ∂Ωi.

The boundary condition is again prescribed for each of the d equations only
on their inlet part of the boundary. The function uk is an approximation of
the exact solution u at time tk, that means

uk(r) ≈ u(r, tk).

4.3.2 Spatial discretisation

Now, we will move on to the finite volume disretisation of the spatial variable.
To this end, we integrate the equations (4.9) and (4.10) over a triangle Ωi,
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i ∈ J ,∫
Ωi

uk+1 dr =

∫
Ωi

uk dr− |τk|
∫
Ωi

[
px
(
uk
)

+ qy
(
uk
)]
dr + |Ωi|Fk

i , (4.11)

∫
Ωi

u0 dr =

∫
Ωi

u0 dr, (4.12)

where

Fk
i =

1

|Ωi|

∫
τk

∫
Ωi

f(r, t) dr dt. (4.13)

We rearrange the third term in the equation (4.11) as follows∫
Ωi

[
px
(
uk
)

+ qy
(
uk
)]
dr =

∫
∂Ωi

[
p
(
uk
)
nx + q

(
uk
)
ny
]
d`

=

∫
∂Ωi

P
(
uk,n

)
d` =

∑
j∈Ni∪Nb

i

∫
`ij

P
(
uk,nij

)
d`,

with d` = |dr| =
√

(dx)2 − (dy)2 and the outer normal n(r) = (nx(r), ny(r))
of ∂Ωi. Recall that nij is the outer normal of `ij. The first equality follows
from Green’s theorem. The integrand in the second term is nothing else
than the physical flux P in the direction n, see (4.2). Finally, instead of
integrating over the circumference of Ωi, we can integrate over each of the
three faces of the triangle separately, hence the third equality. Plugging the
acquired expression into the equation (4.11) and dividing it by the area |Ωi|
we obtain

1

|Ωi|

∫
Ωi

uk+1 dr =
1

|Ωi|

∫
Ωi

uk dr− |τk|
|Ωi|

∑
j∈Ni∪Nb

i

∫
`ij

P
(
uk,nij

)
d`+ Fk

i ,

(4.14)

for all i ∈ J . We denote the approximation of the integral average of uk over
|Ωi| as

Uk
i ≈

1

|Ωi|

∫
Ωi

uk dr.

Now, we will focus on the approximation of
∫
P
(
uk,nij

)
d`. At each

time step k, we approximate uk by a piecewise constant function ukh such
that ukh = Uk

i in the interior of Ωi, i ∈ J . If j ∈ J (i.e. `ij is not a part
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of boundary ∂Ωh), then the function ukh has the value Uk
i on the left hand

side and Uk
j on the right hand side of the line segment `ij. We plug the two

integral averages Uk
i and Uk

j that surround `ij into the numerical flux H (see
section 4.2)

H
(
Uk
i ,U

k
j ,nij

)
≈ 1

|`ij|

∫
`ij

P
(
uk,nij

)
d` for i, j ∈ J.

In the case where j ∈ J b (i.e. `ij = `bj is a part of the boundary ∂Ωh), ukh
has again the value Uk

i on the left hand side of `ij. As a value on the right
hand side, we will use the integral average of the boundary function b over
`ij and plug that into the numerical flux H

H
(

Uk
i ,

1

|`ij|

∫
`ij

b(r, tk)

)
≈ 1

|`ij|

∫
`ij

P
(
uk,nij

)
d` for i ∈ J, j ∈ J b.

We will unify the notation of approximation of integral averages of uk as
follows:

Uk
j ≈



1

|Ωj|

∫
Ωj

uk dr for j ∈ J,

1

|`bj|

∫
`bj

b(r, tk) dr for j ∈ J b.
(4.15)

Then we can write

H
(
Uk
i ,U

k
j ,nij

)
≈ 1

|`ij|

∫
`ij

P
(
uk,nij

)
d` for i ∈ J, j ∈ J ∪ J b. (4.16)

Plugging approximations (4.15) and (4.16) into equations (4.12) and (4.14)
we derive the fully-discrete scheme

Uk
i =

1

|`bi |

∫
`bi

b(r, tk) dr i ∈ J b, (4.17)

U0
i =

1

|Ωi|

∫
Ωi

u0 dr, i ∈ J, (4.18)

Uk+1
i = Uk

i −
|τk|
|Ωi|

∑
j∈Ni∪Nb

i

|`ij|H
(
Uk
i ,U

k
j ,nij

)
+ Fk

i i ∈ J. (4.19)
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Let us recall that Ni ⊂ J , N b
i ⊂ J b and J ∩ J b = ∅. This completes our

main target of this chapter, as the three equations above prescribe the finite
volume method for the transfer equation (4.1). The only work left is to
approximate the integrals in (4.13), (4.17) and (4.18).

4.3.3 Approximation of integrals

Since the values of Uk
i are given recursively by the equation (4.19) for i ∈ J

and k ≥ 1, we need to evaluate U0
i (the equation (4.18)) and Uk

i for i ∈ Jb
(the equation (4.17)). While we can employ numerical quadratures of an
arbitrary order, we will describe only the one-point rules here.

In order to approximate the integral in (4.18), we take the value of u0 at
the centroid of Ωi. If a = (xa, ya), b = (xb, yb), c = (xc, yc) are vertexes of
Ωi, then

ri =
a + b + c

3
=

1

3
(xa + xb + xc, ya + yb + yc) , (4.20)

is the centroid of Ωi and

|Ωi| · u0(ri) ≈
∫

Ωi

u0(r) dr.

Therefore we set
U0
i = u0(ri), i ∈ J.

We approximate the integral in (4.17) by the midpoint rule

Uk
j = b(rj, tk), j ∈ J b,

where rj is the center of the line segment `bj.
It remains to evaluate the source term (4.13). We approximate the inte-

gral with respect to r by the value at the centroid of Ωi times its area and
the integral with respect to t by the left endpoint rule. Hence we have

Fk
i = |τk|f(ri, tk), i ∈ J.

4.4 Courant-Friedrichs-Lewy condition

In two dimensions the Courant-Friedrichs-Lewy condition reads

|vx||τk|
∆x

+
|vy||τk|

∆y
≤ 1.
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Here ∆x and ∆y are lengths of the interval of the spatial partition and vx

and vy are velocities by which the solution propagates in x and y direction,
respectively. As we have the triangular partition, we do not explicitly have
the lengths ∆x and ∆y. On the triangle Ωi, we approximate the lengths by
the diameter di of the incircle of Ωi, i.e.

di ≈ ∆x ≈ ∆y.

This yields

|τk|
di

(
|vx|+ |vy|

)
≤ 1.

The absolute values of velocities vx and vy are lower or equal to the absolute
value of maximum eigenvalues λpmax

(
Uk
i

)
of Jp

(
Uk
i

)
and λqmax

(
Uk
i

)
of Jq

(
Uk
i

)
,

respectively. Taking this into account the Courant-Friedrichs-Lewy condition
becomes

|τk| ≤
di∣∣λpmax

(
Uk
i

)∣∣+
∣∣λqmax

(
Uk
i

)∣∣ . (4.21)

4.5 Test of convergence

We will test our derived scheme on a nonlinear scalar and a linear vector
problems. Firstly, let us set the parameters for the solver. We use Matlab
built-in routine initmesh to generate the partition Th of Ωh, with the maxi-
mum edge size h. At each time step tk we choose the longest time step |τk|
such that the Courant-Friedrichs-Lewy condition holds true for a given h.

