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ABSTRACT

In this paper, we present an acceleration technique for Progressive Radiosity based on group
iterative methods. This technique uses groups of shooting patches to accelerate the diffusion of
light. The quality of the results depends on the amount of energy that is exchanged between the
patches of each group. We propose two group building techniques which guarantee a high level
of interaction between the shooting patches. The resolution of the sub systems generated by the
groups is done rapidly thanks to a new technique of hybridization applied to the Gauss Seidel
method. This new PR method using groups is especially efficient in the case of scenes having

many occlusions.
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1 INTRODUCTION

Since progressive radiosity (PR) has been intro-
duced in computer graphics [Cohen88b], a lot of
researches have focused on accelerating its con-
vergence rate. Overshooting methods [Feda92a]
[Shao93a] [Xu94a] have been proposed for this
purpose. They attempt to accelerate PR by re-
ducing the number of times a patch is selected for
shooting. Minimizing the number of selection per
patch is expected by estimating the energy that
would come back to the emitter from direct and
indirect reflections. Results of such approaches
have highlighted their interest, but they are self-
limited by using only one form factors row at a
time. Thus when occlusions are numerous, over-
shooting only improves the convergence rate of a
few number of patches.

High level of occlusions can arise both locally and
globally in image synthesis scenes. Furthermore
some other research areas are concerned with ra-

diosity computation in high level of occlusion en-
vironments. Radiative transfers in plant canopies
is one of them [Chell98a]. We are currently study-
ing this kind of problem with agronomists and it
appears that more powerful radiosity algorithms
like hierarchical radiosity [Hanra9la] are useless
in such problems.

In this paper we are interested in studying some
improvements to a Group Accelerated Progres-
sive Method (GASM) [Rouss99a]. This method
allows existing PR based methods to be success-
fully accelerated by periodically shooting energy
from a group of patches. Each group shooting
step takes into account both all the internal group
exchanges and the exchanges between the group
and the entire scene. GASM provides efficient
results for high occlusion levels but previous ap-
proach required several additional studies.

Two main improvements are investigated in this
paper. At one hand, efficient group sub-systems



solvers have to be used in order to reduce the
overhead of the groups usage. At the other hand,
the efficiency of a group depends on how it has
been built : higher is the amount of energy that
is exchanged inside the group, more efficient is
this group. In the next part of this paper we
summarize the GASM approach. Then in part 3
we present a new efficient technique for radiosity
linear systems solvers. Two group building tech-
niques are investigated in part 4. Some results
are provided for scenes with high level of occlu-
sion and finally we give some perspective to our
work.

2 GROUP ACCELERATED SHOOT-
ING METHOD

GASM is an acceleration technique on top of a s-
tandard shooting method such as Progressive Ra-
diosity (PR). Periodically, during the PR itera-
tion steps, a group of patches is built, the cor-
responding sub system is solved and the overall
radiosity and unshot radiosity vectors are updat-
ed. This means that all the interactions between
the patches of the group are solved and that the
energy of the entire group is shoot towards the
rest of the patches in the scene.

The shooting patches and their corresponding for-
m factor rows computed during the successive
shooting steps of PR are stored into memory. The
number of patches stored depends on the amount
of available memory ; it is generally several hun-
dreds. Each group is built from the patches in
memory and the size of the group is fixed by the
user. The periodicity of group resolution is com-
puted automatically in order to obtain a small
overhead. The periodicity is deduced from the
average time spent computing form factors and
doing the single shooting steps and the average
time spent solving the sub systems.

The following notations will be used throughout
this article :

e &B = F is the radiosity system, with & =
(i,5)nxn the radiosity matrix ;

e E=(ep,...,e,)T is the vector of initial en-
ergy values ;

e B=(by,...,b,)T is the vector of radiosity
values (iterate vector) ;

e AB = (Aby,...,Ab,)Tis the vector of un-
shot radiosity values (residual vector) ;

e B, is the sub vector of B composed of ele-
ments b;, © € group 7 ;

e AB, is the sub vector of AB composed of
elements Ab;, i € group r ;

e &, . is the sub matrix of ® composed of the
intersection of rows ®; ., ¢ € group r and
columns @, ;, j € group r.

