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Annotation 

The aim of this thesis is to explain the issues of realization photovoltaic systems, 

which can power electric vehicles and is devided into two sections – theoretical and practical. 

In the first part are described in detail aspects of design photovoltaic systems and 

advantages and disadvatages of electric vehicles. The part is focused on a general introduction 

to this perspective area of automotive industry. Emphasis is placed on specific development 

opportunities in the Czech Republic and Spain and their National Renewable Energy Plan 

2011- 2020. A large part is dedicated to government support (feed-in tarrif and green bonus) 

and solar radiation and PV electricity potentional in both countries.  

In second, practical part, I tried to design PV system for charging parking lot by using 

all previous knowledge and resulting evaluation of important aspects. 

 

Key words 

Photovoltaic system, Electric vehicles, Feed-in tarrif, Solar radiation, PV electrical potencial, 

Smart grid. 
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Solární systémy pro napájení elektrických vozidel 

Anotace 

Cílem této práce je vysvětlit problematiku realizace fotovoltaických systémů, které 

umožní dobíjení elektrických vozidel a je rozdělena na dvě části - teoretickou a praktickou. 

V první části jsou podrobně popsány aspekty návrhu fotovoltaických systémů a 

výhody a nevýhody elektrických vozidel. Část je zaměřena na obecný úvod do této 

perspektivní oblasti automobilového průmyslu. Důraz je kladen na specifické možnosti 

rozvoje v České republice a ve Španělsku a jejich národním plánu o obnovitelných zdrojích 

energií 2011-2020. Velká část je věnována státní podpoře (výkupní tarif a zelený bonus) a 

slunečnímu záření a FV potencionálu v obou zemích. 

V druhé, praktické části, jsem se snažila navrhnout FV systém na plochy zastřešeného 

parkoviště pro nabíjení elektrických vozidel s použitím veškerých předchozích znalostí a 

následné vyhodnocení důležitých aspektů. 

 

Klíčová slova 

Fotovoltaické systémy, elektrická vozidla, výkupní tarif, sluneční záření, elektrický potenciál, 

chytré sítě. 
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Used abbreviations 

AVERE The European Association for Battery, Hybrid and Fuel Cell Electric Vehicles  

BEV   Battery electric vehicle 

EGCI  European Green Car Initiative 

EPBT  Energy Payback Time 

EV  Electric vehicle- powered only by electricity 

FIT  Feed-in-tarrif 

GB   Green Bonus 

GHG   Greenhouse gases 

HEV  Hybrid electric vehicle- powered by gasoline plus electricity 

NREAP  The National Renewable Energy Action Plan  

PGF   Panel generation factor  

PHEV  Plug-In hybrid vehicle 

PVGIS  Photovoltaic Geographic Information System 

RES  Renewable Energy Sources 

V2G  vehicle-to-grid 

 

 

 

PR [-]…………………..............Performance rate 

Pmp [kWp]……………………  Peak Power of the Generator  

Ep [kWh/day]……………… ... Consumption per day 

Pcc, fov [W]……………………  Potency of DC power immediately output from the PV panels 

  



Solar systems for powering electric vehicles    Adéla Kuhajdová   2014 

9 

 

 

 

1 Introduction 

The result of my work should be efficient and accurate assessment parameters for the 

design PV system for connection to the electric grid and powering electric vehicles and its 

subsequent application in the project part. Most of the knowledge I have gained during my 

work placement in Spain, that´s why this thesis is focused on the difference between the 

possibility of using PV systems in Spain and the Czech Republic. 

My goal is to understand electrical vehicles as a normal part of the motor industry and the 

proper implementation of the solar energy use that the Earth provides for a reduction the 

energy consume and of course closely related to environmental protection. Everyone should 

understand the environmental protection as a natural part of his being, and therefore think 

about this fact when buying a new vehicle. This idea came out because of my interest in solar 

energy and innovative imaginations about how to use it. I wanted to show that there are no 

limits in innovative plans for future energies even they are not globally used yet. My intention 

is to open eyes to everyone who will read my thesis and show the importance of to be aware 

about energy consuption nowdays and the precaution for the future. We have to be informed 

to where our world is heading and what can every singel person do with it. 

Therefore this thesis in the first part focuses on the basic knowledge of this issue, which I 

have gained during my studies at the university in Pilsen and Elche and the second 

(designing) part mastering these skills on my own designing solar charging station for electric 

vehicles. The plan is to place this station in front of some supermarket and utilize already 

standing parking area for photovoltaic power plant. For the comparison I decided to use 

parking area in front of OC Olympia in Pilsen, Czech Republic and Carrefour in Elche, Spain. 

These both areas are well-oriented with high potencial for PV´s installation. 
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2 Main features of electric vehicles 

2.1 Photovoltaic energy 

Photovoltaic energy is produced when sunlight is converted into energy with the use of 

solar cells or semiconductors. These semiconducting cells are usually made of silicon and do 

not contain any corrosive materials or moving parts. As long as the solar cells are exposed to 

light, they will produce photovoltaic energy with a minimum of maintenance. This energy is 

also environmentally clean, quiet, and safe. In 1839, French physicist Edmond Becquerel 

discovered the photovoltaic effect, the production of a volt by use of a semiconductor. [7] 

When photons strike a PV cell, they may be reflected or absorbed, or they may pass right 

through. Only the absorbed photons generate electricity. When this happens, the energy of the 

photon is transferred to an electron in an atom of the cell .With its newfound energy, the 

electron is able to escape from its normal position associated with that atom to become part of 

the current in an electrical circuit. By leaving this position, the electron causes a "hole" to 

form. Special electrical properties of the PV cell-a built-in electric field-provide the voltage 

needed to drive the current through an external load (such as a light bulb). [10] This discovery 

prompted further experimentation with light sources and semiconductors, which led to the 

invention of solar cells that produce photovoltaic energy.  

The amount of power available on cloudy days and at night in a photovoltaic energy 

system depends on the energy output of the photovoltaic modules and the battery 

arrangement. Adding additional modules and batteries will increase the available power, but 

will also increase the cost of the system. For best results, a thorough analysis of needs vs. cost 

must be conducted in order to create a system design that will balance cost and need with 

convenience of use. Systems that are well-designed offer the opportunity for expansion or 

reduction as energy needs increase or decrease. [7] 

Fig. 2.1 showes solar radiation reaches the modules, which produce electricity by the 

photovoltaic effect as direct current (DC), which can be stored or injected into the grid, to 

benefit directly as DC. Since PV modules are only capable of producing DC electricity, 

an inverter is required to convert the DC output produced by the PV array into alternating 

current (AC) power. AC electricity is needed to run almost all appliances and lighting. 
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Fig. 2.1 PV Block diagram [11] 

Generally is known that solar PV systems have more advantages than disadvantages. 

One of them is that the only pollution associated to the PV generation is the one produced in 

the fabrication of the PV system components, most notably by the fabrication of the PV 

panels, which require high amounts of energy. The other is that some solar panels are made of 

materials that might be toxic chemicals such as cadmium and arsenic. This impact must be 

considered, even though it could be largely mitigated through proper recycling and disposal. 

Photovoltaic energy as general is emerging as a viable solution to energy problems 

worldwide. Its current uses include power stations, transportation, rural electricity supplies, 

and solar roadways. While still a long way from becoming the world’s major energy source, 

ongoing research into photovoltaic energy may bring the promise of hope to the future. [7] 

2.2 Electric vehicles 

An electric vehicle (EV), also referred to as an electric drive vehicle, uses one or 

more electric motors or traction motors for propulsion. Three main types of 

electric vehicles exist:   

 directly powered from an external power station,  

 powered by stored electricity originally from an external power source, 
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 powered by an on-board electrical generator, such as an internal combustion 

engine (a hybrid electric vehicle HEVs) or a hydrogen fuel cell. 

Electric vehicles include electric cars, electric trains, electric lorries, electric airplanes, 

electric boats, electric motorcycles and scooters and electric spacecrafts. 

During the last few decades, environmental impact of the petroleum-based 

transportation infrastructure, along with the peak oil, has led to renewed interest in an electric 

transportation infrastructure.
 
Electric vehicles differ from fossil fuel-powered vehicles in that 

the electricity they consume can be generated from a wide range of sources, including fossil 

fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind 

power or any combination of those. However it is generated, this energy is then transmitted to 

the vehicle through use of overhead lines, which necessarily involves transmission 

loss, wireless energy transfer such as inductive charging, or a direct connection through an 

electrical cable. The electricity may then be stored on board the vehicle using 

a battery, flywheel, or super capacitors. [4] 

 

Fig. 2.2 Principe of electric vehicles 

Electric motors are mechanically very simple as is shows in the Fig. 2.2. An electric 

car has an electric motor which draws its energy from a rechargeable battery located in the 
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car. This battery will not only provide the power to drive around but also operates auxiliary 

items from wipers to lights. It often achieves 90% energy conversion efficiency over the full 

range of speeds and power output and can be precisely controlled. They can also be combined 

with regenerative braking systems that have the ability to convert movement energy back into 

stored electricity. 

One of the first electric vehicles manufactured in the Czech Republic was Tatra Beta. 

Tatra Beta was a two-seat light commercial vehicle with a load capacity of 600 kg, produced 

in Tatra Kopřivnice in Příbor in years 1996-1999. Unfinished project took over later Škoda 

Pilsen for its commercial vehicles division Škoda Truck. The first prototypes of electric cars 

had 140 km range. As you can see in the Fig.2.3 this small car was designed and destined 

mainly for urban delivery service. 

 

Fig. 2.3 Prototype Škoda/Tatra beta [13] 

 Modern EV looks little bit different, use smaler and lighter components and have 

larger km range. I was discusing a new prototype of electric car as showes folowing Fig. 2.4 

from company ZF Friedrichshafen AG with local specialists during their open days. ZF 

technology combines individual mobility and driving pleasure with reduced fuel 

consumption, preservation of resources, and increased safety. This innovation prototype 

shows the potential of the combination of electromobility and lightweight approaches. 

Lightweight chassis components supplement the electric drive system and at the same time 

increase the range and driving dynamics of the electric vehicle. 
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Fig. 2.4 Electric car prototype from ZF Friedrichshafen AG 

2.3 Advantages and disadvantages of electric vehicles in comparison with 

internal combustion engine vehicle 

2.3.1 Advantages of Electric Cars 

 Electricity is everywhere and easy to come by. We do not need to set up 

electricity stations on the corner to re-charge our cars. It can be done at home. 

 Electric vehicles provide quiet and smooth operation and consequently have less 

noise and vibration. 

 Due to efficiency of electric engines as compared to combustion engines, even 

when the electricity used to charge electric vehicles comes from a CO2-emitting 

source, such as a coal- or gas-fired powered plant, the net CO2 production from 

an electric car is typically one-half to one-third of that from a comparable internal 

combustion engine vehicle. As a result they improve air quality in cities, reduce 

greenhouse gases, dependence on foreign oil and are uniquely able to participate 

in an interactive energy grid of the future. [6] 

 Electric cars are easy to assemble. They have few moving parts so they require 

less time and effort to put together. 