Let uh denote the approximate solution generated by our solver and let
the residuum at time tk be

resk =

∫
Ωh

∣∣uh(r, tk)− uh(r, tk−1)
∣∣ dr =

∑
i∈J

|Ωi|
∣∣Uk

i −Uk−1
i

∣∣, (4.22)

for k ≥ 1. We end the calculation when the residuum decreases below 10−4.
Let K ∈ N0 be the smallest number such that resK < 10−4. We consider
the approximate solution at time tK to be at steady state. As a measure of
accuracy of the approximate solution, we take the L1-error at steady state,
i.e.

errh =
∑
i∈J

|Ωi|
∣∣u(ri)−UK

i

∣∣ ≈ ∫
Ωh

∣∣u(r)− uh(r, tK)
∣∣ dr,
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where u is the exact steady-state solution and ri is the centroid (4.20) of Ωi.
The index h in errh is the maximum edge size of the spatial partition Th. We
define the convergence rate as follows

rateh = log2

(
err2h

errh

)
. (4.23)

Since we were using the first order approximation throughout the derivation
of the finite volume scheme, we expect the convergence rate to be around
one.

4.5.1 Exemplary computation for a nonlinear scalar
equation

We consider the scalar analogy of the problem given by equations (4.6), (4.7),
(4.8):

ut + px(u) + qy(u) = f(x, y, t) in Ω× (0, T ), (4.24)

u = b(x, y, t) on ∂Ω× (0, T ),

u = u0(x, y) in Ω× {0},

where f, p, q, b and u0 are given scalar functions. Here we have the flux

P(u,n) = p(u)nx + q(u)ny,

which is a scalar. Thus, the Jacobi matrix JP also becomes scalar and, in
this subsection, we will denote it by P, i.e.

P(u,n) =
∂P(u,n)

∂u
= p′(u)nx + q′(u)ny.

We will be using the Van Leer flux (4.5):

H(u, v,n) =
1

2

[
P(u,n) + P(v,n)−

∣∣∣∣P(u+ v

2
,n

)∣∣∣∣ (v − u)

]
.

In order to test the scheme given by equations (4.17), (4.18) and (4.19), we
need to choose f, p, q, b and u0. Let Ω = Ωh = [0, 1]× [0, 1] and let

u0(x, y) =
1

2
x2 +

1

4
y,

p(u) =
1

3
u3,

q(u) =
1

4
u2 +

1

2
u.
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Consequently we have

p′(u) = u2,

q′(u) =
1

2
(u+ 1).

We take the stationary function

u(x, y) = sin(πx) + 1− e−
π
2
y,

to be the exact solution of (4.24). It follows that the source term takes the
form

f(x, y) = π cos2(πx)− π

4
e−πy +

1

2
,

and the boundary condition takes the form

u(x, 0) = sin(πx) + 1,

u(x, 1) = sin(πx) + 1− e−
π
2 ,

u(0, y) = u(1, y) = 1− e−
π
2
y.

It is convenient to choose the time step to be the largest obeying (4.21):

|τk| = min
i

(
di∣∣g′(Uk

i

)∣∣+
∣∣h′(Uk

i

)∣∣
)
,

where di is the indiameter of Ωi.

Now, we pretend not to know the exact solution u of (4.24) and solve the
problem by the finite volume solver for five different meshes with maximum
edge size h = 1/2, 1/4, 1/8, 1/16, 1/32, thereby producing five approximate
solutions uh. The error of the approximate stationary solution uh(·, tK) is
plotted in Figure 4.1 and tabulated in Table 4.1. The table also contains
the number of time steps which needed to be taken to reach steady state
along with the convergence rates. Let us note that the number of time steps
K = Kh depends on h. We emphasise that all the errors are taken at the last
time step (at steady state) and so we need to run the whole algorithm for
each of the five tabulated errors separately. We can see that the convergence
rate is slightly lower than one, which means that the solver for this set of
parameters converged somewhat slower than linearly.
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h Kh errh rateh
1/2 98 0.235
1/4 125 0.135 0.796
1/8 146 0.0595 1.18
1/16 320 0.0325 0.871
1/32 656 0.0189 0.782

Table 4.1: The error, convergence rate and number of time steps at steady
state of the scalar problem (4.24) for various values of h.

Figure 4.1: The error at steady state of the scalar problem (4.24) plotted for
h = 1/2, 1/4, 1/8, 1/16, 1/32. The x and the y axes are proportional to
log10 h and log10(errh), respectively.
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4.5.2 Exemplary computation for a linear vector equa-
tion

We consider the linear analogy of the problem given by equations (4.6), (4.7),
(4.8) with

p(u) = Au,

q(u) = Bu.

Here A, B ∈ Rd are diagonalisable matrices. The flux becomes

P(u,n) = Aunx + Buny,

and its Jacobi matrix
JP(n) = Anx + Bny,

is independent of u. This results in the equivalence of Steger-Warming,
Vijayasundaram, and Van Leer numerical fluxes. In the linear case, all of the
three numerical fluxes can be written in the following form

H(u,v,n) = J+
P(n)u + J−P(n)v.

For our experiment, we choose dim = 2, Ω = Ωh = [0, 1]× [0, 1] and

A =

(
1 0.5

0.2 0.5

)
, B =

(
1 0.5

0.7 1.1

)
.

Furthermore we choose the initial condition as

u0 ≡
(

1

1

)
.

We take

u(x, y) =

(
sin(πx) sin(πy)

15(x− x2)(y − y2)

)
to be the exact solution. We can now derive the source term by plugging the
exact solution into (4.6). It is easy to see that we have the zero boundary
condition b ≡ 0. We choose the time step to be the largest obeying the
condition (4.21):

|τ | = mini di∣∣λAmax

∣∣+
∣∣λBmax

∣∣ . (4.25)
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Here di is again the indiameter of Ωi, λ
A
max is the maximum eigenvalue of

A and λBmax is the maxim eigenvalue of B. In the linear case, Courant-
Friedrichs-Lewy condition does not depend on k, therefore there is no reason
not to choose the mesh to be uniform with |τ | = |τ0| = |τ1| = . . .

Again, we proceed the algorithm for five partitions of Ω with h = 1/2,
1/4, 1/8, 1/16, 1/32. The error at steady state, the number of time steps
needed to reach steady state and the convergence rate are shown in Table
4.2. The error is also plotted in Figure 4.2. Here, the acquired convergence
rate confirm the suggested linear convergence by having its value close to
one.

first component second component
h Kh err1

h rate1
h err2

h rate2
h

1/2 54 0.248 0.198
1/4 89 0.135 0.883 0.119 0.74
1/8 152 0.0676 0.992 0.0718 0.725
1/16 317 0.0369 0.873 0.0398 0.852
1/32 568 0.0199 0.893 0.0206 0.951

Table 4.2: The error, convergence rate and number of time steps at steady
state of the vector problem for various values of h. The upper indexes denote
the component numbers.
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Figure 4.2: The error at steady state of the vector problem plotted for h =
1/2, 1/4, 1/8, 1/16, 1/32. The x and the y axes are proportional to log10 h
and log10(errh), respectively.

