LINE ART RENDERING OF TRIANGULATED SURFACES USING
DISCRETE LINES OF CURVATURE

Christian Rossl

Leif Kobbelt

Hans-Peter Seidel

Computer Graphics Group
Max-Planck-Institut fiir Informatik
Im Stadtwald, 66123 Saarbriicken
Germany
{roessl,kobbelt,hpseidel } @ mpi-sb.mpg.de

ABSTRACT

In recent years, several techniques have been proposed for automatically producing line-art il-
lustrations. In this paper a new non photo-realistic rendering scheme for triangulated surfaces is
presented. In contrast to prior approaches with parametric surfaces, there is no global parame-
terization for triangle meshes. So a new approach is made to automatically generate a direction
field for the strokes. Discrete curvature analysis on such meshes allows to estimate differential
parameters. Lines of curvature are then constructed to be used as strokes. Using triangulated sur-
faces allows to render aesthetically pleasing line drawings from a huge class of models. Besides,
experiments show that even real time visualization is possible.

Keywords: non photo-realistic rendering, line art drawings, triangle meshes, discrete curvature

analysis

1 INTRODUCTION
1.1 Line art rendering

Computer graphics usually focus on creating
photo-realistic pictures of artificial scenes. How-
ever, there are numerous applications where ab-
stract line-oriented drawings are preferred to
photographs, especially for scientific or techni-
cal illustrations. There are a couple of reasons
for this: information can be conveyed better by
using some level of abstraction, line drawing en-
ables creating sketches that appear less computer
oriented and may be easier to be reproduced on
black and white displays or printers.

Line rendering techniques have a long tradition
in arts, e.g. pen-and-ink illustrations or copper
plates with engraved lines, which used to be a
common way to print illustrations in books. Over
the last years computer based techniques for pro-
ducing such illustrations have been developed.

There are two basic approaches:

The first approach is image based and assists
the user in converting a digital grey scale im-
age into a pen-and-ink illustration. This way,
the user is freed from drawing individual strokes.
In [Salis94] predefined stroke textures are used
to map the tone of the reference image, and in
[Salis97] the strokes are generated automatically
from both a set of reference strokes and an inter-
actively modifiable direction field.

The second approach creates line art illustrations
from 3D geometry. An early step in the develop-
ment of this technique was the use of haloed lines
[Appel79] which give an impression of depth.
Different line styles such as line width, dashed
or dotted lines can be employed for outline and
shading [Doole90a, Doole90b]. [Leist94] dis-
cusses a ray tracing approach to emulate copper
plates. Most recently, [Deuss99] takes advantage

of the graphics hardware to achieve similar ef-
fects with sets of parallel cutting planes.

In order to produce high quality illustrations
from polygonal models [Winke94] uses special
stroke textures in addition to the geometry, e.g.
bricks of a wall. The strokes are rendered with
lines of varying thickness and shape (waviness)
emulating the effect of manual drawing. Apart
from that, an advanced shader is used, which e.g.
generates shadows. After transforming the poly-
gons from 3D to 2D image space a special tone
mapping process determines the density of the
strokes in 2D image space.

In this paper we will concentrate on line art ren-
dering of 3D geometry that can do without any
further information about the scene like texture.
A direction field for the strokes is generated au-
tomatically from the geometry. In contrast to
other approaches using parametric surfaces there
is no global parameterization available for tri-
angle meshes that can be utilized for producing
strokes. Our results will show that rendering can
be performed efficiently on such free-form ge-
ometry. The preceding survey is continued with
focus on automatically generating strokes from
3D geometry.

1.2 Related work

[Elber95] uses a coverage of isoparametric
curves of a free-from surface for line art ren-
dering. Therefore strokes are defined as a par-
allel lines in the parameter domain resulting in
isoparametric curves. This works especially well
with surfaces of revolution. [Winke96] uses such
isoparametric lines in order to produce high qual-
ity illustrations like in [Winke94]. Interestingly,
for this approach the surface is tessellated to a
polygonal mesh for the final tone mapping as
well.

