HUMAN MOTION SYNTHESIS BASED ON ITERATED
FUNCTION SYSTEMS

Stephen Wang-Cheung Lam and Powis Lai-Yin Leung

Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon.

Email: cswelam@comp.polyu.edu.hk

Fax: 2774 0842 Tel: 2766 7301

ABSTRACT

This paper describes a novel approach to automatic motion sequence generation. The basic
algorithm underlying our approach is the iterated function systems (IFS) which have already found
many applications in image compression and pattern generation. In our system, a set of key-frames are
first specified by the user. Subsequently, IFS based interpolation scheme is employed to generate a
sequence of motions having self-similar characteristics. Our ultimate purpose is to produce realistic
repetitive motion, which possesses a main theme but the details varies over time. Our algorithm can
find applications in generating human motion like dancing or walking which involves long sequence of

repetitive movements of a puppet’ s limbs and body.

Keywords: Iterated function systems, puppet, motion.

1. INTRODUCTION

As stated in [Aus95], automatic motion
synthesis is the problem of determining how an
animated character should move in a plausible
way that meets the animator’s goals.
Animated characters are often modeled as
articulated figures, which are constructed by
rigid rods connected by flexible joints.
Generally speaking, physical realism is a good
way to guarantee visual plausibility. Hence,
traditionally, the automatic motion-synthesis
paradigm requires the animator to specify both
the physical structure of an articulated figure
and the mechanism for driving it. The
computer then evaluates a physically realistic
motion sequence. Based on this paradigm,
many techniques or algorithms have been
developed. For example, human and animal
character simulation based on inverse
dynamics has been developed in [Gir85]. In
[Bro88], researchers model the emotion of
objects and their environment by differential
equations obtained in classical mechanics.
External control is then applied to satisfy the
constraints imposed by the key-frames.
Smooth and natural looking interpolations are
obtained by minimizing a combination of the
control energy and the roughness of the
trajectory of the objects in 3D space. In

[Cha89], artificial muscle layers are used for
creating animated figures. The muscle
deformations  determine  the  resulting
geometric surface of the character. In [Pan93],
a sensor-actuator network (SAN) approach is
proposed to control an articulated figure. The
user needs to supply the configuration of a
SAN, which is composed of a small non-linear
network of weighted connections between
sensors and actuators. Subsequently, a set of
possible modes of locomotion of that particular
object are evaluated. Further experiments and
refinements of this method are described in
[Aus95]. In [Grz95], a learning technique was
developed which automatically synthesizes
realistic locomotion for the animation of
physics-based models of animals is developed.
In [Bad93], simulated actors that embody true
physical constraints are described in details.
Finally, a survey of controlling articulated
character animation and its related issues can
be found in [Bad91].

Besides creating motion through
simulating the underlying mechanics, recently
other approaches are also proposed by
researchers. For example, in [Unu95], a
method for modeling human figure locomotion
with emotions is presented. In that paper,
Fourier expansions of experimental data of



actual human behaviors serves as a basis upon
which the method can interpolate or
extrapolate the human locomotion. In [Per95],
rhythmic and stochastic noise functions are
used to define time varying parameters that
drive computer generated puppets. The
ultimate purpose is to convey the texture of
motion. With this algorithm, the computation
of dynamics and constraint solvers is avoided.

As stated in [Hau96], fractal
dynamics were recently detected in the
apparently noisy variations in the stride
interval of human walking. This inspires us to
employ the iterated function systems (IFS) to
generate repetitive animated motion sequence
with textual characteristics. IFS were proposed
in [Dem85] for generating irregular graphics
patterns and have been applied for generating
Chinese fonts [Ip94] and extended to three-
dimensional space [Che97]. In [Per93],
stochastic IFS and their applications in image
coding are explored in details.

The remainder of this paper is
structured as follows. In section 2, we present
a brief review of iterated function systems
(IFS). In section 3, we apply the IFS in the
context of human character animation. Similar
to the noise adding approach stated in [Per95],
our algorithm can produce noisy motion
sequence. Additionally, the core structure of
the repeating motion pattern can be specified
by the user through key-frames. In section 4,
experiments based on our approach are
presented. Finally, in section 5, we summarize
the contributions in this research and suggest
some topics for future work.

