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Abstrakt

Glykolýza je d̊uležitou součást́ı metabolických drah bakterie Escherichia coli.
Metabolické dráhy zajǐst’uj́ı rozkladem glukózy tvorbu energie v podobě ATP
a v předńı řadě buněčný r̊ust. Dráhy jsou pevně spjaty a proto regulace
glykolýzy nezáviśı pouze na jej́ıch vlastńıch reakćıch, ale na celé metabolické
śıti. Byl navžen jednoduchý optimalizačńı model chováńı metabolické śıtě a
porovnán s výsledky experiment̊u.

Kĺıčová slova: glykolýza, regulace, enzymy, matematický model, metabol-
ické dráhy, optimalizace

Abstract

Glycolysis is an important part of the metabolic pathways of Escherichia coli.
Metabolic pathways ensure by decomposition of glucose production of energy
in the form of ATP and in the front row cellular growth. Pathways are tightly
linked and therefore regulation of glycolysis depends not only on its own re-
action, but on the whole metabolic network. A simple optimization model
of metabolic network behavior was designed and compared with experimental
results.

Keywords: glycolysis, regulation, enzymes, mathematical model, metabolic
pathways, optimalization
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1 Introduction

Synthetic biology is a new field of research that combines genetics, chemistry
and engineering. It approach the creation of new biological systems from
different perspectives, focusing on finding how life works.

This work focuses on synthetic biology in terms of Cybernetics, when any
biological object can be seen as a system. Such a biological object can be
mathematically describe, to model and simulate, thus we achieve a better
understanding of the behavior of biological objects.
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2 Biological background

If we want to model metabolic pathways, it’s important to know essential bio-
logical regularities, which controls the metabolic network. These regularities
or we can say rules will form the basis for modeling of metabolic network.

2.1 The Glycolitic pathway

Glycolysis is the main pathway of central metabolism. In this work provides
introductory concept relevant to the remainder of this work.

2.1.1 Metabolism

Metabolism is a set of chemical and physical processes in an organism, which
produces and destroys substances and produces energy. Metabolism can be
divide into anabolism and catabolism. Anabolism is the process, by which
complex molecules are form smaller molecules, whereas catabolism is the
breakdown of complex molecules.

Central metabolic pathways provide the precursor metabolites to all other
pathways. The central pathways for decomposing carbohydrates are the
Embden-Mayerhof-Parnas pathway (also called glycolysis), the Pentose Phos-
phate pathway and the Entner-Doudoroff pathway. All three pathways use
different mechanisms to convert glucose into phosphoglyceraldehyde and same
mechanisms to convert phosphoglyceraldehyde to pyruvate. [5]

2.1.2 Glycolysis

Glycolysis is a sequence of ten enzymatic reactions, which convert glucose into
pyruvate. The free energy released during this process is used for produc-
tion of the high-energy compound ATP (adenosine triphosphate) and NADH
(nicotinamide adenine dinucleotide). Glycolysis is used to produce ATP in
aerobic and anaerobic conditions. [5]
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Biological background The Glycolitic pathway

2.1.3 Reactions of glycolysis

As many metabolic pathways, glycolysis is divided into separate phases with
differing roles.

Preparatory phase

This phase consumes energy to destabilization and cleavage of glucose in the
blood and thereby increase its intake. The following reactions represents this
phase:

1.) Glucose + ATP −→ G6P
In the first reaction 1 ATP is consumed for conversion of glucose into
G6P (glucose-6-phosphate). G6P is also an essential metabolite for
cellular growth.

2.) G6P 
 F6P
Followed change in structure from G6P to F6P (fructose-6-phosphate)
- the next metabolite important for cellular growth.

3.) F6P + ATP −→ F16BP
This is another energy-loss reaction.1ATP is consumed to convert F6P
into F16BP (fructose-1,6-bisphosphate).

4.) F16BP 
 GA3P + DHAP
The next is splitting of F16BP to two molecules - GA3P (glycealdehyde-
3-phosphate) and DHAP (dihydroxyacetone phosphate). GA3P is one
of the significant metabolites for cellular growth.

5.) DHAP 
 GA3P
Now is creating a second GA3P conversion of DHAP.

Pay-off phase

The second part of glycolysis generates energy in the form of ATP and NADH.