40



Chapter 5

Finite volume method for the
equation of radiative transfer

The discrete ordinate method, which was introduced in Section 3.1, is one of
the first developed as well as simplest methods to discretise direction in di-
rectional dependent equations. This method suffers from a number of serious
drawbacks, for instance from the ray effect or false scattering. Moreover, we
cannot choose the directions arbitrarily, but rather we have to choose them
along with their weights according to quadrature rules, in order to obtain
better agreement with the exact solution.

These disadvantages do not perish, even if we discretise space by the finite
volume method, instead of the finite difference method, which is the analogy
of the discrete ordinate method in space. The natural step, which has already
been taken, is to develop a complete finite volume scheme. All the mentioned
drawbacks do not disappear completely, nevertheless their influence should
at least decrease.

While the finite volume method has been a standard method for the spa-
tial discretisasion for some time now, first applications to direction started
to appear only two decades ago. In the present chapter, we will derive the
finite volume scheme for the equation of radiative transfer in both space and
direction for unstructured triangular partitions. We will consider only two
spatial and one directional dimensions. The finite volume method for radia-
tive transfer equation in two dimensions was also derived and numerically
tested by Kim and coworkers [8] and Modest [13].
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5.1 Notation

Spectral radiance I is the unknown quantity in the equation of radiative
transfer. In Chapter 2, we had 7-dimensional spectral radiance I, since we
considered three spatial, two directional, one spectral and one temporal di-
mension. Here we consider only 2-dimensional space and direction, spectrum
and time are each 1-dimensional. Again, we suppress the spectral depen-
dence, since the radiative transfer equation is not coupled with respect to
the spectral variable. Thus, we take only four dimensions of I into account.
More often then not, we refer to spectral radiance only as radiance.

Whenever we do not explicitly show the dependence of I, we assume

I = I(r, ϕ, t).

The symbol r ∈ Ω is the location vector, ϕ ∈ [0, 2π) is angle and t ∈ (0, t0]
is time. Here Ω is a domain in R2 and t0 > 0. Notice that we use angle ϕ
instead of its associated unit directional vector s as the directional variable.
Angle and its associated unit directional vector are related through

s(ϕ) =
(
sx(ϕ), sy(ϕ)

)
= (cosϕ, sinϕ).

We will refer to the flux

P
(
I, ϕ,n

)
= s · n I,

also as the physical flux to distinguish it from the numerical flux. The phys-
ical flux is the overall energy of particles traveling in the direction s that
penetrate through a unit line segment perpendicular to n per unit time and
unit angle.

We consider the spatial and temporal partitions defined in Section 4.1. We
define the directional partition as a partition 0 = ϕ0 < ϕ1 < . . . < ϕMϕ = 2π
of the interval [0, 2π] with the control angle Φm = (ϕm, ϕm+1), such that the
length of each control angle is lower or equal to π, i.e.

|Φm| = |ϕm+1 − ϕm| ≤ π, (5.1)

where m ∈ {0, 1, . . . , Mϕ − 1}. We introduce the last condition only to
simplify further derivations. Its reason will be apparent later in this chapter.
Furthermore, we denote a unit directional vector associated with ϕm by sm,
that means

sm =
(
sxm, s

y
m

)
=
(

cosϕm, sinϕm
)
,

where m = 0, 1, . . . ,Mϕ. Let us note that Φm is not an angle, even though
we call it the control angle.
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5.2 Initial-boundary value problem

We shall consider the 2-dimensional version of the equation (2.11), the equa-
tion of radiative transfer, namely

1

c

∂I

∂t
+ s · ∇I = C(I), (5.2)

with the collision term

C(I) = σaB − (σa + σs)I +
σs

2π

2π∫
0

Ψ(ϕ′, ϕ)I(r, ϕ′, t) dϕ′, (5.3)

which is subject to the initial condition

I(r, ϕ, 0) = I0(r, ϕ), (5.4)

and the boundary condition

I(rb, ϕ, t) = b(rb, ϕ, t) for s · nb < 0.

Here rb ∈ ∂Ω is the location and nb is the outer normal of the boundary, c is
the speed of light and I0 and b are given functions. The boundary condition is
prescribed only for incoming radiance. On the other hand if s ·nb ≥ 0, which
means that I is outgoing, the radiation freely leaves the domain without
further requirements. Modest [13] described more complicated boundary
conditions for a number of reflective surfaces.

All the symbols in the collision term C are the same as in the equation
(2.11) and described in Section 2.4. We have only substituted s for ϕ and
s′ for ϕ′ and replaced the constant 4π with 2π, since in two dimensions the
integral over all directions

∫ 2π

0
dϕ is equal to 2π. Note that we must modify

the scattering phase function Ψ accordingly to the substitution.
In vacuum, the collision term C is equal to zero. The equation (5.2) then

becomes confusingly similar to the transport equation. The difference be-
tween the transport equation and the equation (5.2) with the zero right-hand
side is that here s is not constant, but rather it depends on the directional
variable ϕ. This makes a fundamental change in the way we solve (5.2) com-
pare to the transport equation, as we also need to discretise the directional
variable.

5.3 Temporal discretisation

First of all, we will discretise time by the Euler method. We integrate (5.2)
over τk and approximate the integrals of the flux and the collision term by
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the left endpoint rule, thereby getting the partially discrete scheme

1

c

(
Ik+1 − Ik

)
+ |τk|s · ∇Ik = |τk|C(Ik), (5.5)

where Ik is an approximation of I at time tk, i.e.

Ik(r, ϕ) ≈ I(r, ϕ, tk).

Here r ∈ Ωi and ϕ ∈ [0, 2π). The initial condition is

I0(r, ϕ) = I0(r, ϕ), (5.6)

and the boundary condition is

Ik(rb, ϕ) = b(rb, ϕ, tk), (5.7)

for s · nb < 0.

5.4 Spatial and directional discretisation

In this section, we shall discretise space and direction both by finite volume
method. Let us first note, that we use the notation and definitions developed
in Section 4.1. Integrating the equation (5.5) and (5.6) over Ωi ×Φm we get

1

c

∫
Φm

∫
Ωi

(
Ik+1 − Ik

)
dr dϕ+ |τk|

∫
Φm

∫
Ωi

s · ∇Ik dr dϕ = |τk|
∫

Φm

∫
Ωi

C(Ik)dr dϕ,

(5.8)

with the initial condition∫
Φm

∫
Ωi

I0 dr dϕ =

∫
Φm

∫
Ωi

I0 dr dϕ. (5.9)

We rearrange the second double integral in (5.8) by employing Green’s the-
orem as follows∫
Φm

∫
Ωi

s · ∇Ik dr dϕ =

∫
Φm

∫
∂Ωi

s · n Ik d` dϕ =
∑

j∈Ni∪Nb
i

∫
Φm

∫
`ij

s · nij Ik d` dϕ.

(5.10)
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Let us remind that n is the outer normal of ∂Ωi and nij the normal of `ij.
Plugging (5.10) into the equation (5.8) and multiplying it by c, we obtain∫

Φm

∫
Ωi

Ik+1 dr dϕ =

∫
Φm

∫
Ωi

Ik dr dϕ− c|τk|
∑

j∈Ni∪Nb
i

∫
Φm

∫
`ij

s · nij Ik d` dϕ

+ c|τk|
∫

Φm

∫
Ωi

C(Ik) dr dϕ. (5.11)

We denote an approximation of the integral average of Ik over Ωj × Φm or
`bj × Φm by Īkj,m, hence

Īkj,m =



1

|Φm||Ωj|

∫
Φm

∫
Ωj

Ik(r, ϕ) dr dϕ for j ∈ J,

1

|Φm||`bj|

∫
Φm

∫
`bj

b(r, ϕ, tk) dr dϕ for j ∈ J b.
(5.12)

At each time step tk, we approximate radiance Ik by a piecewise constant
function Ikh such that Ikh = Īki,m in the interior of each Ωi × Φm. The latter
integral in (5.12) is introduced because we need two values of Ikh on each edge
`ij, out of which we compute numerical flux. For j ∈ J b however, `bj lies on
the boundary and so there is just one element adjacent to `bj. We replace the
integral average of the other element by the integral average of the boundary
function.