2. ITERATED FUNCTION SYSTEMS

Tterated function systems (IFS) can be
classified into deterministic and stochastic
ones [Hau96][Per93]. In this section, we
briefly review the fundamental concepts and
definitions developed in deterministic IFS
which will be employed in our interpolation
scheme'.

2.1 Hausdorff Distance
Given a metric space (X,d), a new

metric space (H(X), h) can be constructed
where H(X) is the collection of non-empty,

! Most of the materials presented in this
section are taken from [Per93].

compact, subsets of X, and h is the Hausdorff
metric defined as follows:

For A and B in H(X) and x in A, we
define the distance from x to B as:

d(x,B)= mifr}l d(x,y) (@.1.1)
ye

{ n 2}1/2 |
where  d(x,y)= Z(yi—xi) . Since
i=1

y+> d(x,y) is a continuous function and B
is compact and nonempty, the above minimum
is able to attain. Then, we define the distance
from A to B as:

d(A,B) = max d(x,B) (2.1.2)

For the same reason as above, this maximum is
also attained. Finally, the Hausdorff distance
between A and B is defined as:

h(A, B)=max(d(A, B),d(B, A)) (2.1.3)
2.2 Contractive Transformation

Given two metric spaces (X,d;) and
(Y,d»), a transformation w: X Y is said to
be a contraction if and only if there exists a
real number s, with 0<s<1, such that:

d>We)sw(x) < sdi(x x2)

for any x4, x,€ X. (2.2.1)

Any such number s is called a contractivity
factor for w. w is said to be a strict contraction,
if s is strictly less than one. Note that, when the
two metric spaces coincide, w acts on pairs of
points in X by bringing them closer together,
their distance being reduced by a factor of at
least s.

2.3 Defining IFS

Given a complete metric space (X,d),
we shall consider the associated space (H(X),
h) of nonempty, compact subsets of X,
endowed with the Hausdorff metric, and define
a contractive transformation of W of H(X) into
itself. By the constraction mapping theorem,
W has a unique fixed point in H(X). In
particular, for the case X=R?, this construction
will enable us to identify certain fixed points
of constractive transformation H(R?) into
itself.

Firstly, we consider a metric space
(X,d) and a finite set of strictly contractive

transformations 1y, : X > X, 1<n<N, with
corresponding contractivity factor S,. Then, we

proceed to define a  transformation
W:H(X)— H(X), where H(X) is the



collection of nonempty, compact subsets of X
by:

N

W(B)=Jw,(B) forany Be H(X) (2.3.1)
n=l

It is easily shown that W is a strict contraction,

with contractivity factor §=max<,<yS»-

According to the contraction mapping
theorem, if (X,d) is complete, W has a unique
fixed point A in H(X), satisfying the
remarkable self-covering condition

N
A=WA) =Jw,(A) 232
n=1

Finally, we give the following definition.

Definition 2.1. A hyperbolic iterated function
system (IFS) {X;wy,...,w,} consists of a
complete metric space (X,d) and a finite set of
strictly contractive transformations

w,: X = X with constractivity factors s,,

for n=1,..,N. The maximum s among s,...,Sy is
called a contractivity factor for the IFS. The
unique fixed point in H(X) of the
transformation W defined by relation (2.3.1) is
called the contractor of the TFS.

For examples, please refer to [Per93].

3. MOTION SEQUENCE GENERATION

In this section, we will explain the
configuration of our puppet and the
interpolation scheme for generating motion
sequences.

3.1 Puppet Configuration

As shown in figure 3.1, eighteen
components are used in constructing our
puppet. We have included the head, neck,
shoulder and so on. Ideally it should be more;
this is the minimum to provide the best
emotional expressiveness. Each component is
represented by a rod, which connects two
points in three-dimensional space. The
coordinates of these end-points, which change
at every frame, drive the puppet’s movement.
We provide a motion script interface, which
resembles the linear-list notation [Fol90]. A
statement such as 4 LUpperarm RotateZ 3,
means “in frame 4, the puppet’s left upper arm
should be rotated about Z axis for 3 degrees”.
Figure 3.2 illustrates a segment of a script,
which specifies the initial six frames, with key-
frames 1, 3 and 6. The puppet’s posture in each
key-frame is specified by a group of
statements. The first statement of a group is

preceded by a number, which identifies the
corresponding key-frame.

