COLOR-TABLE ANIMATION OF FAST ORIENTED LINE INTEGRAL
CONVOLUTION FOR VECTOR FIELD VISUALIZATION

Siegrun Berger, Eduard Groller

Institute of Computer Graphics
Vienna University of Technology, Karlsplatz 13/186/2
A-1040 Vienna
Austria
e-mail:groeller@cg.tuwien.ac.at

ABSTRACT

Fast Oriented Line Integral Convolution (FROLIC), which is a variant of LIC, illustrates 2D vector
fields by approximating a streamlet by a set of disks with varying intensity. FROLIC does not only show
the direction of the flow but also its orientation. This paper presents color-table animation of FROLIC
images. Various color-table compositions are discussed in detail. When animating FROLIC images
visual artifacts (pulsation, synchronization) must be avoided. Several strategies in this respect are dealt
with. Color-table animation of FROLIC has been implemented as a Visual C++ application, whereby the
calculation of the dynamical system is performed with Mathematica. This allows researchers from
various disciplines to conveniently explore and investigate analytically defined 2D and 3D vector fields.

Keywords: oriented line integral convolution, color-table animation

1. INTRODUCTION

Several texture-based techniques for the visualization
of flow fields have been investigated in recent years.
With Line Integral Convolution (LIC) [Cale93] a
white noise input texture is filtered along curved
streamline segments. The intensity I(x,) at an

arbitrary position X, of the output image is calculated
by

I(xq) = j;j_*;’k(s — 5T (0 (s))ds, (1)

where T is the input texture, 6(s) is a parameterized
streamline through x (xq = 6(sy)) and k describes the

convolution kernel. s; specifies the length of the
streamline segment used in the filter operation. The
texture values along the streamline segment G (s),
(8g-sP=s<(sgts)), are weighted with the corresponding
kernel values k(s—s() and are accumulated to give the
intensity I(x) at position x,. Various kernel functions
k() can be used in the filter operation. Animation of
the flow field can be achieved by using a ramp-like
convolution kernel and phase shifting the kernel in

successive images. This gives the impression of
flowing ripples, which also encode the orientation of
the flow. Extensions and performance optimizations
of LIC are investigated in [FoCo95, StHe95, ShJ096,
InGr97, ShKa97].

Line Integral Convolution does not encode the
orientation of a flow field in still images. Oriented
Line Integral Convolution (OLIC) [WeGr97a]
overcomes this disadvantage. There are two main
differences between LIC and OLIC: First LIC uses
typically textures with much higher spatial frequency
than OLIC. OLIC uses sparse textures, which consist
of randomly distributed, distinct spots. OLIC can be
thought of as a set of ink droplets which are smeared
by the vector field over an underlying sheet of paper.
Ideally the smeared ink droplets are so far apart from
each other that they do not overlap. The second
difference between LIC and OLIC is that OLIC uses
a ramp-like convolution kernel k(). Such a kernel
produces streamlets with varying intensity along the
trace. The sparse texture and the varying intensity of
the streamlets make it possible to recognize the
orientation of the underlying flow field. In figure 1
the difference between LIC and OLIC is illustrated.
Figure 1(a) shows the LIC image of a circular flow.
In this image it is not recognizable if the flow is in

clockwise or counterclockwise orientation. Figure
1(b) shows the OLIC image of a circular clockwise
flow and figure 1(c) shows the OLIC image of a
circular counterclockwise flow. The additional
information in the OLIC image is gained at the
expense of spatial resolution. To avoid the
appearance of undesirable macroscopic patterns in
the OLIC image, the starting points of the streamlets
must be carefully selected. Positioning the starting
points (i.e., ink droplets of the texture) on a regular
grid would produce annoying macroscopic patterns.
A jittered grid is a better choice. If the distance
between the starting points of the streamlets is too
large a lot of flow information is not depicted in the
result image. On the other hand, if the starting points
are too close together the overlapping of the
streamlets might be too extensive. Finding an optimal
droplet distribution in the input texture so that tight
packing of streamlets results in the output image is
discussed in [WeGr97b].