6.) GA3P + NAD+ 
 13BPG
GA3P is converted into 13BPG (1,3-bisphosphoglycerate) by consump-
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Biological background Enyzmatic reactions and Enzymes

tion of NAD+. NADH is formed which is also important metabolite in
cellular growth.

7.) 13BPG + ADP 
 3PG
This reaction is important because ATP is formed during conversion
of 13BPG into the next metabolite important for cellular growth 3PG
(3-phosphoglycerate).

8.) 3PG 
 2PG
2PG (2-phosphoglycerate) is creating from 3PG.

9.) 2PG 
 PEP
In the ninth step is formed PEP (phosphoenolpyruvate) from 2PG.
PEP is metabolite used for cellular growth.

10.) PEP + ADP −→ Pyruvate
The final step is the second energy-yielding reaction. ATP is formed
during conversion of PEP into P (pyruvate), which is also essential for
cellular growth.

[6]

2.2 Enyzmatic reactions and Enzymes

Enzymatic reactions are the fundamental building blocks of the models in-
troduced in the next chapter.

Almost all enzymatic reactions in living organisms are made possible
through the catalytic effect of biological catalysts - enzymes. Enzymes are
simple or complex proteins.

2.2.1 Enzymatic reaction

An enzymatic reaction is a biochemical reaction that must be catalyzed by an
enzyme in order to proceed under normal conditions. The enzyme reduces
the activation energy of the reaction by creating an intermediate enzyme-
substrate complex. The substrate binds to the active site of the enzyme, a
three-dimensional shape made up of amino acid residues, where undergoes
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Biological background Enyzmatic reactions and Enzymes

the corresponding chemical transformation. We can imagine that the sub-
strate has the form of a key that fits only in an enzyme whose cutout shape
corresponds to the key lock. Once bound, the enzyme is able to adapt to the
shape of the key further securing the bond. This principle is called the lock
and key theory and we can see it in the picture below.

Figure 2.1: The theory of key and lock - princip of enzymatic reaction.

[6]

2.2.2 Enzymes of glycolysis

The central metabolism modeled in the next chapter includes three types of
reactions:

Category 1:

Substrate1 + Substrate2
Enzyme−→ Product

This category includes the following enzymes:

Kinase: A kinase is a type of enzyme that transfers phosphate groups
PO3 from high-energy donor molecules, such as ATP , to specific
substrates, a process called phosphorylation. Kinases are a part
of the larger family of phosphotransferases.
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Biological background Enyzmatic reactions and Enzymes

• Hexokinase is an allosteric enzyme which is strongly inhib-
ited by the product of glucose-6-phosphate. In the first re-
action hexokinase adds a phosphate group to glucose to form
glucose-6-phosphate.

• Phosphofructokinase-1(PFK-1)is a key enzyme of glycol-
ysis, which regulates the rate of sequence. It’s allosteric regu-
lation and inducible enzyme. PFK-1 catalyzes the addition of
phosphate group to fructose-6-phosphate and ATP to create
fructose-1,6-bisphosphate and ADP .

• Phosphoglycerate kinase is an enzyme that catalyzes re-
leasing of phosphate from 1,3-bisfosfoglycerátu and adding
it to ADP to form ATP . The product of reaction is 3-
phosphoglycerate.

• Pyruvate kinase catalyzes the transfer of a phosphate group
from phosphoenolpyruvate to ADP yielding one molecule of
stable pyruvate and one molecul of ATP .

Dehydrogenase: A dehydrogenase is an enzyme that catalyses the
removal of hydrogen.

• Glyceraldehyde phosphate dehydrogenase is the pyri-
dine enzyme with NAD+. It catalyzes the irreversible reac-
tion involving dehydrogenation and phosphorylation, which
forms 1,3-bisphosphoglycerate and NADH +H

Category 2:

Substrate
Enzyme−→ Product

The following enzymes representing this category.

Isomerase: An isomerase is an enzyme that catalyzes the structural
rearrangement of isomers. The structural changes is called iso-
merization.

• Glucose-6-phosphate isomerase in an enzyme that cat-
alyzes the conversion of glucose-6-phosphate into fructose-6-
phosphate.