Using these notations, GASM applied to PR is
summarized in the pseudo algorithm 1.

Algorithm 1 Group Accelerated Progressive Ra-
diosity
1: choose m the size of the group
2: initialize B and AB with E
3: do m shooting steps and store
each shooting patch along with its ff’s
4: solve the m x m sub system
5: compute the frequency of group
resolution
6: while not converged do
7: choose patch ¢ with max | Ab;.a; |
8: if patch ¢ not in memory then
9: compute the form factors Fi ;
10:  if no place left in memory then

11: replace oldest ff’s with new one’s
12: endif
13: endif

14: perform a shooting step from patch ¢

15: if group frequency reached then

16:  choose the m patches among those
in memory having max | Ab;.a; |

17:  compute ®,;

18: Arad, = @;% AB,

19: B, = B, + Arad, — AB,

20:  for all patches j ¢ group r do

21: Arad = —®;,Arad,

22: Ab; = Ab; + Arad

23: bj = b; + Arad

24: endfor
25: AB, =0
26: endif

27: endwhile

3 ITERATIVE RESOLUTION OF THE
SUB SYSTEM

To shoot from group r, it is necessary at first
to compute ®,} (line 17 of algorithm 1). This
matrix is subsequently used to update the vector
of radiosity values (B) and the vector of unshot
radiosity values (AB) (lines 18 to 24). Assuming
that n is the number of patches in the scene and
that m is the size of a group, the computational
cost of each group shooting step is :

e O(m?®) to compute ®; ) with a standard in-
version method such as the Jordan method ;



e O(m?) to update B, ;

e O(mn) to update patches which do not be-
long to group r.

The total cost is thus O(m?) if m®> > n and
O(mn) otherwise.

When groups of a relatively large size (more than
a few hundreds patches) are used, the computa-
tional time of @ L becomes prohibitive. Besides,
this cost cannot be compensated with other uses
of this matrix since it corresponds to a particular
group and that a new group is built at each new
group shooting step.

We propose therefore to use an iterative method
to resolve the system ®,,Arad, = AB,, these
methods having a much lower cost. Thus, we in-
troduce a second iterative level in the global ra-
diosity system resolution.

Any algorithm usually proposed in radiosity could
suit the resolution of this sub system. Neverthe-
less, since the matrix ®,., is known (it is build
from the form factors rows stored into memory),
general matrix techniques are faster in this case
[Baran95a].

According to the definition of the matrix ®,, in
section 2, the latter inherits the strictly diagonal-
ly dominance property from the matrix ® since
all its diagonal elements are 1 and all other el-
ements of a row of ®,, are part of a row of ®.
Therefore the Gauss Seidel resolution technique
can be applied. Other methods such as Chebichev
or Conjugate Gradient can be used also, however
we point out in [Leblo99a] that the application
of a hybridization technique allow us to outper-
form general matrix techniques both in term of
rapidity of convergence and computational time.
We described below the hybridization principle
[Brezi97a).

3.1 Hybridization of two iterative meth-
ods

Let us consider the linear system Az = b, where
A is a m X n matrix and 2 and b are two vec-
tors of dimension n. We assume that z* is the
solution of this system and that {z,} and {z} }
are two vectors sequences which converge to x*.
Residuals of these two sequences are given by :

7';@ = b—ASL';k/
r, = b—Ax,

Using a linear combination of these two residuals
we build the residual 7y, :

! "
T = gty + Bpry

It is assumed to be also the residual of a new
solver providing a sequence {xy } which converges
to x* :

’I’k:b—A:L'k

It is then easy to derive an expression for zj, using
. . . ’ "
the linear combination of 7, and r, :

e = oury o+ By )
b— Az, = op(b— Azy) + Br(b— Azy)
Az, = (1 —Qap — ,Bk)b + A(akxk + ﬂkajk)