(b) (©
Figure 1: LIC image of circular flow (a), OLIC image

with clockwise flow (b), OLIC
counterclockwise flow (¢) [WeGr97b]

image with

The calculation of OLIC images is a rather time
consuming task. Therefore Fast Rendering of
Oriented Line Integral Convolution (FROLIC) was
introduced in [WeGr97b]. FROLIC calculates an
approximate solution to the exact convolution result
of OLIC. In OLIC each droplet produces a trace with
decreasing intensity from head to tail. FROLIC
approximates the droplet trace by a sequence of disks
with varying intensity. Each disk itself is drawn with
a constant intensity. From head to tail the intensities
of the disks are decreasing. If n disks are taken to
approximate the streamlet, the intensity decreases in n
discrete steps. The intensity of adjacent disks is
decreasing to simulate the continuous ramp kernel of
the OLIC method. Figure 2 shows the difference
between droplet traces produced with OLIC and

FROLIC. FROLIC allows a much faster calculation
than OLIC, because drawing disks is done faster than
doing costly convolution operations. Investigations
show that FROLIC (without hardware supported
rendering) is approximately two orders of magnitude
faster than OLIC. This is discussed in detail in
[WeGr97b].

N

N\
0
o

Figure 2: Exact trace of a droplet with OLIC (a) and
approximated trace of a droplet with FROLIC (b)
[WeGr97b]

Animation of OLIC images is realized by simply
phase shifting the convolution kernel in successive
images. There are two possible ways for achieving
animation with FROLIC. The first method phase
shifts the convolution kernel the same way as is done
to animate OLIC images. The second method uses
color-table animation, with which color-table entries
are shifted to achieve the impression of motion. A
brief and theoretical description of color-table
animation for FROLIC images is given in
[WeGr97b]. Color-table animation has also been
investigated to visualize three-dimensional flow fields
[GeWi92].

This paper presents an in-depth investigation of
color-table animation for FROLIC. In section 2,
color-table animation and several features, like the
simulation of various filter functions to avoid
undesired effects during animation, are discussed.
The FROLIC algorithm and color-table animation is
implemented as a Visual C++ application.
Implementation details and results are discussed in
section 3. The application uses Mathematica to
calculate and simulate dynamical systems. Finally in
section 4 conclusions are given.

2 COLOR-TABLE ANIMATION OF FROLIC

As mentioned earlier a FROLIC streamlet consists of
a set of disks with intensity decreasing from head to
tail. All streamlets consist of the same number of
disks. Within an image each streamlet is integrated
over the same period of time. Therefore speed is
encoded in the length of the streamlets. Streamlets are
calculated by numerically integrating the underlying
flow field. The calculation can be done either with
Euler integration or with more elaborate Runge Kutta
methods [PrFI88].

Color-table animation of FROLIC is based on the fact
that in successive frames of the animation only the
color of the disks changes but not their spatial
position or shape. Each disk is assigned a short color-
table index, which points to a specific entry in the
color table. Available intensities or colors are stored
in the color table itself. Color-table animation
changes the entries of the color table instead of
changing the corresponding image. This can be done
much faster then changing the image itself. Figure 3
shows how animation of FROLIC images can be
achieved with color-table animation.

color table for [rame t

3 4 5

color table for [rame t+1

asingle
streamlet
constisting
of six disks
tail

image at ime t image at time {+1
Figure 3: Color-table animation for FROLIC, two
consecutive frames, n =6

A color table ct with n entries (n assumed to be even,
e.g., 256) contains values with increasing intensity.
Intensity is assumed to be also in the range between 0
and 255. Therefore

ali]= {255 *iJ

0<i<n-1 (2)
n—1

where ct[i] is the color-table entry at position i
(figure 4). If ct,_; is the color table at time t-1 the

color table ct, for the following time step t is
calculated recursively (figure 5):

*
cto[i]{255 ’J 0<i<n-1
n-1
ct, [1] =ct;; [(l - l)modn] (3)
Intensity
255
ct[0]=0
ct[n-1]=255
ct[i]=[%]
0
0 color-table entries n-1

Figure 4: Color table, producing streamlets with
orientation

Each streamlet consists of a set of disks, which are
drawn with successive color-table entries. Adjacent
disks are represented by adjacent color-table indices.

The assignment of color-table indices to disks (i.e.,
drawing disks with corresponding color-table indices)
is done only once for initialization and is not changed
anymore. Cycling the color-table entries generates
consecutive frames of the animation.