Most recently [Elber99] extends these techniques
to enable interactive rendering with isoparamet-
ric curves, isophotes or lines of curvature on free-
form surfaces. For rendering, these stroke curves
are approximated by piecewise linear polygons.
They are then evaluated up to a certain length
determined by the shader. For shading, the sur-
face normals at the seed points of the polygons
are used. In order to meet real time demands, all
possible strokes are precalculated. Furthermore,
the number of polygons involved in the render-

ing process is effectively reduced by inserting the
polygons into buckets. Geometrically, a bucket is
a cone outgoing from the origin. The union of all
buckets cover the unit sphere. Every bucket con-
tains all normals falling into the corresponding
cone. The shader first evaluates the “intensity”
for the axis of a cone taken as a representative
normal. This way polygons in a bucket only need
to be evaluated if the expected intensity is above
a certain limit.

Elber prefers strokes generated from isoparamet-
ric curves because they can be determined more
efficiently than isophotes or lines of curvature.
Furthermore they produce visually good results.
This is impossible for triangulated surfaces lack-
ing a global parameterization. We use lines of
principle curvature which define a natural “flow”
over the surface instead. Textures generated from
principle curvature directions have recently been
used by [Inter97] to visualize volume models.

1.3 Overview

In this paper we present an algorithm to ren-
der line-oriented sketches of triangulated sur-
faces without any (stroke) texture information.
We trace lines into the direction of the maximum
curvature and use them as strokes, expanding
[Elber99] to be utilized for triangle meshes. Such
meshes are a universal representation of surfaces
and they become more and more popular for geo-
metric modeling. This way our technique allows
us to create aesthetically pleasing line art draw-
ings for a wide class of geometrical models.

In order to utilize lines of curvature as strokes for
line art rendering, an algorithm to construct these
lines is needed. In contrast to parametric sur-
faces, there are no derivatives or curvatures de-
fined for a piecewise linear triangle mesh. There-
fore we use a method for calculating discrete cur-
vature. Given principle curvature values and di-
rections we can compute lines of curvature by in-
tegration.

For the rendering of the scene, such lines are uni-
formly scattered over the surface. Depending on
the point of view and the lighting, the strokes are
drawn with different lengths. This classification
of strokes is part of the shading algorithm.

2 CONSTRUCTION OF LINES OF CUR-
VATURE

Discrete curvature on triangulated surfaces is ap-
proximated to get values and directions of princi-
ple curvature in every vertex. Then lines of cur-
vature can be integrated from the (discrete) field
of directions according to the maximal curvature.

2.1 Approximation of discrete curvature

A triangle mesh is a piecewise linear rather than
a smooth surface, so it is not clear how to cal-
culate any derivatives on such a mesh. A com-
mon technique generalizes concepts from differ-
ential geometry of smooth surfaces. It fits simple
geometric primitives e.g. second order surfaces
(quadrics) to a vertex and its neighbors. The dif-
ferential parameters can then be obtained from
differentiating those well known primitives.

Our approach uses locally isometric divided dif-
ference operators which are derived by fitting a
second order Taylor polynomial to a vertex and
its neighbors. A locally isometric parameteriza-
tion leads to simple linear operators since deriva-
tives with respect to such a parameterization have
a geometric interpretation. This way we can esti-
mate geometric curvature.

We locally estimate the first and second funda-
mental form of the surface F'(u,v) in every ver-
tex of its triangulation. Deriving surface curva-
tures like principal curvatures from the funda-
mental forms is straightforward. An introduction
to the basic concepts of differential geometry can
be found e.g. in [Farin96, Carmo76].

In this section V' denotes the vertex for which
the fundamental forms are to be approximated,
Vi (1 <@ < n, and for convenience V41 := V7)
are its neighbors. @ and); denote the positions
of V and V; in 3D space. Without loss of gener-
ality the origin is shifted such that @ := (0, 0, 0).
For simplicity, we do not handle vertices on the
boundary of the mesh.

2.1.1 Parameterization

As we are interested in curvatures, it is sufficient
to estimate partial derivatives up to second order.
For approximating the derivatives F,, F,, Fy,,
F,» and F,, in a specific vertex V we need a lo-
cally isometric parameterization F'(u;,v;) = Q;
of its neighborhood with F'(0,0) := (0,0,0) =

Q. A parameterization is isometric if | F,|| =~ 1,
|Fy|l = 1 and F,/ F, ~ 0. The coefficients of
the fundamental forms are completely defined by
the derivatives up to second order.