• Triosephosphate isomerase is an enzyme that catalyzes
the reversible isomerization reaction when both phosphory-
lated triose transferred from one to another - dihydroxyace-
tone phosphate to D-glyceraldehyde 3-phosphate.

Mutase: A mutase is an enzyme that catalyzes the transferring of a
functional group from one position to another within the same
molecule.
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Biological background Regulation of glycolysis

• Phosphoglycerate mutase is an enzyme that catalyzes the
internal transfer of a phosphate group from 3-phosphoglycerate
to 2-phosphoglycerate.

Lyase: A lyase is an enzyme that catalyzes the breaking of various
chemical bonds by means other than hydrolysis and oxidation,
often forming a new double bond or a new ring structure.

• Enolase chipped off water from 2-phosphoglycerate and de-
hydrated product is very unstable phosphoenolpyruvate.

Category 3:

Substrate
Enzyme−→ Product1 + Product2

This category is represented with only one enzyme.

Lyase: • Aldolase is an enzyme that occurs in several isoenzymes.
It catalyzes an aldol splitting reaction - the substrate, fructose-
1,6-bisphosphate is broken down into glyceraldehyde-3-phosphate
and dihydroxyacetone phosphate.

[6]

2.3 Regulation of glycolysis

Glycolysis is regulated for generating of ATP and providing of building blocks
for synthetic reactions. Potential sites of regulation are irreversible reaction
catalyzed by kinases.

Two of the most common control strategies used by engineers are im-
plemented in the regulation of this enzymatic reaction: feedback and feed-
forward. Feedback is through the pathway metabolite ATP. Feedforward is
through secondary enzyme F26BP.

2.3.1 Regulation of fructose-1,6-bisphosphate

One of the irreversible steps (large decrease in Gibbs free energy) which deter-
mines the speed of glycolysis, is the phosphofructokinase reaction (fructose-
6-phosphate to fructose-1,6-bisphosphate). This is the key regulatory point
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Biological background Regulation of glycolysis

of glycolysis. The activity of this allosteric enzyme is regulated by several
factors whose effects are shown in Figure 2.2.

Figure 2.2: Feedforward in third reaction with regulators

On the block diagram is a model of third reaction including a regulation
step by F26BP. Fructose-2,6-bisphosphate is a metabolite, which is synthe-
sized by phosphorylation of F6P using ATP from PFK2 enzyme. F26BP
strongly activate breaking down of glucose through allosteric modulation of
PFK1. Increase of F26BP activates PFK1 so that increase enzyme’s affin-
ity for F6P and currently decrease his affinity for inhibit ATP and citrate.
Another regulation factor is delivery of oxygen called Pasteurs efect. Plenty
of oxygen contributes to save up of glucose. Nature of Pasteur efect is in
inhibition efect of ATP to phosphofructokinase, when proportion of [AMP]
: [ATP] is low. When there is deficiency of oxygen [ATP] decreases and gly-
colysis speeds up. AMP - adenoin monophosphate is formed by splitting of
phosphate group from ADP. AMP works as indicator low-energy state of cell,
when ATP is deficiency. Plenty of ATP prevents other consumtion of glucose
as nutrients and thus it saves.

However, F26BP not continue nowhere further just goes back to F6P and
therefore this regulatory point unusable.

As can be seen, enzymatic reactions are complex. In practice, it is dif-
ficult to identify or measure all regulatory and kinetic parameters. Instead,
optimization techniques are used in the next section to compute fluxes that
are likely to be realized by live cells. [6]
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3 The Steady state

In this chapter, a steady state representation of the Glycolytic pathway is
derived. The steady state representation of the entire central metabolism
(including the Glycolytic pathway) forms the parametric model used in the
next Chapter to compute expected metabolic fluxes.

3.1 Biological model

Due to a change of approach (from control to optimize), we focused on com-
plex central metabolism, not only on glycolysis. This led to the inclusion of
other metabolic pathways such as the Pentose Phosphate Pathway, Entner-
Doudoroff Pathway and Citric Acid Cycle. Was also added the second input
glycerol. The entire biological model can be seen in the following figure.
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The Steady state Biological model

[5]
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The Steady state Flux Balance Analysis

Figure 3.1: In the picture can easily recognize the different metabolic path-
ways through different colored arrows. Gi, Glyi, O2i, Trpi, Pani and Cysi
takes as inputs the system. On the sides are reactions 18, 30, 44,45,46, 47
and 52, which balance the whole metabolic system and one reaction for bal-
ancing glycolysis conversion of pyruvate to lactate. Further reaction 53, 54,
55, 56, 57 and 58 are the output reactions for the case when the quantity
of input material will not be consumed,so the residue was drained off. The
green metabolites are metabolites which are necessary for cellular growth.