In the following we will discuss different
compositions of color tables. Using a color table as in
figure 4 produces images, which encode orientation
of the flow in still images. During animation,
however, two undesired effects are produced: the
synchronization effect (also dealt with in [GeWi92])
and the pulsation effect. In section 2.1 the
composition of a color table, which produces
streamlets with orientation, is described and also how
to overcome the synchronization and pulsation
effects. Another composition of a color table, which
does not encode the orientation of the streamlets, is
described in section 2.2. Such a color table encodes
the orientation of the flow only when the image is
animated, but overcomes the pulsation effect.

2.1 COLOR TABLES FOR STREAMLETS
WITH ORIENTATION IN STILL IMAGES

To show the orientation of the flow in still images the
color table is assigned a ramp function, i.e., a linearly
increasing function (see figure 4).

Intensity
cty ct, ct,
" color table at time =0 __color tahle at time t= 1 time t= 2

Figure 5: Consecutive color tables at time t =0, t = 1
andt=2

0 is ie n-1

ig = n-1-ig

Figure 6: A simple filter f

Cycling a ramp function and starting each streamlet
with the same color-table index produces two
undesired effects in the resulting image. The first
problem can be described as pulsation effect of the
animated image. The human visible system is very
sensitive to appearing and disappearing bright spots,
therefore the disappearance of a bright disk at the
head of a streamlet and the simultaneous appearance

of a bright disk at the tail of the streamlet is very
noticeable and disturbing to the eye. To solve this
problem a simple filter f (see figure 6) can be used,
which initially increases linearly, is constant in the
middle portion, and finally decreases linearly. Filter
f[i] is defined as follows:

1

— k] 0<i<i
l
f[i]= ls iy Si<i, (4)
1—,;*(1'—1;—1) i, <i<n-1
n—i,—2

The modified color table ct,” of frame t is calculated
by cycling the color table ct,_; of frame t-1 and
applying filter f (see figure 7):

ct,)= et [i]* Fli] with
ct, [i]= ct; [(i—l)modn], 0<i<n-1 (5)

This approach generates a smooth intensity fade-in
and fade-out at the head and tail of a streamlet.

mmmm P
HHHHHH‘W‘HWW-‘H color tahle Ct't,[i]

filter £[i]

modified color
table

Figure 7: Color table and the filter with the modified
color table

The second problem is called synchronization effect
in the animated image. All streamlets begin with the
same color-table index, i.e. the same intensity values.
During animation, the disk with the highest intensity
has the same relative position in all streamlets. Bright
spots disappear at the head and reappear at the tail of
all streamlets simultaneously. Up to now all
streamlets are drawn with color-table indices
decreasing from n-1 (head) to O (tail). Using for each
streamlet a random initial offset r (the tail is assigned
index r, the head is assigned index (n-1+r) mod n
would avoid the synchronization effect. But this
approach can not be used together with filter f to
avoid also the pulsation effect. Due to the filter f a
color-table index can not simultaneously represent a
disk in the middle of one streamlet and a disk at the
head or tail of another streamlet. To avoid both the
pulsation and the synchronization effect the following
approach is feasible. The color table is subdivided

into m non-overlapping equal-sized subtables cty".

Each subtable is assigned an initial offset and is
cycled by its own. Assuming nmod2=0 and
n mod m = 0, then

ctolil=ctyli] with0<u<m-1, w Ll <i<(u+1)*2 -1 and
m m

Cfg[i]z 255 *[[i_u*%_u:kiz]modlj (6)

n m m

m
The composition of such a color table is shown in
figure 8. The number of color-table entries is n and
the number of subtables is m. Cycling such a color
table (by cycling each of the subtables) and applying
filter f to each of the subtables is done according to

the following formulas:
o =eufil< 7l witn

ct, li]= ctt_l[[i —urlto l]modl+ u *l} and
m

m m
1
.—*imodl OSimodl<iS
i m m
flil=11 i <imod><i, (7)
m
1
1——*(im0dl—ie—1) i, <imod- < _]
—=i,—2 \ /
m

There is a trade off between the number of subtables
and the number of color-table entries belonging to a
subtable. The more subtables the better the effect of
reducing the synchronization effect. On the other
hand, a certain number of different intensities per
subtable is necessary to avoid too large intensity
jumps along streamlets.