 Electric cars require less maintenance. So not only will the owner save money on 

gas purchases but there will be less maintenance costs. 
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 The power plants that produce the electricity for the cars do pollute the 

environment but pollution from these power plants can be controlled better than 

gasoline engines. 

 Better acceleration. 

2.3.2 Disadvantages of Electric Cars  

 One charge on a battery can take the car approximately 160km. Therefore if the 

ower plans on traveling a long distance this is not the car to use. 

 It takes 6-8 hours to fully recharge the battery, less with fast charging plug. 

 Electric bill will probably increase as the owner has to draw power from home 

electrical system to charge a car.  

 Electric cars cannot compete with gas powered cars in terms of speed. 

Technology has not yet developed an electrical system as powerful as a gas 

powered vehicle. [6] 

 The problem can be also find in the very quiet engine, especially for pedestrians. 

 Accessories such as air conditioning will drain the battery faster.  

Electric and hybrid cars can help decrease energy use and pollution, with local no 

pollution at all being generated by electric vehicles, and may someday use only renewable 

resources, but the choice that would have the lowest negative environmental impact would be 

a lifestyle change in favor of walking, biking or use of public transit. 

2.4 Battery cost 

Energy storage requirements create major hurdles for the success of EVs. It is the 

biggest problem for progress, which have to be solved. For example, if drivers demand 500 

km of range (about the minimum for today’s vehicles), even with very efficient vehicles and 

battery systems that are capable of repeated deep discharges, the battery capacity will need to 

be at least 75 kWh. At expected near-term, high-volume battery prices of approximately 

385€/kWh, the battery alone would cost 27000 € to 31000 € per vehicle. Thus, to make EVs 

affordable in the near-term, most recently announced models have shorter driving ranges (50 

km to 200 km) that require significantly lower battery capacities. 
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Table 2.1 shows a general comparison of the specific power and energy of a number of 

battery technologies. Although there is an inverse relationship between specific energy and 

specific power (i.e., an increase in specific energy correlates with a decrease in specific 

power), lithium-ion batteries have a clear edge over other electrochemical approaches when 

optimized for both energy and power density. 

Ultimately, new battery chemistries with increased energy density will facilitate 

important changes in battery design. Increased energy density means energy storage systems 

will require less active material, fewer cells, and less cell and module hardware. These 

improvements, in turn, will result in batteries, and by extension EVs/PHEVs, that are lighter, 

smaller and less expensive. [14] 

 

Table 2.1 Lithium-ion battery characteristics, by chemistry [14] 

 Lithium cobalt 

oxide(LiCoO2) 

Nickel, cobalt 
and aluminum 
(NCA) 

Nickel-
manganese-
cobalt (NMC) 

Lithium 
polymer(LiMn2O4) 

Lithium iron 
phosphate(LiFe
PO4) 

  

Energy Wh/kg 

or L 

Good Good Good Average Poor  

Power Good Good Good Good Average (lower 
V) 

 

Low T Good Good Good Good Average  

Calendar life Average Very Good (if 
charge at 4.0 
V) 

Good Poor Poor above 30°C  

Cycle life Average Very good (if 
charge at 4.0 
V) 

Good Average Average  

Safety Poor Poor Poor Average Good  

Cost/kWh Higher High High High High  

Maturity High High High High Low  
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2.5 Smart Grids 

The “vehicle-to-grid” (V2G) concept could help cut electricity demand during peak 

periods and prove especially helpful in smoothing variations in power generation introduced 

to the grid by variable renewable resources such as wind and solar power. The smart grid is a 

generic concept of modernizing power grids, including activation of demand based on 

instantaneous, two-way, interactive information and communication technologies which are 

showen in Fig. 2.5. Features of a smart grid include grid monitoring and management, 

advanced maintenance, advanced metering infrastructure, demand response, renewable 

integration, EV integration, and V2G. The most fundamental principle for the power grid is 

that power supply and demand must be completely balanced at all times. Otherwise, power 

system frequency is never stabilized. In ordinary electric grids without two-way 

communication technologies, the supply from power generation plants is measured and 

operated to balance demand by a centralized electric power company via a bi-directional 

control system, or by an independent system operator (ISO) using uni-directional information 

technologies. In contrast, smart grids are automatically and multidirectionally controlled by 

interactive information technologies. 

The main features of a smart grid include: 

 grid monitoring and management, 

 integrated maintenance, 

 advanced metering infrastructures, 

 demand response, 

 renewables integration, 

 electric vehicles, 

 energy storage. 
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The qualitative benefits of smart grids include: 

 power reliability and power quality (PQ), 

 safety and cyber-security, 

 energy efficiency, 

 environmental and conservation benefits, 

 direct financial benefits. 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Difference between Traditional and Smart Grid [14] 

 

2.6 EU Electromobility 

One of the most important tasks facing the world today is the need to reduce its 

dependence on oil and other fossil fuels. Nowhere is this felt more keenly than in the transport 

sector, which alone accounts for some 25% of global greenhouse gas emissions. Although it is 

widely recognized that electric cars will only make a significant difference if they are 

accompanied by a move towards smart grids and cleaner electricity generation, global 

competition for the electric vehicle market will be intense. The speed with which car 

manufacturers and their suppliers are able to develop these new vehicles and bring them to 

market is likely to be a decisive factor. The European Green Cars Initiative (EGCI), 

announced by the European Commission in 2008, was an important step in boosting the 
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European industry's competitiveness in this race. As well as benefiting Europe in terms of the 

environmental advantages of greener vehicles, the EGCI and ELECTROMOBILITY+ 

project are providing important support to Europe's global competitiveness. By cooperating 

within Europe as a result of these initiatives, European companies are enabling themselves to 

compete on the global stage in a way which otherwise would not have been possible.  

 Participants : Austria, Belgium, Denmark, Finland, France, Germany, Italy, Norway, Poland, 

Spain, Sweden, The Netherlands [9] 

 Spanish government aims to have 1 million electric cars on the roads by 2014 as part 

of a plan to cut energy consumption and dependence on expensive imports. 

“Electric vehicles are the future and the driver of the industrial revolution” 

—Miguel Sebastián, Spanish Industry Minister 

Electrification of transport (electromobility) figures prominently in the EGCI, included 

in the European Economic Recovery Plan. The Directorate-General for Mobility and 

Transport (DG MOVE) is a Directorate-General of the European Commission responsible for 

transport within the European Union. DG MOVE was created on 17 February 2010 when 

energy was split from it to form the new DG Ener. Transport and Energy had been merged (as 

DG TREN) since January 2000 and in June 2002 the EuratomSafeguards Office became part 

of DG TREN. That is now part of DG Ener. 

DG TREN is supporting a large European "electromobility" project on electric 

vehicles and related infrastructure with a total budget of around €50-million as part of the 

Green Car Initiative. There are measures to promote efficient vehicles in the Directive 

2009/33/EC of the European Parliament and of the Council of 23 April 2009 on the 

promotion of clean and energy-efficient road transport vehicles and in the Directive 

2006/32/EC of the European Parliament and of the Council of 5 April 2006 on energy end-use 

efficiency and energy services. 

The European Association for Battery, Hybrid and Fuel Cell Electric 

Vehicles (AVERE) has a table summarizing the taxation and incentives for these vehicles in 

the different European countries, related to state subsidies, reduction of  Value added 

tax (VAT) and other taxes, insurance facilities, parking and charging facilities (including free 

recharging on street or in the parking areas), EVs imposed by law and banned circulation 
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for petroleum cars, permission to use bus lanes, free road tax, toll free travel on highways, 

exemption from congestion charging, free or reduced parking rates, and free charging 

at charge points, amongst other initiatives.  

2.6.1 Green eMotion project 

The Green eMotion project is part of the EGCI that was launched within the context of 

the European Recovery Plan. It supports the achievement of the EU’s ambitious climate 

goals, such as the reduction of CO2 emissions by 60 percent by the year 2050. EGCI supports 

the research and development of road transport solutions that have the potential to achieve 

sustainable as well as groundbreaking results in the use of renewable and non-polluting 

energy sources. [8] 

2.7 National renewable energy action plan 2011-2020 

Directive 2009/28/EC of the European Parliament and the council of 23 April 2009 on 

the promotion of the use of energy from renewable sources establishes the general targets of 

20% share of energy from renewable sources in gross final consumption in the transportation 

sector by 2020. To achieve that, it sets 2020 targets for each Member State and a minimum 

indicative trajectory leading up to that year as we can see in the Fig. 2.6.  

The National Renewable Energy Action Plan (NREAP) for the Czech Republic beeing 

presented suggests a target of a 13,5% share of energy from renewable sources in gross final 

energy consuption and the fulfilment of a target of a 10,8% share of energy from renewable 

sources in transport in gross final energy consuption. In Spain, the target means that 

renewable sources must account for at least 20% of final energy consuption by 2020- the 

same as the EU average- together with contribution of 10% from renewable sources in the 

field of transport by the year.  

NREAP has been drawn up to meet the set targets in the area of the use of energy from 

renewable sources on the grounds of current and planed realistic projects and the expected 

realistic prediction of the future.  
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The main points of measures for achieving the targets: 

a) Heating and Cooling – geothermal, solar, biomass (biogas, bioliquids, heat 

pump renewable energy etc.) 

b) Electricity production – water, geothermal, solar (photovoltaic, concentrated 

solar energy), ocean, wind, biomass 

c) Transport [9] 

 

Fig. 2.6 Share of renewable energies in gross final energy consumption in EU-27 countries in 

2010 (in %) [9]  
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3 Comparison of situation in Spain and Czech Republic 

3.1 Solar radiation and PV electricity potentional 

As I found 174 petawatts (PW) of energy comes in form of solar radiation (or 

insolation) hits our atmosphere. Almost one third of this is reflected back into space. The rest, 

3 850 000 exajoules (EJ) every year, is absorbed by the atmosphere, clouds, oceans and land – 

one hour of insolation is the equivalent to more than the world’s energy consumption for an 

entire year. Solar energy is by far the largest energy resource on the Earth. 