The obvious way of constructing such a param-
eterization is to project the neighborhood of the
vertex into a tangent plane at this vertex. The
projection plane P is given by averaging the tri-
angle normals around V resulting in the normal
vector Np. By transforming the projected points
into an orthonormal basis {Up, Vp, Np} we get
a parameterization F'(up;,vp;) = Q;. This pro-
jection method suffers from the fact that the or-
dering of neighbors around V is not necessarily
preserved. The ordering can be destroyed if the
triangle mesh is not sufficiently flat [Welch94].

An alternative parameterization considers the
lengths and the angles between adjacent edges of
the triangulated surface. The ordering of neigh-
bors is preserved when using the exponential
map [Carmo76]

exp(Qi) — .
1Qi Il (cos(32521 &), sin(3571 &)

where &; = ﬂat(Z(Qi, QH—I)) with Z,L o; =
27. Therefore flat scales the angles between two
edges in 3D so that they sum to 27 in 2D. A pos-
sible definition for flat is

flat(p;) = ¢;

ey

2w
Zj b;
This uniformly scales the 3D angle in a straight-

forward way and will work with any configura-
tion of 3D angles. [Welch94]

2

2.1.2 Surface fitting

Given this isometric parameterization, the sur-
face can locally be approximated by a quadratic
Taylor polynomial

F(u,v) = 3
wFy + 0Fy + L Py + woFuy + L Fpy O
Recall that we shifted the origin and chose
our parameterization so that @ = (0,0,0) =
F(0,0). Fitting a second order surface to a ver-
tex V and its neighbors is straightforward: By
utilizing the parameterization F'(u;, v;) = Q; we
set up a system of n linear equations

VF=Q @)

2 2
with V = (ui,’Ui, u2—i, U; Vs, %)17 F =
(Fu, F’v, Fuw Fum Fvv)T and Q = (Qz);r The
(least squares resp. least norm) solution of this
linear system is

vivv)'Q : n<5

F= vV1iQ : n=5)
(VIV)'VIQ : n>5

An alternative approach proposed in [Welch94]
is to switch to another set of basis functions if
the V matrix is ill-conditioned or n < 5.

The resulting vector F' yields approximations of
the Taylor coefficients F, Fy, Fyy, Fyy, Fyy of
the surface. This enables us to estimate further
differential parameters at the vertex V of the tri-
angulation as needed.

As we used an isometric parameterization it turns
out that the first fundamental form is the identity

FIF, FJF, 10
FIr, FIE) \o 1 ©)
Uu v v v

The following terms have been simplified by tak-
ing advantage of this fact.

2.2 Integration of lines of curvature

With the approximated first (identity) and sec-
ond fundamental forms, principal curvature val-
ues and directions can be estimated for every ver-
tex.

Let N := (Fy x Fy)/||Fy x Fy|| be the normal
vector at a vertex V, thne we use the following
notation for the second fundamental form:

I m E],N F/N
= T T (7)

m n F,,N F,N
The normal curvature for a tangent direction
A := dv/du in the parameter domain is given

by [Farin96]

1+ 2mA +nX?

KA = — 8)

The normal curvature x(\) has two extrema in
the general case — the principal curvatures k1, k2.
The corresponding principal directions are ob-
tained as roots Aj, Ag of a quadratic polynomial
with

(n—10)2+4m
2m

(n—10)F

©)

A2 =

Since strokes should follow the maximum curva-
ture Kmax = max{|k1|, |ke|} we chose Apax :=
Aj with |Kj| = Kmax. By transforming these di-
rections Amax from the parameter domain to 3D
space by

€:= (Fu + AmaxFo)/|| Fu + AmaxFoll -~ (10)

we obtain a discrete vector field ¢ — €; defined
for every vertex V; of the mesh.

This field can be made continuous by interpo-
lating directions across triangles. For a triangle
A = A(Viy, Viy, Viy) we interpolate linearly us-
ing barycentric coordinates. A point Pa in the
triangle plane can be expressed by

3 3
Pa=> Vi Y. w=1 (11)
k=1 k=1

Applying the same barycentric combination to
€5, €in €4 yields the interpolated direction

g(PA) = ’Ylé"il + 72€'i2 + '736_%3 (12)

For convenience the resulting €(Px) are normal-
ized to unit length. For triangles at the boundary
of the mesh, only the directions of inner vertices
are calculated and taken into account for inter-
polation. We do not handle triangles with three
boundary vertices. Except for points in such tri-
angles for any other point P of the surface the
direction of the maximum curvature can be esti-
mated.