m subtables
u=0 u=1 u=m-1
cty /‘ /‘
¥ filter i no1
1 —_— —_—
0 iS i e n-1

Figure 8: Color table divided into m non-overlapping
subtables and corresponding filter

The perceived brightness of a disk depends on the
intensity value and the area of the disk. The previous
method attenuates the intensity at the head and the
tail of a streamlet with filter f. Another approach to
overcome the synchronization and pulsation effect
modifies the size of the disks. Such a modified
streamlet is shown in figure 9. The disk diameter is
calculated by reducing the area of the disk by the
underlying filter:

ril=r*£Til. (8)

where 1[i] is the modified disk diameter and f is the
filter value. Using such a filter reduces the impression
of the appearance of a bright spot at the tail of the
streamlet. To reduce the synchronization effect it is
not necessary to divide the color table into subtables,
because the intensities in the color table are not
filtered with function f. Only one color table can be
used and a random initial phase shift is used for each
streamlet. If a color table has n entries, then n
different phase shifts are possible. Therefore n
different kinds of streamlets can be found in the
image.

sireamlet
A
i
1
filter £ | pril=e*{Er11
1]

modified sireamlet

Figure 9: Streamlet with disks of different size

2.2 COLOR TABLES FOR STREAMLETS
WITHOUT ORIENTATION IN STILL IMAGES

A method to reduce the pulsation effect of animated
FROLIC images is to use a color-table composition
as shown in figure 10. For a color table with n entries
and one peak in the middle the intensity ct[i] is
calculated by:

255,
n

ali] =4 255*(. nj n_. ©)
"<

0<i<l
2

255—— i<n
n

2

If the number of representable intensities on a screen
is limited, it may make sense to use a color table
which contains more than one peak. Using m evenly
distributed peaks the intensity ct[i] is calculated by:

25 imod - 0<imodX <2
n m m *m
ctli]=4 2%m
255— 255 imodi—L Simod£<i
n m 2*m) 2*m m m
2%m

To overcome the synchronization effect, each
streamlet is started with a random initial color-table
index. As mentioned the disadvantage of the method

is that flow orientation is not encoded in still images
until the animation is started.

Intensity 1 peak
255 —/\1
l] T
n-1
m peaks
u=0 u=1 uw=m-1
255 1 A‘
u T
color-table entries n-1
nfm

Figure 10: Color tables, producing streamlets without
orientation

Intensity

e I\
I] T
ip n-1
color-table entries

Figure 11: Color table which produces streamlets
with orientation, and reduces the pulsation effect

Using a color table as shown in figure 11 reduces the
disadvantage that flow orientation is not encoded in
still images, but the pulsation effect is still reduced.
To overcome the synchronization effect, each
streamlet is assigned a random initial color-table
index. The intensity ct[i] is calculated by:

255%*i
i

<ici
O_l<lp

ct[i] =

o 1
Jss 25 =ip) (11)

| <i<
i lp l n
P

3 IMPLEMENTATION AND RESULTS

In this section an implementation of FROLIC using
Mathematica and Visual C++ [Schil96] under
Windows NT is described. The calculation of the
dynamical system is done with Mathematica
[Wolf97] and the visualization is performed by the
Visual C++ application. Both, the Mathematica
application and the Visual C++ application can be
accessed at
http://www.cg.tuwien.ac.at/research/vis/dynsys/ct/.

Figure 12 shows the data flow from Mathematica to
the Visual C++ application. A Mathematica
Notebook, which is a document that handles
interaction between the user and Mathematica, is
used to specify the dynamical system (set of
differential equations). A module written in

Mathematica numerically integrates the dynamical
system and writes the result on a file. The result is
given as numerical approximations of streamlets of
the underlying dynamical system. Using Mathematica
for calculating the dynamical system has the big
advantage of utilizing a powerful formula parser. The
Visual C++ application reads the result file and
visualizes the vector field.