Here are some other interesting comparisons to realize how big the massive potential of 

solar energy is:  

One year’s worth of solar energy reaching the surface of the Earth would be twice the 

amount of all non-renewable resources, including fossil fuels and nuclear uranium. The solar 

energy that hits the Earth every second is equivalent to 4 trillion 100-watt light bulbs. The 

solar energy that hits one square mile in a year is equivalent to 4 million barrels of oil. [12] 

The following map in Fig. 3.1 represents yearly sum of global irradiation on horizontal 

and optimally inclined surface. Over most of the region, the data represent the average of the 

period 1998-2011, however, north of 58° N, the data represent the 10-years average of the 

period 1981-1990. All data values are given as kWh/m
2
. The same colour legend represents 

also potential solar electricity [kWh/kWp] generated by a 1 kWp system per year with 

photovoltaic modules mounted at an optimum inclination and assuming system performance 

ratio 0.75. [3] 
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Fig. 3.1 PV solar electricity potential in EU [3] 

The generation of solar electricity from photovoltaics (PV) is beginning to penetrate 

the energy market in those countries, where clear and stable policy commitments have been 

made determining the economic performance of the PV system is the solar energy arriving at 

the surface of the Earth. There are 4 factors determining the economic performance of the PV 

system: the solar energy arriving at the surface of the Earth, the cost per unit or installed peak 

power (€/kWp), the lifetime, and the operational cost including capital cost. This has led to 

the development of the Photovoltaic Geographic Information System (PVGIS) at the Joint 

Research Centre of the European Commission since the year 2001. PVGIS combines the 

long-term expertise from laboratory research, monitoring and testing with geographical 

knowledge. It is used as a research tool for the performance assessment of PV technology in 

geographical regions, and as a support system for policy-making in the European Union. The 

web interface was developed to provide interactive access to the data, maps and tools to other 

research and education institutes, decision-makers, PV professionals and system owners as 

well as to the general public. The PVGIS solar radiation database was used for an assessment 
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of the potential solar electricity generation by PV modules mounted at horizontal, vertical and 

optimal inclination.  

The annual total of electricity generated from a PV system was calculated using the following 

equation: 

E= PK PRG  [kWh]        (1) 

Where Pk  is the unit peak power (assumed to be 1 kWp in our calculation), PR is the system 

performance ratio, and G is the yearly sum of global irradiation on a horizontal, vertical or 

inclined plane of the PV module (kWh/m2). 

The size of PV systems (installed peak power, Pk) is typically measured in watt-peak 

(Wp) and it characterizes the nominal power output of the PV modules at Standard Test 

Conditions (STC; see IEC/TS 61836, 1997), i.e. when the irradiance in the plane of the PV 

modules is 1000 W/m2 and the temperature of the modules is 25°C. In practice, the output of a 

PV system is lower than the peak power, even at an irradiance of 1000 W/m2. One reason is 

the operating temperature that is typically higher than 25 °C and which tends to lower the PV 

efficiency. The other factors are losses due to angular and spectral variation, and system 

losses in inverters and cables. The ratio between the actual output and the nominal output is 

therefore expressed by a gross measure, the performance ratio PR (see IEC 61724, 1998). A 

typical value for a roof-mounted system with modules from mono- or polycrystalline silicon 

is around 0.75 and this value is assumed in their further considerations. Inclining the PV 

modules southwards to an optimum angle maximizes yearly energy yields and this is the most 

typical way how PV modules are installed. On the other hand, PV is also used as a building 

integrated material (cladding) on facades of buildings. Therefore we have compared the 

energy gains and losses for PV modules inclined at the optimum angle and vertically. It is 

obvious that the higher potential for solar electricity generation with a typical crystalline 

silicon PV system is in Spain than Czech Republic. In Spain generates annual electricity is 

between 1100 and 1330 kWh per installed kWp. Czech Republic has less favorable conditions 

in the interval from 700 to 800 kWh/ kWp. [3] 
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Fig. 3.2 Global irradiation and solar electricity potential in CZE [3] 

 

Fig. 3.3 Global irradiation and solar electricity potential in Spain [3] 
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3.2 Energy consumption 

The energy consumption in countries EU 27 and all around of world is totally different. 

Every country use different source of energy as major one.  The Czech Republic is an 

important producer of hard coal. The Czech Republic has one of the lowest energy import 

dependencies in the European Union, mainly due to its domestically produced solid fuels. 

More details are provided in Attachment {1}. Imports are limited to natural gas and oil from 

Russia. The share of renewable energy sources has also been increasing, although still below 

EU average. Coal is the main energy source for electricity production. The second most 

important source is nuclear power. [9] But as we realized from previous paragraphs, using 

renewable energies is getting more and more common source of energy and Czech Republic 

is one of the top 10 countries, which use RES. We can realize these changes in following 

Fig.3.4, which shows energy production from the past to present. I hope that finally we realize 

that there is no other option than use sources, which our planet offer to us, to avoid global 

war.

Fig. 3.4 Energy production between years 1971-2009 [14] 
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As evidence I would like to mention how we started use renewable sources of energy 

in Table 3.1 to produce electricity and heat. All details are described in The National 

Renewable Energy Action Plan to the year 2020. 

Table 3.1 Production of electricity and heat from renewable sources and waste [20] 

2005 2008 2009 2010 2011 Indicator 

Electricity (GWh)   

3 027  2 376  2 983  3 381  2 835  Hydroelectric power plants 

21  245  288  335  397  Wind power plants 

2  13  89  616  2 118  Solar power plants 

560  1 171  1 396  1 492  1 683  Solid biomass 

0  2  2  2  5  Industrial wastes 

18  21  18  60  150  Municipal wastes 

161  267  441  635  933  Biogas 

Heat (TJ)   

40 892  43 400  43 007  46 736  47 750  Solid biomass 

5 196  5 983  6 283  5 929  5 920  Industrial wastes 

3 420  3 146  2 743  2 973  3 460  Municipal wastes 

1 010  1 065  1 211  1 610  2 379  Biogas 

510  1 160  1 445  1 776  2 200  Heat pump 

103  204  266  366  455  Solar thermal collector 

As I have learned in KEE/SOES subject the annual incident energy in Czech is 800-

1250 kWh/m2 and total sunshine hours 1400-1800 hours / year contrary to Spain, which is 

about 2400-2800 hours/year. The Spanish economy is characterized by relatively higher 

energy intensity than the rest of Europe, by a high dependence on energy imports, but also by 

rapid changes of the energy system in the last few years. Indeed, security and diversity of 

energy sources remain the major driving forces for the growth of Spain renewable energy 

industry. A stable legal framework based on feed-in tariffs with premium price recognizing 
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the environmental benefits promotes the development of renewable. The success in the 

development of wind power in Spain has been accompanied by the creation of competitive 

companies now active in the international technology markets. The photovoltaic energy is 

characterized by a similar industrial development. Regarding biofuels, Spain is the second 

producer of bioethanol in Europe (behind Germany) and remains behind the big European 

biodiesel producers such as Germany, France, although its installed capacity is increasing. [9]  

To have a real data for energy consumption in 2010, the Czech Republic consumed 

63,736 GWh (ENTSO-E 2011, Eurostat 2011), i.e. circa 6.1 MWh per inhabitant and Spain 

consumed 267 TWh according to the EU average of 6.2 MWh. In terms of electricity intensity 

of the economy Czech consumed 438.6 MWh/M€ and Spain 255 MWh/M€ against the EU 

average 257.7 MWh/M€ (ENTSO-E 2011, Eurostat 2011). According to the Czech NREAP, 

gross final electricity consumption is forecasted to grow from 71,536 GWh to 87,957 GWh 

between 2010 and 2020. RES-E production, in the same period, should grow from 5,072 

GWh to 11,679 GWh. The share of RES-E generation over gross final electricity consumption 

should grow from 7.09% in 2010 to 13.28% in 2020; this means that the Czech Republic, 

according to its plan, will be able to satisfy 7.09% and 13.28% of its internal electricity 

consumption through its internal production of RES-E in 2010 and 2020. In comparison, 

historical data indicate that the share of RES-E generation over consumption went from 1.9% 

in 1990 to 3.2% in 1998, to 2.8% in 2003, to 5.2% in 2008 (Eurostat 2011). On the other 

hand, according to the reference scenario of the Spanish NREAP, gross final electricity 

consumption is forecast to grow by 43%, from 291 TWh in 2010 to 417 TWh in 2020. This 

assumes more or less a prosecution of the very high growth rates registered during the last 

two decades. According to the NREAP, RES-E production, in the same period, should grow 

from 87.9 TWh in 2010 to 158 GWh in 2020 (80% growth). Given the high growth in 

consumption, in absolute terms this would nevertheless result in an increase of non-renewable 

generation from 203.7 to 258.5 TWh/year. Hydropower generation is planned to grow from 

34.6 TWh in 2010 to 39.6 in 2020 (+14%). Wind from 41 to 78,3 TWh (+91%), most of it 

onshore, PV from 6.4 to 14.3 TWh (+223%) and CSP from 1.1 to 15.4 TWh. Other 

renewables, mainly biomass and geothermal are planned to grow from 4.5 TWh in 2010 to 

10.5 TWh in 2020 (+14%). These goals are for both countries very ambitious. In the 

following pie chart we can see energy balance in Spain for the year 2012 as half-fulfilled 

resolutions. 
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Fig. 3.5 Primary energy consumption in Spain 2012 [15] 

3.3 Feed-in tariffs  

A feed-in tariff (FIT) is a policy mechanism designed to accelerate investment in 

renewable energy technologies. The FIT should adequately motivate investors to prepare and 

to run RES-E projects. It achieves this by offering long-term contracts to renewable energy 

producers, typically based on the cost of generation of each technology.
 
Technologies such as 

wind power, for instance, are awarded a lower per-kWh price, while technologies such as 

solar PV and tidal power are offered a higher price, reflecting higher costs. In addition, feed-

in tariffs often include "tariff degression", a mechanism according to which the price (or 

tariff) ratchets down over time. The goal of feed-in tariffs is to offer cost-based compensation 

to renewable energy producers, providing the price certainty and long-term contracts that help 

finance renewable energy investments. Under a feed-in tariff, eligible renewable electricity 

generators (which can include homeowners, business owners, farmers, as well as private 

investors) are paid a cost-based price for the renewable electricity they produce. This enables 

a diversity of technologies (wind, solar, biogas, etc.) to be developed, providing investors a 

reasonable return on their investments. 

In case you decide to direct sale, sell all the electricity to distributor, who is required to 

remove it from you at a price that is valid at the time of PVP connection to the network. 
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FITs typically include three key provisions: 

 guaranteed grid access ; 

 long-term contracts for the electricity produced; 

 purchase prices based on the cost of generation . [21] 

3.4 Green bonus 

In contrast to FIT, Green bonus (GB) is based on difference between FIT and predicted 

market price of conventional electricity; payback time or profit is not guaranteed. Green 

bonus is more profitable in case the operator of a photovoltaic plant is trading the electricity at 

better-than-usual market price or in case a significant part of electricity produced is self-

consumed. GB is for short a premium to the market price of electricity. If the manufacturer 

sells electricity to a distributor of electricity as an agreed market price or generated electricity 

consumed alone, has also right to encash from regional transmission or distribution system 

based on the submitted statement of GB. The amount of GB for each species of RES is 

reviewed annually and published in the pricing decisions of the regulatory authority. In terms 

of cost effectiveness of this method is advantageous. The GB you must add to amount you 

would pay for energy, if you have to remove it from your supplier. So the most effective 

system is when you use as much electricity you produced as you can and get to consume price 

higher, compared to when the unused surplus electricity produced deliver to a network. A 

disadvantage of the GB is higher level of risk because the manufacturer does not guarantee 

100% of electricity sales in the market or the market price. There is possibility to switch 

between the GB and FIT and vice versa once a year, so we can try what is profitable for us. 