(1)

But using the last equation of (1) requires to re-
verse A in order to compute x; . Therefore, A is
suppressed from this equation by assuming that
ag + B, = 1 . This equation is then rewritten as :

! "
T = QT + ﬁkxk

and replacing 8y, by (1 — ay) we get the following
expressions for the terms x; and ry :

1 ! 1"

{ zpy = o +oglx, —ay)
1 ! 1

T T, +ag(r, — 1)

Computing these two terms requires however to
know a value for ay,. Because we want x to con-
verge more quickly to x* than both z'and z, ry,
has also to converge more quickly to 0 than both
r,, and r, . In order to ensure the best convergence
for r; we choose ay in such a way that it mini-
mizes the euclidean norm of r; which is equivalen-
t to minimize f(ay) defined by f(ag) = (15, 7%)-
Thus :

flax) =

! " ! " " ! " " "

g (ry =,y — ) + 200 (1 — 1) 4 (g, Ty)

Two cases can appear :

"

' 1" . . 1
e 7, =1, : in this case we take ry, =7, =7,

. r;c # r}; : in this case it is easy to show that
f, a polynomial of degree 2 in aj, , has a
minimal value in oy such that f (ag) = 0,
and that this ay, is given by :



! "

1"
(PgsTe —T5)
! " ! "
Py =TTy —Tx)

ap = —

The hybrid residual vector is proved to have a
norm below or equal to the lowest norm of the
two residual vectors used during the hybridiza-
tion. This property guarantees a convergence at
least as rapid as the best of two iterative methods
used.

3.2 Hybridization of Gauss Seidel

The hybridization technique described above can
be applied to two vector sequences converging to
the solution, independently of the way these vec-
tors are computed. In particular, they can be
computed by the same iterative method.

In our approach (case 3 of [Leblo99a] : see Fig.
1), we use a single iterative method defined by
z,, = u(z,_,) and zo fixed. The hybrid sequence
xy is initialize using z¢ = a:é). At each iteration
step, we compute :

e the k + 1" iterate of the iterative method
using x; = u(wy)

. . I !
e we hybridize z and x| : Tp41 = @z +

(1 - )z,

N B
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b
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Figure 1: Hybridization of an iterative
method with restart

This technique we call hybridization method with
restart is described in algorithm 2.

At this time, we obtain the best results by hy-
bridizing the Gauss Seidel method with restart.
The computational cost of Arad, reduces to
O(m?) and the final cost of group shooting be-
comes O(mn).

3.3 Comparison of algorithms

In Table 1 we present the average shooting times
for groups of different sizes in the case of the

Algorithm 2 Hybrid iterative method with
restart
initialize z; and ry
while not converged do
do an iterative step : xj — SU,k_H TR — T;C_H

a=— (Tk7r;ci1_rk)
- ! !
(Phgy—ThsTg 1 —Th)
!
rp = xp + Ty, — )
!
e =Tk +a(r ., — k)
endif

Multi-cubes scene (see Fig. 3). These times in-
clude the resolution of the sub system (computa-
tion of @, ! using the Jordan method in the case
of GASM or the application of hybrid GS with
restart in our two-level iterative method, TLISM)
and the update of the overall iterate and residual

vectors.

These times are in seconds and have been ob-
tained on a PC running a Pentium IT at 300 Mhz.

| [100 [ 200 | 300 | 400 | 500 |

GASM | 1,18 | 6,15 | 20,19 | 47,47 | 90.96
TLISM | 0.69 | 1.50 | 2.49 | 3.70 | 5.04

Table 1: Average group shooting times

The GASM method using the Jordan technique
to compute the inverse of ®, , allows us to use
groups of a maximum size of 200. Beyond, the
cost of group shooting becomes prohibitive and
involves a low frequency of application which lead
to a worse convergence rate. On the contrary,
the hybrid GS method allows us to use frequently
groups of size 500 and leads to a better conver-
gence rate.