3.2 Flux Balance Analysis

Flux Balance Analysis is a modeling approach based on the constraints on
the metabolic network. The most important limitation concerns the stoichio-
metric matrix. This approach narrows the range of options that a metabolic
network can accept based on limitations which the cell must follow. Each of
these constraints can be mathematically described as meaning that each flux
of metabolic network represents dimension of the solution space, and therefor
can be represented by the axes in the graph. The graph combined with the
limitations of cell specify the solution space for the metabolic network of all
possible states that the network may accept.

Flux Balance Models require to define all metabolic reactions and metabo-
lites used in the biological model. This can be defined using mathematical
model. [1]

3.2.1 Matematical model

To create a mathematical model should take into account the rules based
on the chemical equations of the biological model. These chemical equations
can be transformed the system of differential equations using the law of mass
action.

3.2.2 Mass Action

Mass action law is based on the principle of conservation of mass and is used
to describe the dynamic behavior of reaction networks. Metabolic network
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The Steady state Flux Balance Analysis

in the steady state may be described by equations of conservation of mass.
These equations also describe the changes in concentration over time, which
is the difference of the rate at which a metabolite is formed and the rate at
which a metabolite is consumed.

For some chemical reaction:

A+B 
k1
k2
C

(This chemical reaction is reversible - it’s marked by the double arrow.

k1, k2 represents the reaction rate, where

k1 is a reaction rate of reaction: A+B
k1−→ C

and k2 is a reaction rate of reaction: C
k2−→ A+B )

Then according to the law of mass action this reaction can be converted
to a mathematical equation:

ċ(t) = a · b · k1 − c · k2
So we get the differential equation describing the formation of the product

C. In general we can write:
∑

i si · xi
k−→ c

ċ = k ·
∏
i

xsii

It is obvious that the sum of all the variables in the equations is equal to the
outer fluxes and thus satisfies the principle of conservation of mass, thus no
mass is lost during the experiment.

In this point I have applied the mass action law on the individual reactions
of glycolysis and I got the following differential equations:

1.) Glucose︸ ︷︷ ︸
x1

+ATP︸ ︷︷ ︸
x2

k1−→ ADP︸ ︷︷ ︸
x3

+G6P︸︷︷︸
x4

ẋ4(t) = x1 · x2 · k1

2.) G6P︸︷︷︸
x4


k2
k3
F6P︸︷︷︸
x5

ẋ5(t) = x4 · k2 − x5 · k3
ẋ4(t) = x5 · k3 − x4 · k2

12



The Steady state Flux Balance Analysis

3.) F6P︸︷︷︸
x5

+ATP
k4−→ ADP + F16BP︸ ︷︷ ︸

x6

ẋ6(t) = x5 · x2 · k4

4.) F16BP 
k5
k6
GA3P︸ ︷︷ ︸

x7

+DHAP︸ ︷︷ ︸
x8

ẋ7(t) = x6 · k5 − x7 · x8 · k6 = ẋ8(t)

5.) DHAP 
k7
k8
GA3P

ẋ7(t) = x8 · k7 − x7 · k8

6.) GA3P +NAD+︸ ︷︷ ︸
x9


k9
k10

NADH︸ ︷︷ ︸
x10

+ 13BPG︸ ︷︷ ︸
x11

ẋ11(t) = x7 · x9 · k9 − x10 · x11 · k10

7.) 13BPG+ ADP 
k11
k12

ATP + 3PG︸︷︷︸
x12

ẋ12(t) = x11 · x3 · k11 − x2 · x12 · k12

8.) 3PG
k13
k14

2PG︸︷︷︸
x13

ẋ13(t) = x12 · k13 − x13 · k14

9.) 2PG
k15
k16

PEP︸ ︷︷ ︸
x14

ẋ14(t) = x13 · k15 − x14 · k16

10.) PEP + ADP
k17−→ ATP + P︸︷︷︸

x15

ẋ15(t) = x14 · x3 · k17

3.2.3 Michaelis-Menten kinetics

Michaelis-Menten kinetics is a model of enzyme kinetics, which describes the
rate of enzymatic reaction related to the concentration of substrate S.