Mathematica
Frolic Module

Result File

Visual C++ application

FROLIC image

Figure 12: Data flow from Mathematica to the Visual
C++ application

In[t]:= << Frolic: j

In2]= xRes = 500; (rvertical image resolutionr)
yRes = 500; (rvertical image resolutionr)
Afin = -150; xfax = 150;
yMin = -250; yMax = 250; (»Calculatiomvindows)
GridDist = 50; («distance between grid pointsw)
GridJditter = 25; (vmaximum jittering of a gridpointy)
tInt = 0.3; (vintegration time periodr)
x®ot = ¥[t]: (rdifferential equation of variable xr)
yDot = x[t] + ¥[t]: (+differential equation of variable y«)

filename - "test.math";(routput file of i ion resulty)

inf4]:= Frolic

Please wait..

Lad Lud L4
h i

Calculation Done!

LinkLaunch[" frolic.exe"]:

Figure 13: Mathematica Notebook for the
specification of a dynamical system

A Mathematica Notebook is shown in figure 13. This
Notebook can be used to calculate two-dimensional
dynamical systems. Before using the Mathematica
module, it must be loaded into the Mathematica
workspace. The command “<<Modulename” reads in
a particular Mathematica package (e.g., Frolic). After
successfully loading the module the parameters,
which specify the dynamical system, can be altered.
The following parameters can be modified: xRes and
yRes determine the vertical and horizontal resolution
of the result image. xMin, xMax, yMin and yMax
determine the calculation-window, i.e, the area of
phase space where the dynamical system must be
calculated. GridDist is the distance between grid
points, GridJitter determines the maximum jittering

of a grid point. tInt is the integration period and
determines the length of the streamlets. xDot and
yDot are the differential equations of variable x and
variable y for the independent variable t (time).
Finally filename is the name of the output file which
contains the integration result of the dynamical
system. After the parameters are specified,
“functionname” (e.g, Frolic) starts the calculation.
With “LinkLaunch[“frolic.exe”];” the Visual C++
application can be started within Mathematica.

Disk diameter i
Time Delay: [mal iD

I Animation

Save Sethings §
Load Setbings §

Colorlables.
* Wwith Orientation

L Without Orientation
- With Diientation
1 Colortabies 1

Streamist Dimming:
v |ntensity

£ Dk - Seal
| dvanced Sellings

Colortable - Shitt ;1
Help Tapics i

ithaul Drentatiol
Celotable - Enties:

. \

Figure 14: Dialog of the Visual C++ application

The Visual C++ application allows the visualization
and animation of the dynamical system previously
calculated with Mathematica. The result file, which
holds the data for the vector field, is read in and the
streamlets are drawn. Various settings can be chosen
for the visualization of vector fields. The dialog of
the Visual C++ application is shown in figure 14. The
Disk-Diameter determines the thickness of the
streamlets. Two different color tables can be chosen
and are described in detail in section 2: a color table
producing streamlets with orientation and a color
table producing streamlets without orientation. If a
color table, which produces streamlets with
orientation, is selected, the number of subtables can
be chosen. Using such a color table and one subtable
produces useful still images. Figure 15(a) shows such
an image. Animating this vector field would produce
the synchronization effect, because all streamlets
begin with the same color-table index, i.e., the same
intensity values as described earlier in section 2. To
avoid the synchronization effect during animation a
random offset (using more than one subtable) is
required. Figure 15(b) uses 7 subtables within a color
table. Using more than one subtable produces still
images, that do not show the orientation very well.
For each streamlet in figure 15(a), the disk with the
highest intensity has the same relative position,
whereas seven different random phase shifts,
producing seven different types of streamlets, are

given in figure 15(b). Figure 16(a) shows a FROLIC
image with streamlets that do not show the
orientation of the flow. Figure 16(b) shows the same
dynamical system, but orientation is encoded by
using a color table which produces streamlets with
orientation.

The speed of the animation is adjustable in two ways.
Firstly, with Time Delay and secondly with increasing
the Colortable-Shift. A timer is a clock application
that notifies an application at regular intervals. Time
Delay specifies the time in milliseconds after which a
timer message is sent periodically. Each timer
message causes a color-table shift. The smaller the
Time Delay the faster the animation. The speed of the
animation is limited by the calculation overhead. To
increase the speed of the animation, it is possible to
increase the step size, with which the color-table
entries are shifted. To avoid the pulsation effect, it is
possible to choose between two different methods.
Scaling the intensity of the color-table entries with a
filter and scaling the disk-diameter of the streamlets.
Scaling the intensities of the color-table entries is
done before the system palette is updated and slows
down the animation. Scaling the disk-diameter is
done as an initial step, when the streamlets are drawn.
Figure 17(a) shows a FROLIC image with streamlets
using scaled disks. The FROLIC image in figure
17(b) shows streamlets consisting of equal-sized
disks.