3.2 Motion Sequence Generation Scheme

In this section, we present our motion
sequence generation algorithm.

3.2.1 Transformation

Each component of the puppet can
move in two opposite directions, i.e. positive
and negative. Figure 3.3 illustrates the posture
requirements of some of the components in a
key-frame. For example, the left upper arm
should attain a  position effectively
equivalently to after rotating about x-axis for
40 degrees. Figure 3.3(a) shows a bar chart,
which represents the initial set of data Dy. We
define T*(D;) as the positive transformation
function for making all the data values positive
and T°(D;) doing the reverse. D; is the data set
of key-frame i.

3.2.2 Generating a New Key-frame

Our motion sequence generation
algorithm is shown as follows:

for each data value a{; in a set D;,
if a,{; >0 then D;” = S(Sx(T*(Dy)))
if ¢j; <0 then D;’ = S(Sx(T' (D))

] b
set a5+ to the mean of D; ua;;.

The whole sequence is composed of a
set of frame sequences. Each frame sequence
is indexed by p. j is the index of the data value
of each key-frame i. Sy is a scaling function
for normalizing the transformed value. Figure
3.4(a) shows the normalization process. S is a
scaling function for scaling the normalized
data values. The scaling magnitude is specified
by the user: S ranges from Ry, to Ry, Where
Ruin and Ry, are the parameters input by the
user. For example, R, and Ry, could set to
0.6 and 1.4 respectively. S is then generated
randomly within the range. Figure 3.4(b)
shows the effect of this function.

In order to avoid impossible or

abnormal movements, we need to check

af; ! The following is the checking rules:

. p+l ¥4 p+l ¥4 P u
if |afj >|aij| and |afj _Oij|>|(ijX)«



then (xi’; is not acceptable and is set
p u
to aijx/l
. p+ 4 p+l p P 1
if ‘aij <‘aij’ and ‘aij —aij’>‘aij><)d‘

then ai’; is not acceptable and is set
14 1
o QXA
where )" and)' are user specified
percentage values.

As shown in the above rules, the user
is required to specify an upper and a lower
limit on the change of movement. If the new
evaluated value exceeds the range, it is
replaced by the limit value. An example is
shown in table 3.1

3.3 User Interface Design

Figure 3.5 shows the user interface of our
system. The user can switch on and off the
viewing windows and the motion sequence
window through the main controller panel. The
motion parameters are input through the
motion controller panel. The user can select
different motion sequence like swimming,
walking or dancing. Play, pause, stop and
repeat buttons are provided for controlling the
playing of animation interactively.
Furthermore, the user can select different
viewing effect from the viewing effect block.
If the capture button is pressed, the sequence
of motion is captured and displayed in the
motion sequence motion window. Finally, the
user can also input different parameters for
controlling the IFS based motion synthesis if
the IFS button is pressed.

Head

Shoulder Neck

Right Upper Arm Thorax

Right Forearm
Lumbar

Right Hand Pelvis

Right Thigh

Left Upperarm Arm

' LLeft Forearm

Left Hand

Left Thigh

1 Puppet MoveY -3,
Puppet MoveX -2,
Shoulder RotateY 5,
RUpperarm RotateX -15,
LUpperarm RotateX 25 ,
Pelvis RotateZ -4 ;

3 Puppet MoveX 1,
Puppet MoveY 2.5,
Shoulder RotateY -2.5,
RUpperarm RotateX 20 ,
RForearm RotateX -20 ;

6 RShank RotateX 7 ,
RFoot RotateX 8 ,
LThigh RotateX -7 ,
LShank RotateX -3 ,
LFoot RotateX -3 .

Right Shank

Right Foot

Figure 3.1. A puppet with eighteen components.  Figure 3.2. A motion script example.

Component Action Original Evaluated  Upper Limit Final value

value value Limit Value

Lupperarm | RotateZ| 30 40 120% 30x120%=36 36

Table 3.1. An example of value adjustment.



LUpperarm RotateX 40

LUpperarm RotateZ 20
Head RotateX 15

Thorax RotateX ~10

LForearm RotateY -20

32 Thorax RotateX -10 ,
Head RotateX 15,
LUpperarm RotateX 40 ,
LUpperarm RotateZ 20 ,
LForearm RotateY -20 ,

(a)

(b)

Figure 3.3. An example key-frame. (a) A bar chart. (b) The script of the key-frame.