13



The Steady state Flux Balance Analysis

For basic elementary chemical equation:

S︸︷︷︸
x1

+ E︸︷︷︸
x3


k1
k2

C︸︷︷︸
x2

k3−→ P︸︷︷︸
x4

+ E︸︷︷︸
x3

relate the differential equations:

1.) ẋ1 = k2 · x2 − k1 · x1 · x3

2.) ẋ2 = −k2 · x2 + k1 · x1 · x3 − k3 · x2

3.) ẋ3 = k2 · x2 − k1 · x1 · x3 + k3 · x2

4.) ẋ4 = k3 · x2

The fourth equation expressting the creation of the product does not feedback
into three first equations and so we can drain this equation and solve the set
of equation without this one (later after solving the system, integrating the
equation we get x4).

The sum of the second and third equation gives: ẋ2 + ẋ3 = 0 Since
equation x3 is a linear combination of the equation x2 and so we can also one
of the following equations (e.g., x3) drain from solution.

According to laws of mass conservation we set up:

E + C = x3 + x2 = ET =⇒ x3 = ET − x2

S + C + P = x1 + x2 + x4 = ST

We get the reduced system in the form:

1.) ẋ1 = k2x2 − k1x1x3 = k2x2 − k1x1(ET − x2)

2.) ẋ2 = −k2x2 + k1x1x3 − k3x2 = −k2x2 − k3x2 + k1x1(ET − x2)

The following applies: ET � ST =⇒ ET

ST
= ε� 1

For the quasi-steady state we need equations in the form:

ẋ1 = f1(x)

14



The Steady state Flux Balance Analysis

ẋ2 =
1

ε
f2(x)

Because ε � 1, then 1
ε

is a big number and it follows that x2 change takes
place very quickly. Fast dynamics must be stable around a quasi-steady state
and therefore ε > 0.

We choose the auxiliary variables:

x̃1 = x1
ST

=⇒ ˙̃x1 = f1(x̃) =⇒ x1 = ST · x̃1

x̃2 = x2
ET

=⇒ ˙̃x2 = f2(x̃) =⇒ x2 = ET · x̃2

Following applies to ε: τ = ε · t ⇒ dτ
dt

= ε dx̃
dt

= ε · dx̃
dτ

Substituting into the differential equations:

1.) dx̃1
dt
· ε = ˙̃x1εST = k2x̃2ET − k1x̃1ST (ET − x̃2ET )

2.) dx̃2
dt
· ε = ˙̃x2εET = −k2x̃2ET − k3x̃2ET + k1x̃1ST (ET − x̃2ET )

Factor out ET from both equations and express ˙̃x1 and ˙̃x2 :

1.) ˙̃x1 = k2x̃2 − k1x̃1ST (1− x̃2)

2.) ˙̃x2 = 1
ε
[−k2x̃2 − k3x̃2 + k1x̃1ST (1− x̃2)]

According to Michaelis Menten kinetics sets the ˙̃x2 = 0 :

2.) 0 = −k2x̃2 − k3x̃2 + k1x̃1ST − k1x̃1ST x̃2

x̃2 =
k1x̃1ST

k2 + k3 + k1x̃1ST

1.) ˙̃x1 = x̃2(k2 + k1x̃1ST )− k1x̃1ST

˙̃x1 =
k1x̃1ST (k2 + k1x̃1ST )

k2 + k3 + k1x̃1ST

Using modifications we obtain:

˙̃x1 = − k3x̃1
k2+k3
k1ST

+ x̃1

15



The Steady state Flux Balance Analysis

By back replacement for the x̃1 = x1
ST

, we get:

ẋ1 = − k3ETx1
k2+k3
k1

+ x1

Specify auxiliary variables: x1 = S, Km = k2+k3
k1

, Vm = k3ET

Ṡ = VmS
Km+S

⇒ S
Vm

Km+S−→ P

Figure 3.2: The dependence of the substrate concentration on the rate of
product formation. At low concentrations, we get a linear growth.