4 GROUP BUILDING

The choice of the patches to include in the group
is essential to obtain a significant convergence
speedup. The advantage of group shooting is due
to the fact that each patch of the group benefits
from the energy of all other patches in the group
by multiple reflections. Consequently, it is impor-
tant to take into account the level of interaction
between the patches during group building.

In order to improve the quality of groups, we
took inspiration from the techniques of Funkhous-
er [Funkh96a] in which surfaces of the scene are
subdivided in groups according to a form factors
graph.

In our method, groups are build dynamically dur-
ing the resolution. One group is considered at a



time so we have only one group to build from
the graph. The form factors are already known,
nevertheless their values alone are not sufficien-
t to build the most efficient group. We have to
consider also the unshot radiosity values of each
patches.

Thus, we define a graph in which each node repre-
sents a patch in memory and each edge represents
the level of interaction between two patches. The
edges values are stored in the interaction matrix
N. Each element N;; represents the quantity of
energy exchanges between patches i and j and is
defined by :

Nij = piFijAB; + p;j Fj; AB;

N satisfies V;; = Nj; and Ny = 0 Vi,5. More-
over, the level of interaction between a patch
i and a group r is defined by N, = N,; =

Zj€group r Nij .

The size of N depends on the number of patches s-
tored in memory. It has to be computed each time
a group shooting step is done since AB varies all
along the radiosity resolution.

We use N to define new efficient group building
techniques that guarantee a high interaction lev-
el in each group. Indeed, when the energy ex-
changes are high in a group, the impact of its
resolution on the rest of the scene is important.

We present below two new group building tech-
niques inspired from the ”merge” and ”split”
techniques proposed by Funkhouser.

4.1 Additive technique

The additive technique consists firstly in choos-
ing the two patches having the highest interac-
tion level, i.e. patches ¢ and j such that N;; =
mazk (Ng). Subsequently, patches in memo-
ry having the highest interaction level with the
group are iteratively added. In fact, the group
r is build by iteratively adding the patches ¢ for
which N;, = max;(Nj,), Vi ¢ group r, until the
desired group size is reached.

This technique builds homogeneous groups for
which the corresponding ®,, matrix is irre-
ducible : all the patches of each group exchange
some energy with each other through direct or in-
direct illumination. This property is always ver-
ified as long as all the patches that have been
added to group r had non zero Nj,.

4.2 Subtractive technique

The subtractive technique consists in initializing
group r with all the patches available in mem-
ory and iteratively removing the patches having
the lowest interaction level with the group. The
patches i such that N;,. = min;(N,,) are removed
until the desired group size is reached.

Groups built using this technique are not neces-
sarily homogeneous as those built using the addi-
tive technique. Indeed, the choice of the patches
to remove does not guarantee that the patches re-
maining do all interact with each other. But gen-
erally, the amount of energy of groups built using
the subtractive technique is higher since the qual-
ity of groups built with the additive technique is
strongly dependent on the choice of the two initial
patches.

4.3 Comparison of building techniques

In GASM, groups are built by choosing among
the patches in memory those having the maxi-
mum unshot radiosity values [Rouss99a]. The ad-
ditive and subtractive techniques allow a higher
interaction inside groups that can be easily mea-
sured. Using the definition of N in section 4, we
use N, = ¥; jegroup rIVi,j to measure the inter-
action level of group r.

In Table 2 the average interaction levels of groups
built during the Labyrinth scene illumination are
presented for the original group building tech-
nique of GASM (max), the additive technique
(add.) and the subtractive technique (sub.).

| [ 100 | 200 [ 300 | 400 | 500 |
max | 0.11 | 0.20 | 0.29 | 0.35 | 0.43
add. | 0.25 | 0.32 [ 0.40 | 0.45 | 0.50
sub. | 0.22 | 0.31 | 0.41 | 0.46 | 0.51

Table 2: Average interaction levels of groups

The additive and subtractive techniques give bet-
ter results than the simple choice of patches hav-
ing the maximum unshot radiosity values. How-
ever, the advantage of using these two new tech-
niques seems to reduce when using larger groups.
In fact, the number of patches and form factors
rows stored into memory is 1000 in this example
for all the different group sizes. Thus, the ad-
ditive and subtractive techniques have more and
more difficulties to build groups of better qual-
ity when the ratio of the number of patches in
memory to the group size reduces. Therefore, by
increasing the number of stored patches to 2000



for the Labyrinth scene, the average interaction
levels of groups of size 300 become respectively
0.38, 0.67 and 0.69 for the three techniques.