The integral
∫
`ij

s ·nijIk d` is the energy of particles penetrating through

`ij per unit time and unit angle in the direction s. We approximate the
integral by means of the numerical flux H, particular choice of which we
discuss later. To be specific, we plug the values of the approximate solution
Ikh adjacent to `ij into H, i.e.

H
(
Īki,m, Ī

k
j,m,nij

)
≈ 1

|`ij|

∫
`ij

s · nij Ik d`. (5.13)

Furthermore, we denote the integral of the numerical flux H over Φm as Ĥm,
thus

Ĥm

(
Īki,m, Ī

k
j,m,nij

)
≈ 1

|`ij|

∫
Φm

∫
`ij

s · nij Ik d` dϕ. (5.14)
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The integral on the right-hand side (excluding the preceding constant) is the
energy of particles penetrating through `ij in all direction of the control angle

Φm per unit time and |`ij|Ĥm is the same quantity in the discrete scheme.

We refer to Ĥm as the angular numerical flux.
To finalise our goal, we plug (5.14) and the first expression in (5.12) into

(5.11), which together with (5.9) and the second expression in (5.12) gives
the fully discrete scheme

Īk+1
i,m = Īki,m −

c|τk|
|Φm||Ωi|

∑
j∈Ni∪Nb

i

Ĥm

(
Īki,m, Ī

k
j,m,nij

)
+ c|τk|C̄k

i,m i ∈ J,

Ī0
i,m =

1

|Φm||Ωi|

∫
Φm

∫
Ωi

I0(r, ϕ) dr dϕ i ∈ J,

Īki,m =
1

|Φm||`bi |

∫
Φm

∫
`bi

b(r, ϕ, tk) dr dϕ i ∈ J b,

C̄k
i,m =

1

|Φm||Ωi|

∫
Φm

∫
Ωi

C(Ikh) dr dϕ, i ∈ J.

(5.15)

Let us remind that Ni ⊂ J , N b
i ⊂ J b and J ∩ J b = ∅.

5.5 Collision term and its integral average

To be able to apply the scheme (5.15), we need to approximate the two double

integrals by a suitable numerical quadrature and express C̄k
i,m and Ĥm in a

more transparent form. Let us begin with the integral average C̄k
i,m. It is

defined by

C̄k
i,m =

1

|Φm||Ωi|

∫
Φm

∫
Ωi

C(Ikh) dr dϕ,

with the collision term (5.3), namely

C(I) = σaB − (σa + σs)I +
σs

2π

2π∫
0

Ψ(ϕ′, ϕ)I(r, ϕ′, t) dϕ′. (5.16)

Since the approximate solution Ikh is constant in each Ωi×Φm, the integration
is fairly straightforward for isotropic scattering, Φ ≡ 1. In this case, the
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integral average C̄k
i,m reads

C̄k
i,m = σaB − (σa + σs)Ī

k
i,m + σs

Mϕ−1∑
n=0

Īki,n. (5.17)

In general, it is rather complicated to integrate the last term in (5.16), let us
therefore deal with it first. We simplify the integral over the term as follows∫
Φm

∫
Ωi

2π∫
0

Ψ(ϕ′, ϕ)Ikh(r, ϕ′) dϕ′ dr dϕ =

∫
Φm

∫
Ωi

Mϕ−1∑
n=0

∫
Φn

Ψ(ϕ′, ϕ)Īki,n dϕ
′ dr dϕ

= |Ωi|
Mϕ−1∑
n=0

Īki,n

∫
Φm

∫
Φn

Ψ(ϕ′, ϕ) dϕ′ dϕ.

Thus, the general formula for C̄k
i,m reads

C̄k
i,m = σaB − (σa + σs)Ī

k
i,m +

σs

2π

Mϕ−1∑
n=0

Īki,nΨ̄m,n, (5.18)

with

Ψ̄m,n =
1

|Φm|

∫
Φm

∫
Φn

Ψ(ϕ′, ϕ) dϕ′ dϕ. (5.19)

where the double integral needs to be either approximated with the aid of a
sufficiently accurate numerical quadrature, or calculated exactly.

5.6 Angular numerical flux

The target of this subsection is to express the angular numerical flux Ĥm

in a form that allows us to implement it directly as opposed to (5.14). To
this end, we need to integrate the numerical flux over each control angle Φm.
Consider the flux on a face `ij of a triangle Ωi. The flux may be incoming
in one part of the control angle and outgoing in the other. This is called the
control angle overlap. This makes the integration more complicated and so
it is a common practice to use the bold approximation. This means, that the
flux is considered to be either incoming or outgoing the the whole control
angle. Here, we will develop an exact treatment of the control angle overlap.
Kim and coworkers [8] revise three types of manipulation of control angle
overlap.
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We have a scalar equation and so the physical flux

P(I, ϕ,n) = s · n I

is also scalar. Therefore, its Jacobi matrix becomes an ordinary derivative.
Moreover P is linear, hence its derivative P is constant with respect to I, i.e.

P(ϕ,n) =
∂P(I, ϕ,n)

∂I
= s · n.

We will use the numerical flux according to Steger-Warming scheme, see
(4.4), i.e

H(U, V,n) = P+(ϕ,n)U + P−(ϕ,n)V,

which splits the numerical flux into the outgoing and incoming parts. Note
that in this case, for a linear physical flux, the Steger-Warming numerical flux
is equivalent to Vijayasundaram and Van Leer numerical fluxes. The positive
and negative parts of P are defined by (4.3) and for a scalar equation they
become

P+(ϕ,n) = max
{

0, P(ϕ,n)
}
,

P−(ϕ,n) = min
{

0, P(ϕ,n)
}
.

Furthermore, we define

Φ+
m = Φ+

m(n) = {ϕ ∈ Φm : P(ϕ,n) < 0}, (5.20)

Φ−m = Φ−m(n) = {ϕ ∈ Φm : P(ϕ,n) > 0}. (5.21)

Suppose we have an edge `ij of a triangle Ωi with the outer normal nij. The
flux P(ϕ,nij) is outgoing in the set Φ+

m(nij) and incoming in Φ−m(nij) with

respect to Ωi. If U and V are constant in Φm, then Ĥm satisfies:

Ĥm(U, V,n) =

∫
Φm

H(U, V,n) dϕ = U

∫
Φm

P+(ϕ,n) dϕ+ V

∫
Φm

P−(ϕ,n) dϕ

= U

∫
Φ+
m(n)

P(ϕ,n) dϕ+ V

∫
Φ−m(n)

P(ϕ,n) dϕ. (5.22)

5.6.1 Incoming and outgoing angular numerical flux

Let us sum up what we have learnt so far. Thanks to (5.22) we can express

the angular numerical flux Ĥm as

Ĥm(Īki,m, Ī
k
j,m,nij) = Īki,m

∫
Φ+
m

s · nij dϕ+ Īkj,m

∫
Φ−m

s · nij dϕ. (5.23)
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It follows from (5.20) and (5.21) that s · nij is positive in Φ+
mand negative

in Φ−m. Since Ĥm is subtracted in the scheme (5.15), the first term in (5.23)
is the outgoing part and the second is the incoming part of the angular
numerical flux with respect to Ωi. Note that in this section we always assume
Φ±m = Φ±m(nij).