In oder to trace one single line of curvature
F(k(t)) starting from a point Py := F'(ug,vo)
and streaming along €y, We solve the differen-
tial equation

K (t) = efax(k(t)),

Here €hax is the projection of €yay into the plane
of the reference triangle A. A simple Euler inte-
grator has proven to be sufficient for our purpose.
With a given step size h Eq. 13 is then discretized
to

k:(t()) = (uO,’Uo) (13)

kni1 = kn + héRax(kn), ko= P (14)

Note, that we do not need a global parameteriza-
tion. Using the projected directions is necessary
in order to guarantee that the resulting stream line
does not leave the surface. In addition, we must
detect when we leave the current triangle /A and

enter another one. The barycentric coordinates
are used for the in-triangle test. If v1,v2,v3 > 0
for a point Pa then this point is situated inside
A. Otherwise a neighbor triangle is entered. Let
7 :=4i+1 mod3and:’:=7+2 mod 3.

In case one coordinate +y; is negative, the inter-
section T of the line segment [F'(ky,), F'(kn+1)]
with the opposite border [V, V;#] of the trian-
gle is calculated. If two coordinates ~y;r,y;» are
negative we have to determine both intersections
T, T, with the two edges [V;, Vi, [Vi, Vin]. The
point T' = T} closest to the starting point with
Tk — F(ky)|| — min is the position, where the
curve leaves the current triangle. It may happen
that a vertex is (nearly) intersected, i.e. 171 = T5.
The integration algorithm must be numerically
stable in such that it guarantees to determine the
correct triangle that will be entered next.

Figure 1 illustrates the two intersection cases.
The point T" is used as new vertex of the stream
line polygon, thus F'(k,1) := T. Furthermore
the reference triangle is changed.

Integration is stopped after a maximum path
length or when reaching the boundary of the tri-
angle mesh or a triangle with three boundary ver-
tices. Since there are no directions defined in its
vertices, integration is stopped as well.

So far, we did not care about the orientation of
the €max,; vectors. Integrating Eq. 13 only makes
sense if these vectors are consistently oriented.
As this is not globally possible, directions are ori-
ented locally. Therefore an initial orientation is
chosen at the seed point. Then every time the
curve leaves one triangle, the directions at ver-
tices of the newly entered triangle are oriented
into the current direction of the curve. Thus, if
€cur denotes the current direction all €; are flipped
to —e¢; if the angle Z(€uyr, €;) > .

There are sophisticated methods for adjusting the
step size h adaptively during numerical integra-
tion. We found that varying h according to the
shape of current triangle is fast and gives satis-
factory results. In our experiments the following
heuristic has shown to work well. Let c be the
circumference of the triangle and «; the small-
est angle between any two directions €max, ;. We
then choose

C
ha = (15)
ST+)

Of course we do not claim to guarantee any error
bounds on the integration as this is not necessary
for the reconstruction of the natural flow.

3 RENDERING

After scattering seed points uniformly over the
surface, lines of curvature are drawn starting
from these points. The shader then determines
which parts of the lines are actually rendered.

3.1 Distribution of seed points

In order to cover the surface with lines of cur-
vature we start with uniformly scattering a num-
ber of seed points. Drawing curves outgoing
from these seed points we expect that the sur-
face will be suitably covered. We provide a func-
tion that computes an appropriate number of ran-
domly placed points per triangle.

We start with an approximate number n of points
which are to be scattered over the whole surface.
In addition a parameter m is chosen as the max-
imum number of points scattered across a single
triangle. In general, m is chosen several magni-
tudes smaller than n. Now for every triangle A;
the following algorithm is iterated m times.

Chose a random number 7 € [0,1]. Let A; be
the area of A; and A :=), A; the total surface
area. If r > % - 7 then a point is falling into A;.
This point is determined by choosing barycentric

coordinates with random 1, y2 € [0,1] and y3 =
1—v1—"7.

By repeating this algorithm m times per triangle
every triangle has a chance of getting at most m
points. Especially for configurations with trian-
gles of very different area the possibility of plac-
ing multiple points into a single triangle is im-
portant. The probability is chosen in a way that
in fact approximately n points are spread over the
surface.