3.4.1 Can be feed-in tariff or green bonus reduced? 

Thanks to state regulation may not be a significant increase, but a significant reduction 

neither in the FIT or GB. Both components are tied to the market price of electricity. If the 

market price of electricity rises (which can be certainly presumed), even raises amount of GB 

and FIT. The maximum increase is 104% of the volume for the previous year. If the market 

price for electricity falls (which does not expect even the biggest optimist), even drops 

amount of GB and FIT. The minimum amount of decrease is 95% of the volume for the 

previous year. 
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3.5 PV history in Czech Republic 

Photovoltaics as separate branch started in the Czech Republic in the early 1990s. The 

first version FIT for Renewable Energy Sources was introduced in 2002 by Notice of Ministry 

of Industry and Trade (No. 252/2001 Coll.) about purchasing of electricity from renewable 

energy sources and combined heat and power generation. Priority connection, transmission 

and distribution of electricity from renewable sources were done by Energy Act (No. 

458/2000 Coll.). From this time there was a really quick progress. State Environmental found 

from 2000 to 2004 about 600 FV projects. In 2005, Parliament accepted and passed the law 

for subsidy of renewable energy sources decrease of FIT was restricted at 5% and purchase 

time of energy from FV was set for 15 years (other RES 20 years, small water plant 30 years). 

In the year 2006, FIT increased lead to „solar boom”. In 2007, were put into operation first 4 

photovoltaic power plants each with instaled capacity at least 0,5 MWp as one of  largest PV 

plants in Central and Eastern Europe ant the time. Despite Czech Republic weather conditions 

are not the best suitable for PV installations, installed capacity per citizen ratio is one of the 

highest in the world.  

The main reason for such a huge development in this sector: 

 very high FIT; 

 guarantee of the prices for 15 (later 20) years; 

 duty of energetic companies to buy-out energy from renewable energy sources; 

 producer´s guaratntees of lifetime period of the PV panels up to 30 years; 

 time of the economic return on investments 7 years or less; 

Until 2008, the feed-in tariff and green bonus had been the same for all categories of PV 

systems disregarding installed power or location. In 2009, PV installations were split into two 

categories--up to 30 kWp and above 30 kWp and rapid reduction of cost of PV panels caused 

by restrictions of the market in Spain, price pressure from Chinese producers and massive 

increase in production of solar silicon. Also in this year Ministry of Industry and Trade 

announced amendment draft of the law for subsidy of renewable energy sources as lower 

purchase prices of electricity. Impact had no effect on the installed capacity in 2010 and the 

purchase prices were still the highest in the EU. But in comparison with year 2006 the cost of 

PV system in CZ fell down by half. In the same year government approved NREAP to meet 
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EU target. [22] In table 3.2 is showed all process of „solar boom” and price dicreasing in CZ 

(05-13). 

Table 3.2 FIT and Green bonus tariffs for CZ [4] 

 

 

Supported 

resource 

 

 

Date of a generating 

plant 

 

Installed 

capacity[kW] 

 

One tariff zone 

operating 

From 

(including) 

To 

(including) 

From To 

(incl.) 

FIT 

[€/MWh] 

G.bonus 

[€/MWh] 

 

 

 

 

 

Production of 

electricity using 

solar radiation 

- 31.12.2005 - - 279,73 243,96 

1.1.2006 31.12.2007 - - 586,92 551,15 

1.1.2008 31.12.2008 - - 572,42 536,62 

1.1.2009 31.12.2009 0 30 537,08 515,92 

1.1.2009 31.12.2009 30 - 533,15 497,38 

1.1.2010 31.12.2010 0 30 500,19 479,04 

1.1.2010 31.12.2010 30 - 496,27 460,50 

1.1.2011 31.12.2011 0 30 300,12 278,96 

1.1.2011 31.12.2011 30 100 236,19 200,42 

1.1.2011 31.12.2011 100 - 220,12 184,35 

1.1.2012 31.12.2012 0 30 241,69 220,54 

1.1.2013 30.6.2013 0 5 131,15 110,00 

1.1.2013 30.6.2013 5 30 108,84 87,69 
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1.7.2013 31.12.2013 0 5 115,00 93,85 

1.7.2013 31.12.2013 5 30 93,46 72,31 

 

3.5.1 Main developing mistakes of PV in CZ: 

 unresponsive to the development and legislation changes in neighbouring countries 

(Germany); 

 insufficient possibility of regulation of purchase prices ( FIT); 

 similarity of purchase prices for all PV installationes regardless of location and 

installed capacity; 

 the possibility of almost free booking of capacity in the transmission grid for 

connecting the PV installationes; 

 mistaken prediction of growth of installed capacity; 

 delayed reaction on the situation. 

3.6 PV history in Spain 

In Spain, as in most other countries, the competition in the PV electricity market is 

heavy. In spite of this theoretically challenging environment, comparatively expensive 

photovoltaic power generation has experienced tremendous growth in Spain in the years 2007 

and 2008. As in Czech the beginning of state support was very favorable for the construction 

of photovoltaic power plants. 

3.6.1 Royal Decree 436/2004, from March 12th 

This Decree allowed generation facilities based on renewable energies to sell their 

energy surplus to distributors in the Spanish energy market. In order to do that, the owner of 

the generation facility could be between two alternatives. The first one was to sell it at a 

regulated tariff, which would be defined as a percentage of the reference average tariff (RAT). 

The second option was to sell the surplus directly in the market at market prices, but receiving 

an additional incentive and a bonus, also defined as a percentage of the RAT. In both cases, 
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the result is a non-constant FIT, which would remain directly tied to the production market 

price. The percentages were defined for two different periods: 

 The first one would be valid during the first 25 years after installation of the power 

plant. 

 The second would start after this first 25 years. 

3.6.2 Royal Decree 661/2007, from May 25th 

This decree replaced the Royal Decree 436/2004. In terms of the photovoltaic power 

generation plants, it was decided that owners could only sell their energy under the modality 

of fixed price (no incentive or bonus was defined for this type of technology). Also, now the 

FIT would be defined not as a percentage of the RAT, but as a fixed value. In addition, all 

producers of electric energy from renewable resources were allowed to sell not only their 

energy surplus, but the totality of their net electric energy production. It also created a 

differentiation between the photovoltaic installations in three groups. The following table 

shows the FIT values defined in this royal decree. There was a massive increase in the 

effective feed-in-tariff for installations with an installed power greater than 100kW, coupled 

with a complete elimination of market risk due to electricity price fluctuations. 

Table 3.3 Royal Decree 661/2007 

Type of PV Installation FIT (first 25 years 

after installation) 

FIT (after first 

25 years) 

Installations with less than 100kW of installed 

power 

44,0381 c€/kWh 35,2305 c€/kWh 

Installations with more than 100kW and less 

than 10MW of installed power 

41,7500 c€/kWh 33,4000 c€/kWh 

Installations with more than 10MW and less 

than 50MW of installed power 

22,9764 c€/kWh 18,3811 c€/kWh 

 

3.6.3 Royal Decree 1578/2008, from September 26th 

The law entered into force on January 1
st
, 2009. A maximum power capacity to be 

installed for the year 2009 was defined. This quota would be distributed amongst two types of 

installation: 

1) Type І installations: Installations on roofs or facades of buildings dedicated for 

residential, services, commercial, or industrial, or installations located on fixed structures 

whose purpose is parking or shadowing. They must all be located in urban areas. 
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Type I.1 installation of type I with less or the same potency than 20kWp.  

Regulated Tariff 34, 00 c€/kWh. 

Type I.2 installation of type I with more potency than 20kWp. 

Regulated Tariff 32, 00 c€/kWh. 

2) Type II installations: All those not included in type 1, like ground installations (in 

general, large PV generation plants). Regulated Tariff 32, 00 c€/kWh. 

3.6.4 Royal Decree 1565/2010 

The values of the PV rates for the first call for registration in the pre-allocation of the 

deadline for filing starts after the entry into force of this Royal Decree is calculated from the 

values resulting from the application of the methodology set out in Article 11.2 of Royal 

Decree 1578/2008 of 26
th

 September, multiplying by the following factors: 

Type I.1 installation: 0, 95 

Type I.2 installation: 0, 75 

Type II installation: 0, 55 

In 28 of January 2012 the new Spanish government, under Prime Minister Mariano 

Rajoy, has suspended all incentives for photovoltaic systems in response to the current 

financial situation. They have not made clear when, if ever, any incentives will be reinstated. 

They did make clear that this will not retroactively affect installations which previously 

secured feed-in tariffs. In place of the FIT, there is legislation in place that allows small 

generators of up to 100 kW to connect to the grid and receive the market price for any 

electricity they feed in. Prior to suspension, the planned tariffs were as follows: 

Table 3.4 Royal Decree 1565/2010 

Rooftop/BIPV Ground-mounted 

Size Incentive Size Incentive 

<20kW 0.283€/kWh Any size 0.121716€/kWh 

>20kW 0.15675€/kWh   
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The Spanish tariff is also limited in how many hours per year it will be paid until 

31.December 2013, the number will be fixed across the country, but from 2014, the country 

was divided into five climactic zones (shown in table 3.5 and fig. 3.6) with corresponding 

limits of hours of solar radiation as follows: 

Table 3.5 Royal Decree 1565/2010 

Until 31 Dec, 2013 Fixed Installation Installation with 1-

axis tracking 

Installation with 2-

axis tracking 

 1250 1644 1707 

From 2014 onward    

Zone I 1232 1602 1664 

Zone II 1362 1770 1838 

Zone III 1492 1940 2015 

Zone IV 1632 2122 2204 

Zone V 1753 2279 2367 

 

Fig. 3.6 Spanish five climactic zones in Royal Decree 1565/2010 
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3.6.5 Royal Decree-Law 1/2012, of January 27 

This law proceeds to the suspension of pre-allocation procedures and the removal of 

economic incentives for new energy production facilities electricity from cogeneration, 

renewables and waste. 

In conclusion, nowadays in Spain is not as much profitable built PV plant as before, but 

for energy consumption in the household is still one of the best options. 

 

3.7 Electric and Hybrid Electric Vehicles progress 

HEV and EV show very encouraging progress. HEV sales broke the one million mark 

in 2012, and reached 1.2 million, up 43% from 2011. Japan and the United States continue to 

lead the market, accounting for 62% and 29% of global sales in 2012 (740 000 and 355 000 

vehicles sold). In order to hit 2020 targets, sales need to increase by 50% each year. EV sales 

more than doubled from 2011 to 2012, passing 100 000 units. This rate of sales growth puts 

EV deployment on track to meet 2020 targets, which require a 80% annual growth rate. This 

will require longer-term policies, more infrastructure and lower battery development costs. 