We can now substitute Ĥm in the finite-volume scheme (5.15). However,
it is still unclear how to calculate the integrals on the right-hand side of
(5.23). The next step therefore is to evaluate these integrals. Completing
the dot product s · nij gives us∫

Φ±m

s · nij dϕ = nxij

∫
Φ±m

sx(ϕ) dϕ+ nyij

∫
Φ±m

sy(ϕ) dϕ. (5.24)

Let us remind that

s(ϕ) =
(
sx(ϕ), sy(ϕ)

)
= (cosϕ, sinϕ),

sm =
(
sxm, s

y
m

)
= (cosϕm, sinϕm).

We have defined the directional partition such that |Φm| ≤ π, see (5.1).
Hence we have only the two following cases:

1. the numerical flux is either incoming, or outgoing in the whole interval
Φm = (ϕm, ϕm+1), or

2. there are two intervals (ϕm, ϕij) and (ϕij, ϕm+1), such that the numer-
ical flux is incoming in one and outgoing in the other.

Before discussing each of the cases in more detail, we integrate sx and sy

over each of the three intervals (ϕm, ϕm+1), (ϕm, ϕij) and (ϕij, ϕm+1). Let us
start with (ϕm, ϕm+1):

∫
Φm

sx(ϕ) dϕ =

ϕm+1∫
ϕm

cosϕ dϕ = sinϕm+1 − sinϕm = sym+1 − sym,

∫
Φm

sy(ϕ) dϕ =

ϕm+1∫
ϕm

sinϕ dϕ = cosϕm − cosϕm+1 = sxm − sxm+1.

Similarly we integrate sx and sy over (ϕm, ϕij) and (ϕij, ϕm+1) and hence
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obtain

ϕij∫
ϕm

sx(ϕ) dϕ = syij − sym,
ϕij∫

ϕm

sy(ϕ) dϕ = sxm − sxij,

ϕm+1∫
ϕij

sx(ϕ) dϕ = sym+1 − s
y
ij,

ϕm+1∫
ϕij

sy(ϕ) dϕ = sxij − sxm+1.

If we now wish to substitute the integrals in the right-hand side of (5.24) for
the obtained expressions, we need to know in which one of the intervals the
numerical flux is incoming and in which one it is outgoing. To this end, we
distinguish the four following cases:

(i) If sm · nij ≥ 0 and sm+1 · nij ≥ 0, then

Φ+
m(nij) = Φm,

Φ−m(nij) = ∅,

and ∫
Φ+
m

s · nij dϕ = nxij
(
sym+1 − sym

)
+ nyij

(
sxm − sxm+1

)
,

∫
Φ−m

s · nij dϕ = 0.

(ii) If sm · nij ≤ 0 and sm+1 · nij ≤ 0, then

Φ+
m(nij) = ∅,

Φ−m(nij) = Φm,

and ∫
Φ+
m

s · nij dϕ = 0,

∫
Φ−m

s · nij dϕ = nxij
(
sym+1 − sym

)
+ nyij

(
sxm − sxm+1

)
.
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(iii) If sm · nij > 0 and sm+1 · nij < 0, then

Φ+
m(nij) = (ϕm, ϕij),

Φ−m(nij) = (ϕij, ϕm+1),

and ∫
Φ+
m

s · nij dϕ = nxij
(
syij − sym

)
+ nyij

(
sxm − sxij

)
,

∫
Φ−m

s · nij dϕ = nxij
(
sym+1 − s

y
ij

)
+ nyij

(
sxij − sxm+1

)
.

Here ϕij denotes the angle of the vector sij = (−nyij, nxij). In other
words sxij = −nyij = cosϕij and syij = nxij = sinϕij.

(iv) If sm · nij < 0 and sm+1 · nij > 0, then

Φ+
m(nij) = (ϕij, ϕm+1),

Φ−m(nij) = (ϕm, ϕij),

and ∫
Φ+
m

s · nij dϕ = nxij
(
sym+1 − s

y
ij

)
+ nyij

(
sxij − sxm+1

)
,

∫
Φ−m

s · nij dϕ = nxij
(
syij − sym

)
+ nyij

(
sxm − sxij

)
.

Here ϕij denotes the angle of the vector sij = (nyij,−nxij). In other
words sxij = nyij = cosϕij and syij = −nxij = sinϕij.

This finalises our goal in this subsection, as we have evaluated the integrals
in (5.23) for each of the four cases, thereby calculating Ĥm. We have also
reached the main target of the whole chapter, since plugging (5.23) into
(5.15) gives us the complete finite volume scheme for the equation of radiative
transfer.
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5.7 Finite volume scheme

We shall summarise our finite volume scheme for the equation of radiative
transfer. Bringing (5.15), (5.18), (5.19) and (5.23) together gives us

Īk+1
i,m = Īki,m −

c|τk|
|Φm||Ωi|

∑
j∈Ni∪Nb

i

Ĥm

(
Īki,m, Ī

k
j,m,nij

)
+ c|τk|C̄k

i,m i ∈ J,

Ī0
i,m =

1

|Φm||Ωi|

∫
Φm

∫
Ωi

I0(r, ϕ) dr dϕ i ∈ J,

Īki,m =
1

|Φm||`bi |

∫
Φm

∫
`bi

b(r, ϕ, tk) dr dϕ i ∈ J b,

C̄k
i,m = σaB − (σa + σs)Ī

k
i,m +

σs

2π

Mϕ−1∑
n=0

Īki,nΨ̄m,n, i ∈ J.

(5.25)

where

Ψ̄m,n =
1

|Φm|

∫
Φm

∫
Φn

Ψ(ϕ′, ϕ) dϕ′ dϕ,

and

Ĥm(Īki,m, Ī
k
j,m,nij) = Īki,mP̂

+

m(nij) + Īkj,mP̂
−
m(nij).

Here the functions P̂
+

m and P̂
−
m are as follows:

(i) For sm · nij ≥ 0 and sm+1 · nij ≥ 0, we set

P̂
+

m(nij) = nxij
(
sym+1 − sym

)
+ nyij

(
sxm − sxm+1

)
,

P̂
−
m(nij) = 0.

(ii) For sm · nij ≤ 0 and sm+1 · nij ≤ 0, we set

P̂
+

m(nij) = 0,

P̂
−
m(nij) = nxij

(
sym+1 − sym

)
+ nyij

(
sxm − sxm+1

)
.

(iii) For sm · nij > 0 and sm+1 · nij < 0, we set sij = (−nyij, nxij) and

P̂
+

m(nij) = nxij
(
syij − sym

)
+ nyij

(
sxm − sxij

)
,

P̂
−
m(nij) = nxij

(
sym+1 − s

y
ij

)
+ nyij

(
sxij − sxm+1

)
.
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(iv) For sm · nij < 0 and sm+1 · nij > 0, we set sij = (nyij,−nxij)

P̂
+

m(nij) = nxij
(
sym+1 − s

y
ij

)
+ nyij

(
sxij − sxm+1

)
,

P̂
−
m(nij) = nxij

(
syij − sym

)
+ nyij

(
sxm − sxij

)
.