4 CONCLUSION

Fast Oriented Line Integral Convolution (FROLIC)
illustrates ~ two-dimensional ~ flow fields by
approximating a streamlet through a set of disks with
varying intensity. This paper describes various
aspects of color-table animation for FROLIC images.
Color-table animation is a very efficient algorithm.
Each disk of the streamlets is assigned a short color-
table index, which points to a specific entry in the
color table. Various different compositions of color
tables are discussed: color tables producing
streamlets with orientation and color tables producing
streamlets without orientation. Two undesired effects,
the pulsation and the synchronization effect, are
discussed and various techniques to reduce the two
effects are described. FROLIC color-table animation
is implemented as a Visual C++ application, whereby
the calculation of the dynamical system is performed
with Mathematica. Mathematica has the advantage
that it offers a powerful formula parser and it offers a
great flexibility concerning the specification of
dynamical systems.

REFERENCES

[Cale93] B. Cabral, C. Leedom, “Imaging Vector
Fields Using Line Integral Convolution”;
Computer Graphics Proceedings ‘93, ACM
SIGGRAPH, 1993, pp. 263-270.

[FoCo95] L. K. Forssell and S. D. Cohen. “Using line
integral convolution for flow visualization:
Curvilinear grids, variable-speed animation, and
unsteady flows”. IEEE Transaction on
Visualization and Computer Graphics, 1(2): 133-
141, June 1995.

[GeWi92] A. VanGelder, J. Wilhelms, “Interactive
Animated Visualization of Flow Fields”, ACM
Workshop on Volume Visualization, pp. 47-54,
ACM 1992.

[InGr97] V. Interrante and Ch. Grosch. “Strategies
for effectively visualizing 3D flow with volume
lic’. In IEEE Visualization 97 Proceedings,
pages 421-424. IEEE, October 1997.

[PrF188] W. H. Press, B. P. Flannery, S. A.
Teukolsky, and W. T. Vetterling. “Numerical
Recipes in C”. Cambridge University Press, 1988.

[PoWa93] F. H. Post, T. Walsum, “Fluid Flow
Visualization”, In H. Hagen, et. al. (eds) Focus on
Scientific Visualization, Springer, 1993, pp. 1-40.

[Schil96] Schildt, Herbert, ,MFC — Programming
from the Ground UP*“: Version 4, Osborne
McGraw-Hill, 1996.

[ShJo96] H.-W. Shen, Ch. R. Johnson, and K.-L. Ma.
“Visualizing vector fields using line integral
convolution and dye advection”. In 1996 Volume
Visualization Symposium, pp. 63-70. IEEE,
October 1996.

[ShKa97] H.-W. Shen and D. L. Kao. UFLIC: “A
line integral convolution algorithm for visualizing
unsteady flows”. In IEEE Visualization 97
Proceedings, pp 317-322. IEEE Computer
Society, October 1997.

[StHe95] D. Stalling, H.-C. Hege, “Fast and
Resolution Independent Line Integral
Convolution”, Computer Graphics Proceedings
‘95, ACM SIGGRAPH, 1995, pp. 249-256.

[WeGr97a] R. Wegenkittl, E. Groller, W.
Purgathofer, “Animating Flowfields: Rendering of
Oriented Line Integral Convolution”. Proceedings
of Computer Animation ’97. IEEE Computer
Society, pp. 15-21.

[WeGr97b] R. Wegenkittl, E. Groller, “Fast Oriented
Line Integral Convolution for Vector Field
Visualization via the Internet”, IEEE
Visualization *97 Proceedings, pp. 119-125.

[Wolf97] Wolfram, Stephen: ,Das Mathematica
Buch*: ,Mathematica Version 3 / Stephen
Wolfram®. 5th edition, Addison-Wesely-
Longman, 1997

(a)

@ (b)

Figure 17: FROLIC image with streamlets with scaled disks (a) and with equal-sized disks (b)