Sales of non-plug-in hybrid-electric vehicles (HEVs) also grew strongly in 2011 and 2012. To 

build on this moment, governments must continue and expand policies such as vehicle price 

incentives. 

Progress in Czech Republic 

Because of massive foreign direct investments in the last two decades, the Czech 

Republic has become one of the major car manufacturers in Europe.  Production of new 

passenger  cars rose to an all‐time record high of 979,085 units in 2009, which represents 

around 93  cars  per  1,000  people,  the  second  highest  car  production  per  capita  in  

Europe.  The leading Czech automotive companies are SKODA AUTO/Volkswagen, 

Toyota‐Peugeot‐ Citroen (TPCA), Hyundai, Tatra and Avia Ashok Leyland (trucks), Iveco 

and SOR (buses), and Zetor (tractors). There  are  also  270  car‐part  suppliers  represented  

in  the  Czech market (50% of the top 100 European automotive component suppliers and 

40% of the  top 100 world automotive component suppliers). CEZ Group, a Czech energy 

company, bought electric vehicles for non‐profit organizations and built the needed 

infrastructure and   battery recharging points as showes Fig.3.7. There are also big progresses 
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in trams and trolley buses, hybrid and electric buses and electric bikes, which can be found in 

almost every city. [17] 

 

Fig. 3.7 Plug-in map in Czech Republic [17] 

4 Design of PV system for charging station 

In the practical part I would like to use knowledge from theoretical part and apply them 

for the design of charging station, which will be situated at the supermarket parking lot. To 

make more real my project I have decided to install 100kW, which will be enough wattage to 

recharge several vehicles but don´t need such a big space for installing. My idea is to compare 

conditions in Spain and Czech Republic. Ideal conditions in Pilsen I had found in parking lot 

in front of OC Olympia as you can see in Fig. 4.1 and 4.2. For the comparison I propose 

parking area in front of shopping area in Elche. Both areas have a big space potencial in case 

of needful increasing, great orientation and high visite rate. Difference between installations 

could be in case of covered and uncovered style of both parkings. In Czech Republic is not 

usual to build coverd parkings for higher comfort for cars owners and should be necessary to 

build construction for PV installation. On the other hand, in Spain these parkings are already 

covered but in milder inclination than the one which would be ideal for PV installation 

(Fig.4.3,4.4) 
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Fig.4.1 Proposed section of OC Olympia´s parking lot  

 

Fig.4.2 Uncovered parking place in OC Olympia 
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Fig. 4.3 Proposed section of Carrefour´s parking lot  

 

Fig.4.4 Covered parking place in Elche 

Not only this idea makes useful of unused space of covered and uncovered parking, but 

also reduce the time spent at the charging station. Many households around the world already 

have parking locations with access to electricity plugs. For many others, such access will 

require new investments and modifications of electrical systems. For daytime recharging, 
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public recharging infrastructure such as office locations, shopping centres and street parking 

will be needed. Currently, public recharging infrastructure for EVs is very limited or non-

existent in most cities, though a few cities have already installed significant infrastructure as 

part of pilot projects and other programmes. I would like to make this idea of recharging 

infrastructure as a real future project and obviousness for all cities. 

4.1 Calculation of expected annual production 

4.1.1 Dimensioning of the generator 

Annual Report is included in the monthly productions based theoretical maximum 

irradiance, the installed power and performance of the installation. The input data to be 

supplied by the installer are: 

 G(0) Average value of monthly and annual daily irradiation on a horizontal surface, 

in kWh /(m
2
 .day) 

 Gdm (α, β) Monthly and annual average value of daily irradiation on the plane of the 

generator in kWh / (m
2
 · day), obtained from above, which have been deducted 

shading losses if they exceeding 10% year. 

 Energy performance of the installation or "performance rate", PR.  

Efficiency of the system working in real conditions accounted of: 

 - The dependence of the efficiency with temperature. 

 - The efficiency of wiring. 

 - Scattering losses and soil parameters. 

 - Losses due to errors in tracking the maximum power point. 

 - Energy efficiency of the inverter. 

 - Other. 

Typical values for systems with inverter is PR = 0.7 and with inverter and battery is 

PR = 0.6. 
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 The injection estimate of the energy will be made according to the following equation: 

      

    (2) 

 

Where:   Pmp = Peak Power of the Generator [kWp] 

  GCEM = 1 kW/m
2 

  
Ep= Consumption expressed in kWh/day 

 Period of design 

The period of design the generater is very important. We have to know in 

advance for what period of year we want the instalation.  

- For constant consumption in scenes of along the year, the "worst month" 

criterion corresponds to the least radiation. 

- Pump installations, depending on the location and availability of water, the 

"worst month" corresponds with the summer often. 

- To maximize annual production, the design period is whole year. [15] 

Table 4.1 Period of design dependent on location latitude [15] 

Period of design βopt 

Decembre   +10 

July   - 20 

Annual   - 10 

4.1.2 Measurement of installed photovoltaic power plant connected to the grid 

 Is described below the minimum equipment required to calculate the installed power: 

 - 1 solar cell calibrated of equivalent technology; 

 - 1 thermometer of temperature; 

- 1 meter of direct current (DC) and alternating current (AC); 
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 - 1 clamp meter DC and AC.   

 

(3) 

(4) 

(5) 

Where:  Pcc, fov –Potency of DC power immediately output from the PV panels, in W. 

Lcab - Power loss at DC wiring between the PV panels and inverter input, 

including further losses in fuses, switches, interconnections, if antiparallel 

diodes, etc.. 

  E - Solar irradiance in W/m
2 

  g - Temperature coefficient the potency, in 1 / ° C. 

  Tc - Solar cell temperature in ° C. 

Tamb - Ambient temperature in the shade, in ° C, measured with the 

thermometer. 

  TONC - Nominal operating temperature of the module. 

  Po - Nominal generator power in W. 

Rto, var - Performance, which includes loss percentages due to the photovoltaic 

modules operate under different conditions 

Ltem - Annual averages temperature losses. In equation (4) can be substituted by 

the term [1 – g (Tc – 25)] por (1 – Ltem). 

 

(6) 

Lpol - Power loss due to dust on the PV modules. 

Ldis - Power losses by dispersing parameters between modules. 

Lref - Power losses angular spectral reflectance, when using a as a reference 

radiometer measurement. 

If there is no other information more precisely can be used the values listed in Table 4.2. 
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Table 4.2 Values for formulas (3), (4), (5), (6) [15] 

Parametr Estimated value, 

annual average 

Estimated value, 

clear day (*) 

Check observation 

Lcab 0,02 0,02 (3) 

g (1/ °C) - 0,0035 (**) - 

TONC (°C) - 45 - 

Ltem 0,08 - (4) 

Lpol 0,03 - (5) 

Ldis 0,02 0,02 - 

Lref 0,03 0,01 (6) 

(*) At solar noon ± 2 hours a cloudless day. (**) Valid for crystalline silicon. 

Observations:  

(3) Cabling major losses can be calculated if the cable section and length are known, by 

the equation: 

    Lcab = RI
2

     (7) 

 R = 0,000002 L/S     (8) 

 Where:  R- the electrical resistance value of all wires, in ohms. 

L- the length of all cables (adding the flow and return) in cm. 

S- the section of each wire, in cm
2
. 

Normally, losses in switches, fuses and diodes are very small and do not need to be 

 considered. Falls in the wiring can be very important when are long and operate at 

 low voltage DC. Cabling losses in % are usually lower in large power plants than in 

small power  plants. In our case, according to specifications, the maximum 

permissible value for the CC is 1.5% and it is recommended not to exceed 0.5%. 
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(4) Temperature losses depend on the temperature difference in the modules and 25 °C, 

 the cell type and encapsulated and wind. If the modules are conveniently ventilated 

 from behind, this difference is about 30 °C above ambient temperature, for an 

 irradiance of 1000 W/m
2
. For building integration case where modules are not 

 separated from the walls or roof, this difference may increase between 5 °C and 15 °C. 

(5) Dust losses in a one day can be 0% and the day after (rainy day) reach to 8%, when 

 modules have "very dirty look." These losses are dependent on the inclination of the 

 modules, distance from the road etc. A major cause of loss occurs when the PV 

 modules which are having solar cell frame very close to the frame located at the 

 bottom of the module. Sometimes they are projecting support structures of the 

 modules and act as dust detents. 

(6) Losses angular and spectral reflectance can be neglected when you measure the PV 

 array at solar noon (± 2 h) and also when solar radiation is measured with a calibrated 

 cell technology equivalent (CTE) to the PV module. Annual losses are higher in cells 

 with cell layers antirreflexed than textured. They are higher in winter than in summer. 

 They are also higher in higher latitude locations. The losses may also oscillate over a 

day between 2% and 6%. [15] 

4.1.3 Losses for orientation and inclination of the generator other than the 

optimal 

 The purpose of this annex is to determine the limits of the orientation and inclination 

of the modules according to the maximum allowable losses. 

 Angle of inclination β, defined as the angle between the surfaces of the modules with 

the horizontal plane (profile of module in Fig. 4.5). Its value is 0° for horizontal 

modules and 90° for vertical. 

 Azimuth angle α, defined as the angle between the projection onto the horizontal plane 

normal to the surface of the module and the meridian of the place (Fig. 4.6). Its value 

is 0° for South-oriented modules, -90° for modules oriented to East and +90° for 

West-oriented modules. 
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  Fig. 4.5 Source:[15]                      Fig. 4.6 Source:[15]  

  

Having determined the azimuth angle, the generator limits are calculated according to 

inclination acceptable maximum losses. This will be showen in Fig. 4.7, valid for one latitude 

of 41°. For the general case, the maximum loss for this concept is 10%, for superposition is 

20%, and 40% for architectural integration. The points of intersection of the limit losses 

straight to azimuth values provide maximum and minimum inclination. We will correct limits 

acceptable in terms of the difference between the latitude of the place (Elche  = 38° and 

Pilsen  =49°) and 41°, if azimut is 0° according to the following formulas:  

Maximum inclination = inclination 80° - (41° - latitude)    (9)  

Minimum inclination = inclination 5° - (41° - latitude), where 0° its min. value. (10) 

Maximum inclination: Pilsen = 88°,  Elche = 77° 

Minimum inclination:  Pilsen = 13°,  Elche = 3° 

 

In cases close to the limit, and as an instrument of verification, use the following formulas: 

Losses (%) = 100 × [1.2 × 10
-4

 (β -  + 10)
2
 + 3.5 × 10

-5
 α

2
] for 15 ° <β <90 ° (11) 

Losses (%) = 100 × [1.2 × 10
-4

 (β –   + 10)
2
] for β ≤ 15 °    (12)  
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Fig. 4.7 Azimut and inclination verification scheme [15] 

4.1.4 Solar radiation losses by shadows 

These losses are expressed as percentage of total solar radiation which operates with 

surface in the absence of any shade. We can localize the main barriers which affect the 

surface in terms of its position of azimuth and elevation. Barriers profile is represented in the 

diagram of Fig.4.8, which shows the stripes of sun trajectories over the whole year. Each strip 

is divided into portions, bounded by solar hours (negative before solar noon and positive after 

east) and identified by a letter and a number (A1, A2, ..., D14). The tables in references [15] 

page 41-42 refer to different surfaces characterized by their inclination and orientation angles. 