[2]

By this we derive an expression for the rate of enzymatic reaction related
to the concentration of substrate according to Michaelis-Menten kinetics.

Now need to write the state equations for the metabolic pathway:

16



The Steady state Flux Balance Analysis

Figure 3.3: Simplified metabolic system. U1 represents the input (glucose).

3.2.4 The Steady state

The most important assumption of FBA is that we need to have a model in
the steady-state, it means that model is in equilibrium. This assumption is
important because the metabolic transitions are much faster than the rate of
cell growth and, therefore, stabilize the state of the whole system will within
a few seconds. On the other hand, changes in metabolism will be visible after
a few minutes or even hours - this assumption is known as quasi-steady state.

To obtain a steady state model can be system of differential equations
obtained in the Mass Action Law described stoichiometric matrix and vector
Xr. The stoichiometric matrix S is a mxn matrix, where m corresponds
the number of metabolites and n is the number of chemical reactions of
the metabolic network. Matrix S represents the relationship between the
metabolites and products, in that case how much amount of the metabolite
is necessary to produce a particular product. Vector of fluxes Xr is a vector
describing a rate at which the product is formed.

Stoichiometric matrix S with the vector Xr describing glycolysis:

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10
ẋ11


=



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1


︸ ︷︷ ︸

S

·



X1r1
X2r2
X3r3
X4r4
X5r5
X6r6
X7r7
X8r8
X9r9
X10r10
X11r11


︸ ︷︷ ︸

Xr

This model can be transformed into a steady state where we assume that
the change in concentration over time will be approximately zero. Thus we
can write:

ẋ = 0 = S ·Xr

17



The Steady state Optimalization

The metabolic pathway operates optimally and therefore logically requires
the optimal model results and the optimal path through metabolic networks
that optimize certain target. In our case, we want to optimize bacterial
growth and maximum yield of energy (ATP). [2]

3.3 Optimalization

The basic problem of optimal control theory is the search for a sequence or a
strategy of control that achieves the desired objectives while minimizing (or
maximizing) defined system criteria. From this system criteria or optimality
criteria also expect that allow comparison of different solutions to problems
that are available and choose the best of them.

The problem of optimal control can be divided into four interrelated parts:

1.) Definition of the objective.

2.) Knowing the current state due to the target.

3.) Knowledge of environmental factors affecting the present and future.

4.) Determining the best strategy for generating control based on provided
objective, current state and environment.

For the solving of the problem of optimal control is therefore necessary first
set a target, which has to be optimized. This requires an appropriate defi-
nition of the problem in the real world and transform this description into
mathematical terminology. In the same way, the real process converted into
mathematical description. The term system will always be understood as an
abstract system, which is a mathematical model. In our case, we have now
two objectives: to maximize the output energy (ATP) and to optimize cell
growth. [4]

3.3.1 ATP yield

Glycolytic network to transfer into the mathematical description, which will
include all the ATP molecules that were consumed and produced during gly-
colysis. The resulting description is determined by the corresponding fluxes
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of metabolic network:

Y = −Xr(2)−Xr(4)−Xr(6) +Xr(10) +Xr(13)

From equation easy to see that in reactions 2,4 and 6 occurred ATP con-
sumption while in reactions 10 and 13 ATP was produced.

3.3.2 Biomass function

Our second objective is to optimize cellular growth. In order to able to real-
ize cellular growth, it is necessary the presence of metabolites that are listed
in the following table, with the required quantity.

Metabolite Demand(mmol)
ATP (Adenosine triphosphate) 41.2570
NADH (Nicotinamide adenine dinucleotide) -3.5470
NADPH (Nicotinamide adenine dinucleotide phosphate) 18.2250
G6P (Glucose-6-phosphate) 0.2050
F6P (Fructose-6-phosphate) 0.0709
R5P (Ribose-5-phosphate) 0.8977
E4P (Erythrose-4-phosphate) 0.3610
GA3P (Glyceraldehyde-3-phosphate) 0.1290
3PG (3-phosphoglycerate) 1.4960
PEP (Phosphoenolpyruvate) 0.5191
P (Pyruvate) 2.8328
ACoA (Acetyl coenzyme A) 3.7478
OA (Oxaloacetate) 1.7867
AKG (α - ketoglutarate) 1.0789

Cellular growth we take as a single reaction, in which all of the above
metabolites converted to one gram of biomass and 3.547 ·NADH (which has
a negative value in the table and this means that it is created). To derive
the mathematical description we only have one reaction, it means that we
optimize the flux of this reaction and call it Biomass function.