When all the values Īki,m are calculated, we can readily reconstruct the
piecewise constant approximation Ih of I as follows

Ih(r, ϕ, t) = Īki,m for all r ∈ Ωi, ϕ ∈ Φm, t ∈ τk,

where i ∈ J , m ∈ {0, 1, . . . ,Mϕ} and k ∈ {0, 1, . . . ,Mt}.
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Chapter 6

Numerical results

In this chapter, we shall first apply the scheme on a few test problems and
then preform a test of convergence. The problems are designed merely to
test the mathematical description of the method rather than to reconstruct
real physical conditions with realistic coefficients. Are aim will be to examine
how absorbing and scattering regions effect the solution.

In all the test problems, we assume that there is no surface on the bound-
ary of the considered domain or that the boundary consists of the black sur-
face (which both have the same consequences). All the outgoing radiation
therefore freely leaves the boundary of the domain without being reflected.

Moreover, we consider isotropic scattering, Ψ ≡ 1, and replace the emis-
sion term σaB with a source term S in the radiation transfer equation (5.2).
This means that we will be solving the equation

1

c

∂I

∂t
+ s · ∇I = S(r, ϕ)− (σa + σs)I +

σs

2π

2π∫
0

I(r, ϕ′, t) dϕ′, (6.1)

in the following test problems. The reason for replacing the emission term
is that we are not trying to reconstruct real physical conditions, therefore it
does not make much sense to make up an artificial temperature field in order
to fit are needs. Instead, we directly prescribe the emitted radiation. Let us
notice, that now, when the phase function has disappeared, the integral on
the right-hand has become irradiance E =

∫
I dϕ.

Subsequent figures will plot irradiance rather than radiance for greater
data transparency. We obtain an approximation of irradiance as follows

Eh =

2π∫
0

Ih dϕ =

Mϕ−1∑
m=0

|Φm|Ikh .
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For more information about the relation between radiance I and irradiance E
see Section 2.2.

The radiative transfer equation is linear and so the Courant-Friedrichs-
Lewy condition, which we covered in Section 4.4, does not change in time.
We therefore choose a uniform temporal partition. The expression (4.21),
which is an approximation of the Courant-Friedrichs-Lewy condition, in the
case of radiative transfer equation reads

|τ | ≤ di
c(cosϕ+ sinϕ)

, (6.2)

for each ϕ ∈ [0, 2π). The symbol di denotes the indiameter of Ωi and c is
still the speed of light. In general, the equation is coupled with respect to
direction, therefore we must choose the same time step for all ϕ. We estimate
the denominator as

cosϕ+ sinϕ ≤
√

2.

This inequality is also the weakest possible estimate, as it becomes an equality
for ϕ = π/4 + kπ/2, where k = 0, 1, 2, 3. Taking this into account, we bind
the time step to a particular spatial partition as follows

|τ | = min
i∈J

di√
2c
. (6.3)

Figure 6.1: The flash of light. The initial function is I0 ≡ 6 in the black
circle with radius 0.03 and zero everywhere else. There are no absorbing,
emitting or scattering regions nor are there any sources. There is no incoming
radiation on the boundary.

55



(a) t = 0.25/c (b) t = 0.40/c

(c) t = 0.55/c (d) t = 0.70/c

Figure 6.2: Irradiance Eh for the flash-of-light problem (see Figure 6.1) plot-
ted at various times. The uniform directional partition with 32 control vol-
umes was used.

6.1 Flash of light problem

We consider a strong impulse of electromagnetic radiation in a small cir-
cular region spreading in all directions equally. We assume no participating
medium. Hence, we will be solving the equation of radiative transfer without
the collision term. We choose the circular region to have the radius r = 0.03
and place it in the centre of the 1× 1 square domain as shown in Figure 6.1.
We simulate the impulse of electromagnetic radiation or the “flash of light”
by setting the initial radiance I ≡ 6 in the circle. The chosen radiance is con-
stant in direction, thus the electromagnetic radiation spreads in all directions
equally.

56



Figure 6.3: Irradiance Eh for the flash-of-light problem (see Figure 6.1) plot-
ted at time t = 0.40/c. The uniform directional partition with 16 control
volumes was used. Compare with Figure 6.2b.

The approximate solution was calculated using the uniform directional
mesh with 32 control angles (|Φm| = π/16) and spatial mesh with the max-
imum edge size h = 0.03. Approximate irradiance Eh is plotted in Figure
6.2. We can see that the approximate solution behaves more or less the
way we would expect the exact solution to behave, except of course that the
discontinuous initial condition is artificially smoothened by the inaccurate
numerical treatment as time progresses.

Irradiance Eh computed for the same problem with unchanged spatial and
directional partition, however with only 16 control angles instead of 32, is
plotted in Figure 6.3 at time t = 0.40/c. Here, we can see the strong influence
of the ray effect, which was almost absent in the previous test (compare with
Figure 6.2b). As we discussed in Section 3.3.2, the ray effect can be reduced
either by refining the directional partition, or by taking a coarser spatial
mesh. The latter increases false scattering, which then compensates for the
irregularities caused by the ray effect. For more information about false
scattering see Section 3.3.1.

This means that when refining the spatial mesh, we need to refine the di-
rectional partition accordingly, to retain the balance between false scattering
and the ray effect.
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6.2 Bridge problem

This problem is designed to test absorbing regions. Again, we have the
domain Ω = [0, 1]× [0, 1]. We consider a constant source of electromagnetic
radiation on the right vertical line segment of the boundary, radiating in a
small angle ϕ ∈ [π−π/128, π+π/128]. There are two pure absorbing regions
present, as shown in Figure 6.4, otherwise there are no scattering or emitting
regions. The initial function is identically equal to zero.

Since there is no scattering present, the system (5.25) is not coupled with
respect to direction. As the only source of electromagnetic radiation is the
boundary, radiance is nonzero only for ϕ ∈ [π − π/128, π + π/128]. Hence,
we choose the uniform directional partition with ten control angles and

ϕ0 = π − π/128,

ϕMϕ = π + π/128.

We take the same spatial and temporal partitions as before. We can see how
the absorbing regions effect the solution in Figure 6.5.

Figure 6.4: The bridge. The two red rectangles are pure absorbing regions
with σa = 2, their hight is 0.35. The rest is vacuum. The boundary function
is b(ϕ, t) = 16 for π − π/128 ≤ ϕ ≤ π + π/128 on the green part of the
boundary, otherwise b ≡ 0. The initial function is I0 ≡ 0.

58



(a) t = 0.29/c (b) t = 0.58/c

(c) t = 0.87/c (d) t = 1.16/c

Figure 6.5: Irradiance Eh for the bridge problem (see Figure 6.4) plotted at
various times. Figure 6.5d is the steady state.

6.3 Lattice problem

This problem is design to test how our solver deals with highly scattering
as well as highly absorbing regions. We will recreate the exact same con-
ditions as Brunner [1] used for his numerical experiment. The lattice sys-
tem, depicted in Figure 6.6, contains eleven purely absorbing regions with
σa = 10, while the rest of the domain consist of purely scattering regions
with σs = 1. There are zero initial and boundary conditions. An isotropic
source S ≡ 1/(2π) is placed in the central region of the 7× 7 square domain.