There should be chosen one that is most similar to the study area. The numbers in each box 

correspond to the percentage of annual solar irradiation, which would be lost if the 

corresponding portion is intercepted by an obstacle. [15] 



Solar systems for powering electric vehicles    Adéla Kuhajdová   2014 

48 

 

 

Fig. 4.8 Sun diagram trajectories [15] 

4.1.5 Panel generation factor 

Panel generation factor (PGF) is used while calculating the size of solar photovoltaic 

cells. It is a varying factor depending upon the climate of the site location (depending upon 

global geographic location). In EU countries it is 2.93. This factor is used in calculation of 

"Total Watt-Peak Rating" while designing the size of solar photovoltaic cells. Therefore, 

"Total Watt-Peak Rating" = "Total Watt-hours per day needed/generated from the PV 

modules" divided by "PGF". "Total Watt-Hours per Day" = "Total Watt-hours per day needed 

by appliances" Multiplied by "1.3 times" (the energy lost in the system). Now, to calculate 

"size of PV cells" OR "number of PV cells" just divide the above obtained "Total Watt-Peak 

Rating" by "Watt-Peak of each cell OR Watt-Peak of each square meter size", which ever is 

convenient. [4] 

4.1.6 Few steps of Designing Solar PV System 

The main idea of this project is use energy, which is given to us for free from sun, and 

transforms it to electricity, which can charge electrical vehicles. Usually, full charge of the 

battery takes around 5 hours. This charging station is situated in front of supermarket and has 

three main advanteges: 

 Use of already built-up areas and save of nature, 

 Use the time for charging for other activities, 



Solar systems for powering electric vehicles    Adéla Kuhajdová   2014 

49 

 

 Unused energy can be utilized for running the supermarket. 

Major system components 

Solar PV system includes different components that should be selected according to 

your system type, site location and applications. The major components for solar PV system 

are solar charge controller, inverter, battery bank, auxiliary energy sources and loads 

(appliances). 

 PV module – converts sunlight into DC electricity. 

 Solar charge controller – regulates the voltage and current coming from the PV 

panels going to battery and prevents battery overcharging and prolongs the battery 

life. 

 Inverter – converts DC output of PV panels or wind turbine into a clean AC 

current for AC appliances or fed back into grid line. 

 Battery – stores energy for supplying to electrical appliances when there is a 

demand. 

 Load – is electrical appliance that is connected to solar PV system such as lights, 

radio, TV, computer, refrigerator, etc.  

 Auxiliary energy source - is diesel generator or other renewable energy source. 

Solar PV system sizing 

1) Determine power consumption demands 

The first step in designing a solar PV system is to find out the total power and energy 

consumption of all loads that need to be supplied by the solar PV system as follows: 

1.1. Calculate total Watt-hours per day for each appliance used. Add the Watt-hours 

needed for all appliances together to get the total Watt-hours per day which must be 

delivered to the appliances. 

1.2. Calculate total Watt-hours per day needed from the PV modules. Multiply the total 

appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total 

Watt-hours per day which must be provided by the panels. 

We skip these two steps and decide to install total power of 100kW/day 

http://www.leonics.com/product/renewable/pv_module/pv_module_en.php
http://www.leonics.com/product/renewable/solar_charge_controller/solar_charge_en.php
http://www.leonics.com/product/renewable/inverter/inverter_en.php
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2) Size the PV modules 

Different size of PV modules will produce different amount of power. To find out the 

sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced 

depends on size of the PV module and climate of site location. We have to consider “panel 

generation factor” which is different in each site location. To determine the sizing of PV 

modules, calculate as follows: 

2.1. Calculate the total Watt-peak rating needed for PV modules. Divide the total Watt-

hours per day needed from the PV modules (from item 1.2) to get the total Watt-peak 

rating needed for the PV panels needed to operate the appliances. 

2.2. Calculate the number of PV panels for the system. Divide the answer obtained in item 

by the rated output Watt-peak of the PV modules available to you. Increase any fractional 

part of result to the next highest full number and that will be the number of PV modules 

required. [1]      

3) Inverter sizing 

An inverter is used in the system where AC power output is needed. The input rating 

of the inverter should never be lower than the total watt of appliances. The inverter must have 

the same nominal voltage as your battery. For stand-alone systems, the inverter must be large 

enough to handle the total amount of Watts you will be using at one time. The inverter size 

should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or 

compressor then inverter size should be minimum 3 times the capacity of those appliances 

and must be added to the inverter capacity to handle surge current during starting. For grid tie 

systems or grid connected systems, the input rating of the inverter should be same as PV array 

rating to allow for safe and efficient operation. [1] 

Total Wp of PV panel capacity needed (2): 
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GCEM = 1kWh/day 

  PR= 0,6 (with inversor and battery) 

  Ep = 100 kWh/day 

  Gdm(0, 30/35) 

  Pmp= ?Wp  (to calculate) 

 

Monthly Solar Irradiation  

PVGIS Estimates of long-term monthly averages  

Location: 38°15'57" North, 0°41'0" West, Elevation: 78 m a.s.l., ELCHE 

 

Solar radiation database used: PVGIS-CMSAF  

 

Annual irradiation deficit due to shadowing (horizontal): 0.0 % 

Table 4.3 Monthly radiation in Elche 

 

Month Hh  Hopt  H(30)  Iopt  T24h NDD 

Jan  2540 4390 4190 63 11.3 172 

Feb  3430 5130 4970 55 12.1 134 

Mar  4700 5890 5820 42 14.4 66 

Apr  5950 6380 6440 26 16.4 18 

May  6940 6620 6780 13 19.7 0 

Jun  7870 7090 7320 5 23.9 0 

Jul  7810 7230 7440 8 26.3 0 

Aug  6770 6940 7040 20 26.7 0 

Sep  5240 6210 6180 36 23.7 2 

Oct  3890 5440 5310 51 20.1 14 

Nov  2720 4480 4310 61 14.9 127 

Dec  2480 4320 4120 64 12.0 172 

Year 5040 5850 5830 35 18.5 705 
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Location: 49°44'18" North, 13°22'25" East, Elevation: 337 m a.s.l., PILSEN 

 

Solar radiation database used: PVGIS-CMSAF  

 

Annual irradiation deficit due to shadowing (horizontal): 0.0 % 

 Table 4.4 Monthly radiation in Pilsen 

 

Month Hh  Hopt  H(35)  Iopt  T24h NDD 

Jan  763 1130 1140 62 -1.5 569 

Feb  1500 2160 2170 57 0.9 462 

Mar  2660 3360 3370 46 4.0 383 

Apr  4400 5020 5020 34 8.9 192 

May  5100 5210 5190 20 14.0 84 

Jun  5560 5440 5420 14 16.8 38 

Jul  5140 5100 5080 16 18.6 10 

Aug  4430 4810 4800 28 18.5 42 

Sep  3140 3800 3810 42 14.2 174 

Oct  1770 2410 2420 53 9.8 341 

Nov  893 1320 1330 61 3.7 508 

Dec  752 1090 1090 61 -0.2 601 

Year 3020 3410 3410 34 9.0 3404 
 

 

Hh: Irradiation on horizontal plane (Wh/m
2
/day) 

Hopt: Irradiation on optimally inclined plane (Wh/m
2
/day) 

H(30): Irradiation on plane at angle: 30deg. (Wh/m
2
/day) 

Iopt: Optimal inclination (deg.) 

T24h: 24 hour average of temperature (°C) 

NDD: Number of heating degree-days (-) 

In scenarios of constant consumption along the year, the criterion of "worst month" 

corresponds to less radiation. For calculation purposes we have to choose the month with the 

lowest radiation received to calculate the minimum electrical power supplied by the set of 

photovoltaic panels. The months of lowest radiation are January and December. Any of them 

would be worth because the value consulted daily average radiation is very similar. 
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Elche 

Pmp,min= (100000 x 1)/(4,12 x 0,6) = 40453,1 Wpeak min 

Pmp= 40453,1 x 1,2 =  48543,7 Wpeak 

Technical parametres of used modules are spesifized in Attachments {3}. I used module 

ATERSA A-290P with Icc = 8,67 A 

Number of PV panels needed : 48543,7 /290= 168 modules  MAX 

40453,1 /290=140 modules  MIN 

Pilsen 

Pmp,min= (100000 x 1)/(1,09 x 0,6) = 152905,2 Wpeak min 

Pmp= 152905,2 x 1,2 =  183486,2 Wpeak 

Number of PV panels needed : 183486,2 /290= 633 modules  MAX 

152905,2 /290= 527 modules  MIN 

Result of the calculation is the minimum and maximum number of PV panels. If more 

PV modules are installed, the system will perform better and battery life will be improved. If 

fewer PV modules are used, the system may not work at all during cloudy periods and battery 

life will be shortened. [1] 

Elche 

Vmax = 35,93 x 4= 143,72 V-----120V 4 modules series 

40 modules parallel Icc =8,67x 40= 346,8 A 

Pilsen 

Vmax = 35,93 x 6= 215,6 V-----220V 6 modules series 

100 modules parallel Icc =8,67x 100= 867 A 

4) Battery sizing 

The battery type recommended for using in solar PV system is deep cycle battery. 

Deep cycle battery is specifically designed for to be discharged to low energy level and rapid 

recharged or cycle charged and discharged day after day for years. The battery should be large 

enough to store sufficient energy to operate the appliances at night and cloudy days. 
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Elche 

LD= 100000/120= 833 A (Average daily consumption of the charge in Ah) 

C20 =
      

      
                (13) 

 A- Days of autonomy = 3 days 

PDmax- Maximum discharge depth 

µinv - Energy efficiency of the inverter 

µrd - Energy efficiency tank + regulator 

C20=  (3 x  833)/(0,6 x 0,9 x 0,85)= 5447Ah 

C20/ Icc< 25 

5447 / 346,8 <25  

15,7 <25 condition is met 

Pilsen 

LD= 100000/220= 455 A (Average daily consumption of the charge in Ah) 

C20 =
      

      
          

 A: Days of autonomy = 3 days 

PDmax: Maximum discharge depth 

µinv : Energy efficiency of the inverter 

µrd : Energy efficiency tank + regulator 

C20=  (3 x  455)/(0,6 x 0,9 x 0,85)= 2973,9 Ah 

C20/ Icc< 25 

2973,9  / 867 <25  

3, 43 <25 condition is met  

 

  



Solar systems for powering electric vehicles    Adéla Kuhajdová   2014 

55 

 

In market we can find many types and producers of batteries and also regulators. 