For some models it might be appropriate to em-
phasize detail in distinct regions of the model. In
order to achieve this the density of seed points is
increased for that region. Regions of detail can
be detected from the geometry of the model by
thresholding the maximum curvature Kmax. For
triangles in such regions the probability of get-
ting a seed point is increased by some factor. Of
course, the generated distribution of points is not
uniform anymore. Figure 3 shows such a non

\% v,<0

Figure 1: Barycentric coordinates 71, y2,ys can be used for the in-triangle test. There are two cases how
the traced path can leave the current triangle. Left: one coordinate 7y; is negative. Middle: Two coordinates
72,73 are negative. Then two intersection points have to be determined. Right: If two coordinates are
negative and a vertex is (nearly) intersected then the integration algorithm must be able to find the next

triangle.

uniform distribution. Regions of high curvature
of the mannequin head are rendered with higher
density of strokes.

3.2 Shading and rendering

The line art shader is restricted to black and white
only. There are different approaches possible
depending on the requested quality of the out-
put. While [Winke94, Winke96] use sophisti-
cated shading in conjunction with a special tone
mapping process, our shader is relatively simple
much like the one used in [Elber99]. Therefore
real time applications are practicable. In general
any advanced shader can be used. We are not
limited to a particular shading resp. hidden-line
removal algorithm.

A set of lines of curvature outgoing in both di-
rections from uniformly spread seed points on
the surface is precomputed as polygons. The
maximum arc length spay of these “candidate
strokes” is limited to some useful value depend-
ing on the total area of the surface. The shader
can then affect density and length of strokes to
be rendered.

The arc length of strokes is derived from both an
illumination and a silhouette intensity term. For
illumination only diffuse light is considered. In
addition to lighting, the silhouette of the surface
should always be visible or be enhanced. For sil-
houette areas the surface normal is nearly perpen-
dicular to the viewing direction. Further on, the
boundary of the surface is defined to be part of
the silhouette and thus considered extra. Other-
wise the boundary is likely to be invisible since
it cannot be respected otherwise.

For both the illumination and the silhouette inten-
sity a truncation level is used so that short lines
are not drawn. This prevents highlighted regions
from being covered by small spots resulting from
short curve segments. Such regions are to be ren-
dered without any strokes instead. The total in-
tensity is obtained as a convex combination of the
diffuse and the silhouette intensity.

In order to determine intensities there must be a
normal vector defined for every stroke. We use
the normal vector of the triangle where the seed
point of a stroke is located. This way intensities
only have to be calculated once for every triangle
that contains any seed points. As a result real
time visualization is possible for reasonable sized
models without any advanced data structure.

The density can be adjusted by randomly select-
ing only a fraction 7 € [0, 1] of strokes for ren-
dering. This fraction may vary with the distance
of the surface to the viewer. This way a con-
stant brightness level of the 2D image is pre-
served. This may be achieved with some sim-
plified kind of tone mapping. An easier way
is taking only into account the relative distance
dmin < d < dmax. Different transfer functions
d — 7 can be used for this purpose. The simplest
alternative allows the user to select the density
and therefore the number of strokes rendered.
This may be the method of choice to achieve real
time rendering on a variety of graphics hardware.

Hidden surface removal is trivial if one is using
a z-buffer. The scene is rendered twice, first the
faces in background color, then the strokes. A
common problem here is “z-fighting” caused by
nearly equal z-values for surface and strokes, re-
sulting in visual artifacts as dotted strokes. In

order to avoid such artifacts the strokes are trans-
lated some small amount into z-direction resp.
towards the viewer.

The graphics hardware may exploit back face
culling for the triangles but not for the strokes.
So an extra test in the rendering algorithm is
worthwhile. Therefore strokes can be culled if
N;V > . Here ¢ € [0, 1] is some small positive
constant, i.e. 0.2. As strokes originated at a back
face may flow into front faces and thus may be
visible, the usual test against 0 is inappropriate.

4 RESULTS

Figures 2-4 show line art renderings of three tri-
angle meshes. Different shading parameters are
used. The figures have been rendered by using
the above z-buffer algorithm. Both, the synthetic
model (cf. fig. 2) and the cat (cf. fig. 4) can
be displayed interactively on a SGI O2 (R10000,
225MHz). A maximum of about 10k resp. 25k
strokes are precalculated.

Although we do not utilize special data structures
or algorithms like grouping strokes into buckets
as in [Elber99], we are able to interact with rea-
sonable sized models in real time. By assigning
triangle normals to the strokes all strokes out-
going from the same triangle are treated equal.
So shading is done per triangle and it can be re-
stricted to those triangles that contain at least one
seed point of a stroke.