5 RESULTS

We present results for two scenes both with a high
level of occlusions. The first one is a labyrinth
(see Fig. 2) with 3.362 patches. Its average re-
flectance is 0, 59.

Figure 2: Labyrinth

The second scene (Fig. 3) is a cubic room includ-
ing 64 smaller cubes. This geometry generates a
lot of occlusions and thus involves complex ener-
gy diffusion paths. The average reflectance of the
scene is 0,41 and it includes 4.590 patches.

Figure 3: Multi-cubes

In Fig. 4 and 5, we compare the convergence
rate for Progressive radiosity, Xu’s overshooting
method, GASM with and without the improve-
ments we described in this paper (TLISM). We
use the Root Mean Square error metric to mea-
sure the convergence rate of each algorithm. The
results are express on a time basis in seconds.

For both scenes, PR has a very slow convergence
rate due to the occlusions. More important is the
low speedup provided by Xu’s overshooting. As
previously described, overshooting runs with an
unique form factors row. Only the patches that
are visible from the emitter take the advantage
of the overshooting term. In the case of environ-
ments with a low level of occlusions, Xu’s method
outperforms the progressive algorithms. But it is
clearly not designed for environments with a lot
of occlusions.

The GASM approach takes the advantage of us-
ing several form factors rows. The overall visi-
bility of the group is thus larger than the one of
classical overshooting methods. This allows the
GASM to provide very fast convergence rates.The
original GASM is restricted to small sized group-
s. The group size for optimal acceleration is 200
patches. During the first steps of the algorithm
(during about 2.000 seconds) convergence rate is
very high. Then it becomes much lower due both
to the small size of the group and the low quantity
of energy that is exchanged between the patches
at this point of the iterative process. By using
larger groups, which is authorized by the hybrid
Gauss Seidel solver, and using the additive and
subtractive techniques to build them, the speedup
is much more important.

L i Xu o |
" GASM PR 200 —-
TLISM PR 500 add. ——
TLISM PR 500 sub. -------
0.15 |
0.1 r
005 N T

0 1 L 1 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 4: Convergence rate for Labyrinth

The difference is lower for the Multi-cubes scene
(figure 5). However after 8.000 seconds, the RMS



error is two times smaller for TLISM using 500
patches per group than for GASM using groups
of size 200.

0.02 .
PR ——
Xy e
A GASM PR 200 -~
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0.01 |
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0
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Figure 5: Convergence rate for Multi-cubes

6 PERSPECTIVES

In this paper we have presented some new en-
hancements to the Group Accelerated Shooting
Method. This method is well suited to scenes or
part of scenes with high levels of occlusion.

Using large groups is an important parameter for
the speedup we can expect from GASM. However
the computation time required for solving these
groups was a drawback for the original method.
We have presented an efficient technique that out-
performs the iterative Gauss Seidel solver capa-
bilities. The resolution of the group sub-systems
is fast, even for large groups.

The second important parameter is concerned
with the groups building techniques. Improv-
ing the performances of the iterative method re-
quires to build groups with high internal energy
exchanges. We have studied two groups building
techniques which highlight high internal coheren-
cy and contribute to the improvement of GASM.

We just have presented TLISM for Progressive
radiosity. But it can be applied to overshooting
methods too. This work is today under investi-
gation and the first results we obtained indicate
the interests of such an approach. Finally, groups
techniques appear as a very investigation way for
both bi-level [Cohen86a] and hierarchical radios-
ity [Hanra91la).
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