Design of proper system would depend on many aspects as voltage, price and related costs. 

As I know from [1] in design of batteries we have to follow these ruls, which are descried in 

Fig.4.9. Furthure calculation would be done in case of investor´s interests. 

 

 

Fig. 4.9 Battery connection [1] 

 

Average daily production 

Elche 100 (kWh) x 5, 83 = 5 830 kWh 

Pilsen 100 (kWh) x 3,41 = 3 410 kWh 

 Normal electromobile needs for driving 100 km about 12 to 16 kWh of electricity. 

Today is the length of rapid recharge from capacity 0% to 80% from 30 minutes to 45 min by 

special rechargeable "stands" with 400 V/32 A/7 pols, of power consumption about 50 kW 

according to many sources comparison. Considering that, every hour could be charged one 

car, the total energy consumption is: 

50 kW x 24hours= 1200 kWh per day 

 The last thing to count is how many rechargeable "stands" it could be installed for 

parking area: 

Elche 5830 kWh / 1200 kWh = 4,8 - 4 plugs  

It means that per day would be possible to recharge max 96 cars. 

Pilsen 3 410 kWh / 1200 kWh = 2,8 - 2 plugs 

It means that per day would be possible to recharge max 48 cars. 
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The results are of course only theoretical, but very important for investor's decisions. 

Calculations can be affected by many factors for example of selection a manufacturer, type of 

photovoltaic panels, inclination and rotation angle, etc. The real usability would show up after 

1 year of useage but also these calculations can show what a great step forward would be the 

construction of these charging station. 

5 Assessment of my proposal and its efficiency 

In the following Fig.5.1 is my proper design of fotovoltaic charging station in Pilsen. The 

project has been done in AutoCAD program and it shows how this parking lot could be use 

for powering electrical vehicles in real. My final task is to evaluate my project in terms of 

economy, environment and efficiency.  

Fig. 5.1 Fotovoltaic parking lot from south-west view 

 

5.1 Solar Irradiance evaluation 

My project and all this calculation depend on Average Daily Solar Irradiance, which 

is transformed to electrical energy. Folowing tables and graphs are result of my work of 

calculation solar irradiance performance to electrical energy. These datas are consulted by 

PVGIS © European Communities, 2001-2012 and reproduced formulas (3), (4), (5), (6). 
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Table 5.1 Used data of module ATERSA A-290P 

Inverter performance [%] 0,04 

Pcc,inv [W] 6903,430551 

Pcc,fov [W] 7044,316889 

Po [W] 100000 

Rto, var[W] 0,922082 

Tc [°C] 32,66625 

Tamb [°C] 30 

TONC 47 

g (coefficient of variation of 

the power with temp.) 0,0043 

 

My task was to compare situation In Czech Republic and Spain. I chose Pilsen, which is 

city where I live and also part of Czech, which is suitable for construction of PV power 

plants. In Spain I chose Elche, which was epicenter of my Erasmus Internschip and is situated 

in Zone V with the highest solar irradiation. The main factor that we are interested in is PAC 

inversor, which represents Potency of DC power immediately output from the inversor in W. 

Specific data can be found in the Table 5.1 and demonstrated in following Charts. 

Table 5.2 Comparison of Annual Potency [W]in Pilsen and Elche 

Month January February March 

Time(h) 

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

0:00 0 0 0 0 0 0 

1:00 0 0 0 0 0 0 

2:00 0 0 0 0 0 0 

3:00 0 0 0 0 0 0 

4:00 0 0 0 0 0 0 

5:00 0 0 0 0 0 0 

6:00 0 0 0 0 1975,63398 3895,174622 
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7:00 0 4783,62893 3183,41232 11806,94255 11425,8199 19343,61221 

8:00 4975,839036 23435,26241 12707,2119 29180,72357 21630,5094 35333,75509 

9:00 11145,24449 37613,34591 20704,4952 43113,96795 30244,7028 48043,52494 

10:00 15527,7294 47278,47473 26475,4487 52663,57217 36411,0364 56647,03399 

11:00 17965,41386 52423,73328 29650,0200 57769,55627 39789,5849 61277,91031 

12:00 18442,12052 53234,58466 30224,4621 58575,07052 40340,8204 61973,53427 

13:00 16933,1654 49801,61628 28224,1202 55121,61188 38180,862 58933,79948 

14:00 13511,76588 42164,9528 23667,0415 47510,19054 33245,6830 52042,52119 

15:00 8168,19995 30301,10833 16708,2979 35787,2259 25777,31 41344,6014 

16:00 1387,812184 14087,73232 7897,33571 20292,13055 16306,7824 27008,03109 

17:00 0 0 402,9703698 3487,065983 6258,85532 10696,88639 

18:00 0 0 0 0 0 471,6720716 

19:00 0 0 0 0 0 0 

20:00 0 0 0 0 0 0 

21:00 0 0 0 0 0 0 

22:00 0 0 0 0 0 0 

23:00 0 0 0 0 0 0 

Month April May June 

Time(h) 

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

0:00 0 0 0 0 0 0 

1:00 0 0 0 0 0 0 

2:00 0 0 0 0 0 0 

3:00 0 0 0 0 0 0 

4:00 0 0 556,7322764 0 2224,108997 0 

5:00 1441,868837 571,6908976 5357,345398 2832,402756 7015,704066 3733,899986 

6:00 8757,351587 8173,494336 12522,17278 11171,05002 14214,91017 11474,02099 
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7:00 20306,9184 23379,40368 22648,82133 25933,51185 23844,35354 26843,94698 

8:00 31802,93388 38618,92245 32121,28688 40157,88964 32800,36098 41780,97384 

9:00 41263,22782 50905,33369 39802,06619 51474,67671 39999,69252 53895,78895 

10:00 47870,00517 59317,70175 45143,64906 59294,32437 45016,0355 62304,40241 

11:00 51520,49463 63869,14673 48056,29179 63517,93288 47754,41663 66888,91665 

12:00 52111,19602 64630,19923 48503,09288 64268,30147 48207,69526 67666,44679 

13:00 49709,99835 61685,87945 46589,5365 61578,7876 46357,12203 64738,51295 

14:00 44362,82318 55011,6058 42242,20439 55372,51401 42298,86717 58055,43977 

15:00 36227,23874 44545,0701 35634,94194 45678,51719 36059,93194 47629,40455 

16:00 25672,15172 30689,5143 26972,12508 32806,91786 27889,33481 33981,39064 

17:00 13974,4499 15035,9991 17104,49477 18031,9318 18555,6037 18571,43832 

18:00 4381,341891 2969,550406 8091,760101 5971,15991 9688,550552 6258,177446 

19:00 0 0 2557,704364 0 4616,68167 860,596384 

20:00 0 0 0 0 0 0 

21:00 0 0 0 0 0 0 

22:00 0 0 0 0 0 0 

23:00 0 0 0 0 0 0 

Month July August September 

Time(h) 

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

0:00 0 0 0 0 0 0 

1:00 0 0 0 0 0 0 

2:00 0 0 0 0 0 0 

3:00 0 0 0 0 0 0 

4:00 1370,152708 0 0 0 0 0 

5:00 6312,271379 3025,344822 2453,617839 1139,442095 0 0 

6:00 13261,6048 10719,11425 9307,814539 8627,377617 4099,689013 4659,514711 
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7:00 22401,69418 26351,90969 19309,29268 23920,76452 13492,71239 18977,03107 

8:00 30818,81091 41782,46182 29216,4493 39585,18519 23531,80742 34938,4628 

9:00 37527,36461 54355,38126 37406,06973 52342,7717 31954,22258 48186,6445 

10:00 42183,42518 63070,65081 43184,21677 61209,34423 37989,30931 57409,77856 

11:00 44717,74351 67821,76828 46344,33832 65974,73693 41270,39864 62376,88394 

12:00 45115,98303 68631,34335 46857,47609 66758,19854 41803,53893 63218,59865 

13:00 43436,71789 65576,80161 44732,35757 63676,73016 39651,95306 59992,2617 

14:00 39636,7096 58610,88548 40055,38185 56652,3356 34804,80909 52700,09394 

15:00 33852,5945 47822,03244 32948,18775 45690,10002 27486,01721 41361,32 

16:00 26216,40407 33670,07775 23806,53427 31360,30388 18200,80372 26627,99522 

17:00 17398,8143 17868,23802 13771,97003 15519,62636 8226,953634 10864,80174 

18:00 8943,147093 5540,610052 5266,581982 3711,515249 1077,400714 973,0813454 

19:00 3845,472145 670,0577561 507,8689188 0 0 0 

20:00 0 0 0 0 0 0 

21:00 0 0 0 0 0 0 

22:00 0 0 0 0 0 0 

23:00 0 0 0 0 0 0 

Month October November December 

Time(h) 

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

PAC inversor 

Pilsen 

PAC inversor 

Elche  

0:00 0 0 0 0 0 0 

1:00 0 0 0 0 0 0 

2:00 0 0 0 0 0 0 

3:00 0 0 0 0 0 0 

4:00 0 0 0 0 0 0 

5:00 0 0 0 0 0 0 

6:00 0 958,8173027 0 0 0 0 
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7:00 5725,474625 13890,08278 355,7963959 5815,124885 0 3217,720172 

8:00 14420,9484 30332,05672 6694,262701 23532,03538 3727,748648 22569,67445 

9:00 21906,50175 43659,85291 12833,00068 37532,38061 10636,55795 37201,31686 

10:00 27276,69974 52823,06165 17109,9194 47186,99218 15026,52821 46869,79799 

11:00 30233,74784 57773,90957 19494,27018 52405,62128 17464,06066 51953,17812 

12:00 30772,25621 58573,25221 19935,57027 53269,46142 17923,73726 52798,91273 

13:00 28862,60144 55386,02619 18490,07069 49901,18124 16453,12206 49442,86875 

14:00 24607,24272 48117,27991 15121,61278 42283,66909 13024,10501 41876,2066 

15:00 18130,10085 36824,63104 9926,875692 30462,01079 7531,428298 29944,11062 

16:00 9948,734727 21938,20545 2784,646219 14811,57543 501,6351233 12033,47224 

17:00 1732,597244 5622,514303 0 1069,104688 0 0 

18:00 0 0 0 0 0 0 

19:00 0 0 0 0 0 0 

20:00 0 0 0 0 0 0 

21:00 0 0 0 0 0 0 

22:00 0 0 0 0 0 0 

23:00 0 0 0 0 0 0 
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Chart 5.1 January daily potential in Pilsen and Elche  