For this reason the mannequin head (cf. fig. 3)
with about nine times more triangles than the
other models cannot be displayed interactively
anymore. By combining Elber’s algorithm with
our triangle rendering substantial gains are to be
expected for future work.

5 CONCLUSION

We presented a technique that allows to produce
aesthetically pleasing line-drawings from trian-
gle meshes by utilizing lines of curvature. The
z-buffer rendering used can even display models
of reasonable size in real time.

REFERENCES
[Appel79] Appel, A.; Rohlf, F; Stein, A.: The
Haloed Line Effect for Hidden Line Elim-

ination, Computer Graphics (Proc. SIG-
GRAPH ’79), pp. 151-157, 1979

[Carmo76] do Carmo, M.P.: Differential Geometry
of Curves and Surfaces, Prentice Hall, 1976

[Deuss99] Deussen, O.; Hamel, J.; Raab, A.;
Schlechtweg, S.; Strothotte, T.: An illustration
technique using hardware-based intersections
and skeletons, Proc. Graphics Interface 99,
pp. 175-182, 1999

[Doole90a] Dooley, D.; Cohen, M.E.: Automatic Il-
lustration of 3D geometric models: Lines,
Computer Graphics, Vol. 24, No. 2 ,pp. 77-82,
1990

[Doole90b] Dooley, D.; Cohen, M.E.: Automatic II-
lustration of 3D geometric models: Surfaces,
Proc. Visualization *90, pp. 307-314, 1990

[Elber95] Elber, G.: Line Art Rendering via a Cover-
age of Isoparametric Curves, IEEE Transac-
tions on Visualization and Computer Graph-
ics, Vol. 1,No. 3, 1995

[Elber99] Elber, G.: Interactive Line Art Rendering
of Freeform Surfaces, Proc. EUROGRAPH-
ICS ’99, Vol. 18, No. 3, pp. 1-12, 1999

[Farin96] Farin, G.: Curves and Surfaces for Com-
puter Aided Geometric Design. A Practical
Guide, Academic Press, 4. ed.; 1992

[Inter97] Interrante, V.L.: lllustrating Surface Shape
in Volume Data via Principal Direction-
Driven 3D Line Integral Convolution, Com-
puter Graphics (Proc. SIGGRAPH ’97),
pp- 109-116, 1997

[Leist94] Leister, W.: Computer Generated Copper
Plates, Computer Graphics Forum, Vol. 13,
No. 1, pp. 69-77, 1994

[Salis94] Salisbury, M.P.; Anderson, S.; Barzel,
R.; Salesin, D.: Interactive Pen-and-Ink II-
lustration, Computer Graphics (Proc. SIG-
GRAPH ’94), pp. 101-108, 1994

[Salis97] Salisbury, M.P.; Wong, M.; Hughes, J.;
Salesin, D.: Orientable Textures for Image-
Based Pen-and-Ink Illustration, Computer
Graphics (Proc. SIGGRAPH ’97), pp. 401-
406, 1997

[Welch94] Welch, W.; Witkin, A.: Free-Form Shape
Design Using Triangulated Surfaces, Com-
puter Graphics (Proc. SIGGRAPH ’94s),
pp. 247-256, 1994

[Winke94] Winkenbach, G.; Salesin, D.H.: Com-
puter Generated Pen-and-Ink Illustration,
Computer Graphics (Proc. SIGGRAPH ’94),
pp. 91-98, 1994

[Winke96] Winkenbach, G.; Salesin, D.H.: Ren-
dering Parametric Surfaces in Pen and Ink,
Computer Graphics (Proc. SIGGRAPH ’96),
pp- 469-467, 1996

Figure 2: A synthetic model (9 kA) rendered with different shading parameters. The rightmost figure
shows the silhouette.

Figure 3: From left: original model of the mannequin head (87 kA); line art illustration; same but using
fewer strokes; without shading but enhanced stroke density for regions of high curvature e.g. nose, eyes,
ear.

. W / r"7 p
: ‘éﬁ\x ;-7; R {/‘)’)" . m/
{ \/:\ﬁ’ T lb}';',l’\j

Figure 4: From left: original model of the cat (11 kA); all generated strokes; with shading con-
sidered; same but using fewer and thicker strokes.