However, to realize the cellular growth, metabolic networks need to in-
clude metabolites necessary for growth in the table. Metabolites of ATP ,
NADH, G6P , F6P , GA3P , 3PG, PEP and P are already part of the
metabolic network of glycolysis. For obtaining NADPH, R5P and E4P
was connect the Pentose Phosphate Pathway and for obtain ACoA, OA and
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AKG was added Citric Acid Cycle. For completeness metabolic networks
was still added Entner-Doudoroff Pathway and due fulfillment of the task
will add a second input glycerol. The whole modified metabolic network is
shown in the figure 3.1. [3]

3.3.3 CVX

The optimization problem we solved in Matlab with a CVX superstructure.
CVX is a modeling system for convex optimization, which allows the defi-
nition of objectives and constraints specified using the standard syntax in
Matlab. Constraints and objectives are expressed by rules and are automat-
ically converted to a canonical form and solved.

The structure of the optimization problem:

• variables: x1, x2, . . . xn

• constraints: fi(x) ≤ 0, i = 1, ...,m

• cost function: J(x) - have to be convex

• minimize J(x) - for all x satisfying the conditions

In the example there is the syntax of cvx optimization In Matlab. In-
cludes defining of variables, which are in our case fluxes Xr. Follows the
limiting condition for the varialbes and also a condition for cost function.
The last point is maximalization of the last reaction flux.

cvx beg in
cvx qu i e t ( t rue )
v a r i a b l e s Xr( nrea )
c v x s o l v e r sdpt3

Xr >= 0
f o r i = 1 : ninp

Si ( i , : ) ∗Xr == inp{ i }{2}
end
S∗Xr == 0
maximize (Xr( end ) )

20



The Steady state Optimalization

cvx end

21



4 Simulations and Experiments

For experimental verify the model, it is necessary to perform a series of
simulations.

4.1 Simulation

Simulation is a process of formation a model of real system and implementing
experiments with this model for a better understanding of studied system or
assess different variants of system activity.

Different changes of input parameters, we followed the behavior of the
model and the dependencies between parameters. We came to the following
predictions:

4.1.1 Results of Simulations

1. The dependence of glucose on cellular growth - we wanted to
know, how will the model behave in aerobic and anaerobic conditions.
The following figure shows the dependence of glucose in cellular growth
for maximal and minimal amount of oxygen. We can easy see, that the
growth is slower and sooner stable for small amount of oxygen than for
large amount of oxygen. From this we concluded prediction, that for
the same growth is necessary different amount of glucose in aerobic and
anaerobic conditions.
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2. The dependence of glycerol on cellular growth - we tried there
the same prediction such as in previous case. On the following figure
we can see, that the dependence end up similarly thus slower growth
for smaller concentration of oxygen and faster growth for larger concen-
tration of oxygen. But we can’t to say here, that for the same growth
we need different amount of glycerol. It is caused by imperfections in
the model, in which is missing gluconeogenesis. Gluconeogenesis is a
metabolic pathway, which produce glucose e.g. from pyruvate, lactate
or glycerol when amount of glucose is insufficient for growth.
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3. The dependence of glucose on maximal consumption of oxy-
gen - On the figure below is shown, what is the maximum consumption
of oxygen for a given amount of glucose. From the figure is easy to see,
that this dependence is linear. This means, that the bigger concentra-
tion of glucose, the higher oxygen consumption.
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4. The dependence of tryptophan on maximal consumption of
oxygen - Tryptophan is amino acid, which is involved on the regen-
eration of NAD+. On the figure we can see, that this dependence is
constant. This means, that addition of any amount of tryptophan does
not affect on consumption of oxygen.

4.2 Experiments

The task of the experiment is to verify or disprove the findings about model,
which come from simulations.