We simulate the radiative transfer for the source being turned on at time
zero. Logarithmically scaled irradiance log10Eh is shown in Figure 6.8 and
Figure 6.7 at time t = 3.2/c. The results in Figure 6.8 were generated
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Figure 6.6: The lattice system. The red squares are pure absorbing regions
with σa = 10. The blue a black regions are pure scattering regions with
σs = 1. Moreover, the black region contains an isotropic source S ≡ 1/(2π).
There are zero initial and boundary conditions.

by a solver created by the author of the current thesis, according to the
scheme (5.25), which is of course based on the finite volume method. Results
in Figure 6.7 on the other hand were generated by solvers based on various
methods, some of which we described in Chapter 3. These calculations were
done by Brunner [1], who used his own solver for the PN -approximations,
while for the others he employed available solvers.

At time t = 3.2/c, the particles have just enough time to reach the
boundary, but not the corners. In the diffusion approximation, shown in
Future 6.7a, the particles clearly occupy the corners. We warned against
this effect in Section 3.2.2. The Flux limited diffusion, in Figure 6.7b, is a
significant improvement over the pure diffusion method, nevertheless there is
not enough radiation leaking in between the absorbers. We have not covered
this method in this thesis. In short, it is based on limiting the flux F in the
diffusion method.

The particles in the P1 calculation, Figure 6.7c, are way too slow. They
travel at the speed of c/

√
3 instead of c. The S6-approximation in Figure 6.7e

shows an extensive influence of the ray effect. This method uses 24 directions
and weights, since the order of quadrature N and the number of directions
M for the discrete ordinate method are related through

M =
1

2
N2 +N,

in two dimensions, see Table 3.1.
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Figure 6.7: Simulation of the lattice problem calculated by various numerical
methods and paused at time t = 3.2/c. The colour-map corresponds to
log10Eh. These result were obtained by Brunner [1].
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(a) Mϕ = 8 (b) Mϕ = 12

(c) Mϕ = 16 (d) Mϕ = 24

(e) Mϕ = 32

Figure 6.8: Simulations of the lattice problem calculated by the finite volume
method with Mϕ control angles and paused at time t = 3.2/c. The colour-
map corresponds to log10Eh.
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The P7 and implicit Monte Carlo simulations, shown in Figure 6.7d and
Figure 6.7f, offer the most accurate results. They also agree with each other
considerably well. They will be therefore helpful when evaluation our own
results. The P7 calculation however shows signs of the wave effect, which we
discussed in Section 3.3.3. Monte Carlo is statistically based method that
rely on repeated random sampling to obtain numerical results. We do not
cover the description of this method in the present thesis.

To generate the results in Figure 6.8, we use a spatial mesh with h = 0.05
and four different uniform directional partitions with Mϕ = 8, 12, 16, 24,
where Mϕ is the numbers of control angles. We can clearly see the ray effect
in Figures 6.8a - 6.8c, and of course the less control angles, the stronger the
effect. Let us take for instance Figure 6.8b, which uses 12 control angles.
It quite obviously shows weaker influence of the ray effect than the discrete
ordinate calculation (S6) in Figure 6.7e, which uses 24 directions. To produce
Figure 6.8d twenty-four control angles were used, but it shows considerably
smoother behaviour than S6. In fact, it very well agrees with the P7 and
Monte Carlo calculations, although it still shows a faint ray effect. The
finest discretisation used, in Figure 6.8e, has barely any noticeable ray effect
and matches with P7 and Monte Carlo even better.

6.4 Test of convergence

We have applied the solver for a few test problem and it intuitively seems
to be working correctly. In order to verify the right functioning of the solver
more rigorously, we shall preform a test of convergence, just as we did for the
direction-independent equation in Section 4.5. Let us first define the error
and the residuum.

6.4.1 L1-error and residuum

Again, we will be solving a steady-state problem. We end the calculation
when the residuum

resk =

∫
Ωh

∣∣Eh(r, tk)− Eh(r, tk−1)
∣∣ dr =

Mϕ∑
m=0

|Φm|
∑
i∈J

|Ωi|
∣∣Īki,m − Īk−1

i,m

∣∣,
drops below 10−4. Let K ∈ N0 be the smallest number such that resK < 10−4.
We consider approximate irradiance Eh(r, tK) to be at steady state. As a
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measure of accuracy, we take the L1-error of irradiance at steady state, i.e.

errh =
∑
i∈J

|Ωi|
∣∣E(ri)− Eh(ri, tK)

∣∣ ≈ ∫
Ωh

∣∣E(r)− Eh(r, tK)
∣∣ dr,

where ri is the centroid of Ωi as defined in (4.20). The rate of convergence
is defined as follows

rateh = log2

(
err2h

errh

)
.

6.4.2 Inventing a solution

We need to compare the approximate solution generated by our solver with
the exact solution of (6.1), which we do not know in general. Therefore we
“invent” a solution and then calculate the source term S in order to fit the
solution. Let us choose the domain Ω = [0, 1]× [0, 1] and the exact solution

I(r, ϕ) =
1

2π
sin(πx) sin(πy)(cosϕ+ 1), (6.4)

where r = (x, y). Now, we shall calculate the source term. As I does not
depend on time, we have

∂I

∂t
≡ 0.

The gradient of I can be expressed as follows

∇I(r, ϕ) =
1

2
(cosϕ+ 1)

(
cos(πx) sin(πy), sin(πx) cos(πy)

)
. (6.5)

The integral in (6.1) is nothing else than irradiance

E =

2π∫
0

I dϕ = sin(πx) sin(πy). (6.6)

We get the explicit formula for the source term S by plugging (6.4), (6.5)
and (6.6) into

S = s · ∇I + (σa + σs)I −
σs

2π
E.

The chosen time-independent radiance I is equal to zero on the boundary
∂Ω, thus we have the zero Dirichlet boundary condition for all t > 0. We
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can take an arbitrary initial function. Let us choose the material coefficients
as follows

σa =

{
1 for x < 1/2,

2 for x > 1/2,

σs =

{
1 for y < 1/2,

2 for y > 1/2.

6.4.3 Test of convergence for 16 control angles

Now, we solve (6.1) with the boundary function b ≡ 0, the initial function
I0 ≡ 1/(2π) and the calculated source term, as if we did not know the exact
solution. We will do so for five different spatial meshes with maximum edge
size h = 1/2, 1/4, 1/8, 1/16, 1/32. We choose the uniform directional mesh
with 16 control angles. Again, take the time step (6.3).

The error of irradiance Eh at steady state is plotted in Figure 6.9 and
tabulated in Table 6.1 for each of the five meshes. The table also contains
the number of time steps Kh that the solver took to obtain the solution and
the convergence rate. The rate of convergence indicates linear convergence,
which is just what we have been hoping.

h Kh errh rateh
1/2 23 0.098
1/4 38 0.0577 0.763
1/8 66 0.028 1.04
1/16 136 0.0134 1.06
1/32 241 0.00651 1.04

Table 6.1: The error, convergence rate and number of time steps at steady
state for various values of h. Sixteen control angles were used here.
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Figure 6.9: The error at steady state plotted for h = 1/2, 1/4, 1/8, 1/16,
1/32. Sixteen control angles were used here. The x and the y axes are
proportional to log10 h and log10(errh), respectively.