 

 

Chart 5.2 February daily potential in Pilsen and Elche  
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Chart 5.3 March daily potential in Pilsen and Elche 

 

 

Chart 5.4 April daily potential in Pilsen and Elche 
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Chart 5.5 May daily potential in Pilsen and Elche 

 

 

Chart 5.6 June daily potential in Pilsen and Elche 
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Chart 5.7 July daily potential in Pilsen and Elche 

 

 

 

Chart 5.8 August daily potential in Pilsen and Elche 
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Chart 5.9 September daily potential in Pilsen and Elche 

 

 

Chart 5.10 October daily potential in Pilsen and Elche 
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Chart 5.11 November daily potential in Pilsen and Elche 

 

 

 

Chart 5.12 December daily potential in Pilsen and Elche 

These results show notable differance between these both countries. During summer 

months red (Elche) and blue (Pilsen) lines are going to approximate, even in Pilsen the sun 

rises are earlier and sunsets later but the production is not even comparable.  
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5.2 Economy evaluation 

This is the most interesting part for investors. In this paragraph Czech Rebublic has 

considerable advantages. In Spain Royal Decree-Law 1/2012, of January 27 cutted all 

dotation for instaling photovoltais systems and the market price is about 5 c€. In Czech 

Republic is still support from the state.  From 1.7.2013 to 31.12.2013 and installed power 

from 5-30 kW FIT is 9,346 kWh/c€ and GB tarrif is 7,231c€. The problem in my project is 

that installed power is going to be 100kW, which is beyond subsidies. That is why I decided 

that unused energy would serve to fill energy needs for the supermarket. 

There is another question about price of photovoltaic system. Average price of 1Wp of 

installed capacity is 2 € in EU. I can very simply calculate cost of fotovoltaic system installed 

in Elche and Pilsen. It is necessary to say that prices of cells are rapidly decreasing every year 

and almost all producers indicate an 80% performance after 20 years. 

Elche: 48 543,7 x 2 = 97 087 € 

Pilsen: 152905,2 x 2= 305 810 € 

 From this perspective, installation in Elche is worth it 3times by the initial costs in 

comparison to Pilsen and the associated return on investment. 

5.2.1 Savings of electric vehicles  

 Economical view for vehicle owners is a way more interesting. Acquisition costs of 

electric vehicles are still little bit higher but total operating costs are lower compared to 

combustion, because it is not necessary to change the oil, clutch, exhaust, plugs, wiring, 

engine repair. Moreover, it is without emission fees. For furthure information for electric 

vehicle´s investors I highly recommend following webpage with program DrRange5.xls, 

which describes in detail all car specifications: 

http://www.elektromobily.org/wiki/Vypocty_a_simulace  

 In folowing Table 5.3 I would like to show how much more economic electric vehicles 

are. The prices are actual for year 2013.  

 

 

 

http://www.elektromobily.org/w/images/a/ae/DrRange5.xls
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Table 5.3 Comparison of electricity prices and gasoline [19] 

 Electric vehicle Combustion vehicles 

Consumption per 100 km 16 kWh (el.energy) 8 litres (Natural 95) 

Price per unit in Czech 

Republic 

0,149 €/kWh 1,46 €/l 

Price per 100 km 2,384 € 11,68 € 

Price per unit in Spain 0,195 €/kWh 1,44 €/l 

Price per 100 km 3,13 € 11,52 € 

 

5.3 Environmental evaluation 

 In any magazine there is always written that use of solar energy releases no CO
2
, SO

2
, 

or NO
2
 gases and don't contribute to global warming. Actually PV plant with an output of 100 

kW per year will save an average of 90 000 kg of CO
2
 emissions. Photovoltaic is now a 

proven technology, which is inherently safe as opposed to some dangerous electricity 

generating technologies. Photovoltaic systems make no noise and cause no pollution in 

operation. Solar energy is clean, silent, and freely available. But the answer if is really so 

environmentally friendly, is a bit longer.  

 We are interested in environmental impact of the technology, all impacts from 

inception to retirement must be taken into account. Life Cycle Assessment (LCA)  

methodology considers three distinct phases in the life cycle of CPV: (1) fabrication of PV 

modules and deployment in the field on two-axis tracking systems (2) energy production (3) 

recycling and disposal at end of life. Here, four LCA environmental impact metrics are 

discussed in the context of PV: energy, emissions, water use and land use. Generally, a 1 kWp 

of installed capacity use land of about 8 to 10 m
2
. In our case in Elche is about 485 m

2
 and 

Pilsen 1840 m
2
. We negate land use by installing PV plant on the roof of parking lot. A 

dominant LCA energy metric is the Energy Payback Time (EPBT), which denotes the time in 

years it takes for a technology to produce as much energy (net) as it takes to create and 
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dispose of the device. EPBT is a measure of energy efficacy - for an energy technology to be 

a worthwhile investment from an energy production perspective; the EPBT should be much 

less than the lifetime of the device. EPBTs are calculated (eq. 14) by adding up all energy 

used in fabrication and installation of an electric power device, as well as disposal/recycling 

at the end of life, and then dividing this Cumulative Energy Demand (CED) by the yearly net 

energy during operation. The yearly net energy during operation is expressed in units of 

primary energy per year, thereby giving the EPBT in years. The conversion from yearly net 

electricity generated by the device PGeneratedNet to primary energy terms is accomplished by 

dividing PGeneratedNet by the efficiency of electric power grid at converting primary energy into 

electricity at the site of deployment of the device. This conversion represents the input energy 

that would have been used to create a unit of electricity from other electric power generators, 

had the device in question not been installed. The primary energy used in operations and 

maintenance PO&M is subtracted from the denominator to obtain the yearly operational net 

energy. [1] 

 

(14) 

 

  

 Recent EPBT values are for a range of solar technologies, all of which are less than or 

equal to two years. Considering this fact, drive EVs or HEVS contributes to naturally 

sustainable development. 

5.4 Problems of real mass development of electric vehicles 

One could say that technology has advanced so much that the production and 

introduction of electric vehicles into practice almost nothing stays in the way. But I have few 

doubts. These vehicles from the user's perspective view look like their combustion colleagues, 

which have power over 40 kW, maximum speed over 130 km / h, range over 100 km and 

don´t look like "experimental monsters". It is already a great promise for the future. 

Something else is of course the purchase price of the car. The biggest problem for the 

practical application of electric cars I do not see in still significantly less range per charge but 

in providing of charging. One possibility is to charge overnight but not everybody has this 
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option and moreover it takes approximately 8 hours. Over time I hope that each resident will 

have their own house charger and new houses with connecting electric vehicles will already 

be counted, but still is not done and investments of the transformation of our cities can be 

quite high. Therefore I see markedly solution in my project. Inventers are working on new 

practically feasible solution in the form of exchanges of standardized batteries. All electric 

cars would use the same standardized battery type, which would be built into the car, but it 

would be easily removed / ejected. But this is question of the future. Electric vehicles, besides 

the above mentioned problems of practical operation, can be by their massive use in the future 

to face challenges related to greatly increased electricity consumption. While today's 

household electrical appliance has a total power of only a few kW-day consumption in the 

order of tens or maximum kWh, the acquisition by its electric consumption practically more 

than doubled if the car is used every day, which is quite likely. I see the positive that electric 

vehicles could help solve a constant problem with the balance of electic grid with massive use 

of solar and wind power. However, significantly higher electricity consumption would 

certainly set in motion electricity prices. 

Personally, I believe that time fully electric cars will just have to come in the future if 

mankind does not develop some kind of a synthetic liquid or gaseous fuel suitable for 

replacing oil with combustion engines. Oil or gases that will not be forever and currently it 

seems that electricity along with hydrogen in fuel cells are still the only proven viable 

alternatives for transport. 
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6 Conclusion 

Energy is a term that follows us every step of our life. Energy is mainly a question of the 

future, because the future will show how people can deal with the increasing energy 

consumption. Limit the right of the energy needed for operation is possible resource that gives 

us nature such as solar energy, wind energy, hydro energy and the use ground heat and biogas 

from waste. 

Firstly, I dicussed main features of electric vehicles and their more advantages than 

disadvantages. In the coparison between Spain and Czech Republic was confirmed that PV 

electricity potential in Spain is much higher. Unfortunately, Spanish govermant in 2012 cutted 

bonuses for sell produced energy to the grid. Secondly, my thesis shows up EV´s and HEV´s 

progress and step by step how to design PV system. In this part I came up with a proposal of 

PV charging stations and its own design. To reach total power 100 kW/day in Elche should be 

installed between 140 and 168 modules, which have Average daily production of 5 830 

kWh. This special rechargeable "stands" with 400 V/32 A/7 pols would contain 4 plugs and 

recharge max 96 cars a day. In Pilsen the amount of modules needed is between 527 and 633, 

which have Average daily production of 3 410 kWh. In this case is capacity of plugs two 

times less and has the possibility of recharging 48 cars a day. These data are also proven from 

2 sources ([11] and Attachment {3}). Both results are comparable. The last part is dedicated 

to evaluate my project in terms of economy, environment and efficiency. Calculated cost of 

photovoltaic system installed in Elche would be 97 087 € and Pilsen 305 810 €. Morover, I 

wanted to show economic aspects of EV´s and HEV´s and also possible problems of real 

mass development. 

If we change our approach to transport and respect the call for gentle treatment of nature, 

electric vehicles can very significantly affect ecological consequences of our behavior 

towards nature. No matter how accurate the estimates of ecosystem changes are, melting 

glaciers and limits of energy supply make needs to develop new transport options. The more 

strict emission reduction requirements lead automotive industry to the introduction of many 

new technologies and responsible approach to the problem and reduce oil demand.  To be 

totally honest the lowest negative environmental impact would be a lifestyle change in favor 

of walking, biking or use of public transit. 

RES + EVs and HEVs = energy saving = environmental protection.  
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Attachment {3} 

PVsyst V6.22 Elche (Spain) Pilsen (Czech Rep.) 

Month Global 

irradiance 

[kWh/m
2
.day] 

Temperature 

[°C] 

Global 

irradiance 

[kWh/m
2
.day] 

Temperature 

[°C] 

January 2.49 11.6 0.72 -1.6 

February 3.39 12.0 1.39 0.4 

March 4.61 14.2 2.35 3.5 

April 5.72 16.5 3.84 8.3 

May 6.56 19.6 4.90 13.7 

June 7.13 24.1 5.01 16.4 

July 7.26 26.1 4.87 17.5 

August 6.28 26.7 4.46 18.2 

September 5.05 23.8 2.93 13.3 

October 3.71 19.9 1.80 8.7 

November 2.55 14.8 0.83 3.1 

December 2.17 12.0 0.51 -0.8 

Year 4.75 18.4 2.81 8.4 
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