4.2.1 Draft of experiment

Experiment can be designed on the basis of predictions, which are obtained
from simulations. The first prediction was, that for the same rate of growth
in aerobic and anaerobic conditions is necessity different concentration of
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glucose. The experiment was designed precisely on the basis of different
concentrations of glucose and on aerobic and anaerobic conditions.

4.2.2 Protocol

It was necessary to guarantee different concentrations of glucose. This was
achieved via growth medium YPD, when instead of standard 2% of glucose
was added 4% glucose. Then through dilution series by using YP (medium
without glucose - 0%) was obtained concentrations 4%, 2%, 1%, 0.5% and
0%. To these concentrations was added YPG, growth medium with glycerol.

Available was 12x8-well plate (12 rows and 8 columns), which is divided
into two parts, one for aerobic condition and second for anaerobic condition.
Filling of plate can be seen in the following table:

A B C D E F G H
1 4%Y PD + 10µl cells 4%Y PD
2 2%Y PD + 10µl cells 2%Y PD
3 1%Y PD + 10µl cells 1%Y PD
4 0.5%Y PD + 10µl cells 0.5%Y PD
5 0%Y P + 10µl cells 0%Y P
6 Y PG+ 10µl cells Y PG
7 4%Y PD + 10µl cells + oil 4%Y PD +oil
8 2%Y PD + 10µl cells + oil 2%Y PD + oil
9 1%Y PD + 10µl cells + oil 1%Y PD + oil
10 0.5%Y PD + 10µl cells + oil 0.5%Y PD + oil
11 0%Y P + 10µl cells + oil 0%Y P + oil
12 Y PG+ 10µl cells + oil Y PG + oil

Each well was filled with 100 ml media and added 10ml cells, whereas last
two columns G and H was without cells. First six rows represents aerobic
conditions and second six rows represents anaerobic conditions, which are
seal with mineral oil.

The plate was measured kinetically at the required temperature 30◦C and
by absorbance at 600nm, at which is measured cellular growth.
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4.2.3 Results of Experiments

This experiment was repeated several times. Here are the results from the
two measurements.

First measurement

Measurement process took 3 hours and growth was measured at 10 minute
intervals. The measurement can watch on two following graphs.

On the first graph we can see process of measurement in aerobic condition.
It is obvious, that the rate of growth is the biggest for 4% concentration of
glucose.

Figure 4.1: The graph for measurement in aerobic conditions. Individual
concentrations are color coded.The largest growth is noticeable for a concen-
tration of 4%

If each curve is approximated in his last part using the straight line,
according to the slope can determine the rate of growth of different concen-
trations.
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Figure 4.2: The graph for measurement in aerobic conditions. Individual
concentrations was approximated using the straight line.

Released the following order:

1 2 3 4 5 6
4% 1% 0.5% 2% 0% Y PG

This order doesn’t work just for 2% concentration of glucose . The error
was probably caused by the preparation of 2% medium. The rest of the order
went as expected.

On the second graph is shown measurement in anaerobic condition.
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Figure 4.3: The graph for measurement in anaerobic conditions. Individual
concentrations are color coded.

The fluctuations were probably caused by the rapid growth of cells and
the rapid depletion of oxygen. Therefore, part of the cells began to die and
then the rest of oxygen was sufficient for the rest of the cells, which started
to grow again. Approximation we get the following chart:
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Figure 4.4: The graph for measurement in anaerobic conditions and approx-
imated with straight line.

In this case, the growth rate following:

1 2 3 4
1% 0.5% 4% and 2% 0% and Y PG

This order is not surprising. 4% and 2% concentration proved to be too
high for such a small amount of oxygen and become toxic. While the 1%
concentration proved to be ideal for anaerobic conditions.

4.3 Comparison

The object of this experiment was to found for the same rate of growth in
aerobic and anaerobic conditions different concentration of glucose. More
precisely lower concentration for aerobic and higher concentration for anaer-
obic condition. In one case this prediction was proved.
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Figure 4.5: The comparison of 0.5% concentration in anaerobic condition
with 0% concentration in aerobic condition.

On the Figure we can see the comparison of 0.5% concentration in anaer-
obic condition with 0% concentration in aerobic condition. We suppose, that
adding of cells with 2% medium into 0% YP to leave little concentration of
glucose for growth.
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