6.4.4 Test of convergence for 4 control angles

Even though we can be satisfied with the results for 16 control angles, we
may wish to test the convergence rate for a courser directional discretisation.
To this end, we choose the uniform partition with only four control angles,
otherwise we keep the same settings. The results for this case are shown in
Table 6.2 and Figure 6.10. Here, the solver converges linearly only up to
h = 1/8. In the next step, the rate of convergence drops down. Eventually,
the solver stops converging completely. The reason for this behaviour is
clear. When refining the spatial and temporal partitions, the error caused
by the spatial and temporal discretisation becomes eventually insignificant
compare to the error due to the directional discretisation. Among others,
the error caused by the directional approximation includes the discussed ray
effect. Once again, these results remind us to keep the balance between
the spatial and temporal discretisations on the one hand and the directional
discretisation on the other.
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h Kh errh rateh
1/2 23 0.111
1/4 40 0.0643 0.792
1/8 70 0.0312 1.04
1/16 143 0.0232 0.427
1/32 258 0.0247 −0.0915

Table 6.2: The error, convergence rate and number of time steps at steady
state for various values of h. Four control angles were used here.

Figure 6.10: The error at steady state plotted for h = 1/2, 1/4, 1/8, 1/16,
1/32. Four control angles were used here. The x and the y axes are propor-
tional to log10 h and log10(errh), respectively.
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Chapter 7

Conclusion

The central theme of the current thesis revolves around the equation of ra-
diative transfer and its approximation. We concentrated especially on direc-
tional discretisation, as directional dependence is rather rare among partial
differential equations. The discrete ordinate method could have been em-
ployed for this purpose. This method is simple, however it suffers from a
number of defects such as the ray effect and false scattering. Despite their
similarity, the finite volume method preforms better than the discrete ordi-
nate method.

In an attempt to avert an unphysical numerical behaviour, we derived
the finite volume method for unstructured spatial partitions and introduced
an exact treatment of control angle overlap. In spite of our endeavours,
the ray effect still occurs, as shown in the test problems; see Figure 6.3
or Figure 6.8. Nevertheless, the ray effect in the finite volume method is
considerably weaker than that of the discrete ordinate method; compare
Figure 6.7e and Figure 6.8. This is presumably because the former allows
particles to travel in whole control angles whereas the latter just allows travel
in specific directions. The finite volume method also conserves energy more
efficiently than the discrete ordinate method.

For a reasonable number and distribution of control angles, the finite
volume scheme derived in this thesis agrees considerably better with reality
compared to the diffusion and P1 calculations by Brunner [1]. Furthermore,
flux limited diffusion, which is a substantial improvement upon the diffusion
method, also performed worse than the finite volume solver. The best Brun-
ner’s results were obtained by the P7 and Monte Carlo simulations. The
finite volume solver should achieve a similar or higher level of accuracy for a
sufficient number of control angles.

For a fixed number of control angles of a uniform partition the finite vol-
ume solver showed linear convergence when spatial and temporal partitions
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were refined up to a certain point. The threshold, at which the solver stopped
converging, depended on the number of control angles used. It would be con-
sidered a worthwhile attempt to derive a relationship which estimates where
this singularity occurs for any given number of control angles. Since the ray
effect increases as one moves away from the source, this derivation would
presumably factor in the size of the domain.

Recommendations

This thesis is an introductory pursuit by the author to explore approxima-
tions of the radiation transport equation, and it is also the first example of
literature on this subject at the local department of mathematics. There is,
therefore, ample scope for further improvements and refinements. First and
foremost, boundary conditions for reflective surfaces must be implemented
into the scheme. Furthermore, an extension into three dimensions would
broaden the scheme’s applications. Finally, adding the material equation
would make the scheme capable of solving real world physical problems.

The equation for radiative transfer depends on time, space and direction.
In order to achieve higher accuracy with results, all three of these partitions
would require refinement, and, as such, this is a costly endeavour. It is,
therefore, desirable to rewrite the source code in a more efficient programing
language, for instance ANSI C, C++, Fortran etc. Linear reconstruction of
the finite volume method may also reduce the time of computation.
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List of symbols and quantities

c speed of light
c0 speed of light in vacuum
nc refractive index
ν frequency
λ wavelength
η wavenumber
hP Planck’s constant
I spectral radiance
E spectral irradiance
r location vector variable
s, s′ unit directional vector variable
Ω,Ω′ solid angles associated with s and s′ (in Chapters 2, 3)
Bλ, Bν , Bη Plank’s function for various spectral variables
kB Boltzmann constant
t time variable
σa absorption and emission coefficient
σs scattering coefficient
Ψ scattering face function
⊗ outer product
F radiative flux
P radiation pressure tensor
sm unit directional vectors of the directional partition
wm quadrature weight associated with sm
Ω domain in R2 (in Chapters 4, 5, 6)
∂Ω boundary of Ω
Ωh piecewise linear approximation of Ω
Th triangulation of Ωh

Ωi control volume (element of Th)
J set of indices of control volumes
h maximum edge size of Th
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`bj face of a control volume that is a part of the boundary
J b set of indices of the line segments above
`ij either common face between Ωi and Ωj (if j ∈ J),

or a face of Ωi on ∂Ωh (if j ∈ J b)
nij outer normal of `ij with respect to Ωi

Ni all the indices of neighbouring control volumes of Ωi

N b
i set of indeces of faces of Ωi that are part of the boundary

t0, t1, . . . nodes of the temporal partition
τk time step τk = [tk, tk+1]
P physical flux
JP Jacobi matrix of the physical flux
H numerical flux
b boundary functions
rb location on the boundary
ri centroid of Ωi

Ui int. average of u over either Ωi (if i ∈ J) or `bi (if i ∈ J b)
resk residuum at tk
errh L1-error at steady state
rateh convergence rate
Kh number of time steps
ϕ angular variable
s direction associated with ϕ
ϕ0, ϕ1, . . . angles of the directional partition
Φm control angle
sm direction associated with ϕm
C collision term
Īki,m integral average of I over either Ωi × Φm (if i ∈ J)

or `bi × Φm (if i ∈ J b)
Ĥ angular numerical flux
Φ+
m(n) subset of Φm in which H is outgoing from a finite volume

with the outer normal n
Φ−m(n) subset of Φm in which H is incoming into a finite volume

with the outer normal n
Ih piecewise const. approximation of I on each Ωi × Φm × τk
Eh piecewise constant approximation of E on each Ωi × τk
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Československá akademie věd (1986), (published in Russian language).

[13] M. F. Modest: “Radiative Heat Transfer,” Second edition, Academic
Press (2003).

[14] R. L. Murray: “Nuclear Reactor Physics,” Engelwood Cliffs, Prentice
Hall, NJ (1957).

[15] S. C. S. Ou and K. N. Liou: ”Generalization of the spherical harmonic
method to radiative transfer in multidimensional space,” Journal of
Quantitative Spectroscopy and Radiative Transfer, vol. 28, no. 4, pp.
271-288 (1982).

[16] G. C. Pomraning: “The equations of radiation hydrodynamics,” Perg-
amon Press (1973).

[17] M. Sead, M. Frank, A. KlarCorresponding, R. Pinnau, G. Thmmes:
“Efficient numerical methods for radiation in gas turbines,” J. Comput.
and Applied Mathematics, 170, pp. 217-239 (2004).

[18] http://www.mathworks.com.

73