A normalized condensation set

A scaled condensation set

(a)

(b)

Figure 3.4. Construction of interpolated values. (a) Normalization and (b) Scaling of the

interpolated values.

SRR

el
| g

L

LT

RUpperam 20, 49,1 20,21 -
RForearm  -20.21.-14 -20.-9.-

R 1.1 -
A3.-47.8 14,91,
14.91.18  15..67.31

Al

Totaltiame 18

Front Vi i Nomal =
o) Viewet [N omal =

. Scalivg Feicentage of 170
s vt

s Sealing Feicentage o (257

ha aal .

Figure 3.5 This figure shows the user interface of our IFS based motion generation system.




4. EXPERIMENTS

Two experiments have been carried out to test the effectiveness of our algorithm.

(4) (5) (6)

(1) (8) (9)

(16) (17) (18)

wﬁwﬁ?

(19) (20) (21)

N

(22) (23) (24)

N

(27)

Figure 4.1. Swimming. Key-frames are 1,5,10,15,20,25, and 27.



(3) (6) (7

9 (13)

(15)

24)

!

(30) 30 (32) (33) (34)

(36)

Figure 4.2. Character shows the message “I don’t know” (more obvious in frame 26-32).
Key-frames are 1,10,14,18,23,28,32 and 36.



We present the first set of generated
frames in figures 4.1 and 4.2. Some of the
consecutive frames may look idle. This is
owing to the fact the motion is in three-
dimensional space and the corresponding
motions can only be visible from other viewing
directions. Although we have not depicted the
non-IFS versions owing to the limit of the
length of this paper, the overall control
mechanism of our algorithm can still be
observed from the figures.

5. CONCLUSIONS

Currently, repetitive motion like
dancing is generally created by simply
repeating a short motion sequence many times.
Most likely, the resulting motion sequence
looks boring and unnatural. We conjecture
that, this is because fractal characteristics (i.e.
irregular and self-similar) are not possessed by
the sequence. Based on the idea of motion
texture [Per95] and inspired by the recent
research of human walking behavior [Hau96],
we attempt to employ the notion of iterated
function systems in the image sequence
interpolation process. (Owing to the limitation
of this paper’s length, the details of the motion
computations are not shown here.) The result
is a sequence of motion, which appears more
nature to the viewer. Similar to [Per95], by
conveying just the texture of motion, we are
able to avoid computation intensive dynamics
and constraint solvers. We believe this
approach has the potential to create many
lifelike repetitive motion sequences, for
instance, swimming, walking, jogging and
many others. It is difficult to compare our
approach to others as, to the authors’
knowledge, we are the pioneers in this topic.
Finally, in the future, we plan to enhance our
algorithm by employing anti-aliasing methods,
which are tailor-made for fractal objects (e.g.
[Har91]) to remove aliasing effect in the
motion sequence generated by us.

REFERENCES

[Aus95] Auslander, J., A Fukunaga, H Partovi, J
Christensen, L Hsu, P Reiss and A Shuman, Further
Experience with  Controller-Based  Automatic
Motion Synthesis for Articulated Figures, ACM

Transactions on Graphics, Vol. 14, No. 4, 1995,
311-335.

[Bad91] Making Them Move: Mechanics, Control,
and Animation of Articulated Figures, San Mateo,
Calif: Morgan Kaufmann Publishers, edited by
Badler, N. J., B. A. Barsky and D. Zeltzer, 1991.
[Bad93] Badler, N. J., C. Philips, and B. L.
Webber, Simulating Humans: Computer Graphics,
Animation, and Control, Oxford Univ. Press, 1993.
[Bro88] Brotman, L. S. and A. N. Netravali,
Motion Interpolation by Optimal Control, Computer
Graphics, Vol. 22, No. 4, 1988, 309-315.

[Cha89] Chadwick, J. E., D. R. Haumann and R. E.
Parent, Layered Construction for Deformable
Animated Characters, Computer Graphics, Vol. 23,
No. 3, 1989, 243-252.

[Che97] Chen, Y Q and G Bi, 3-D IFS Fractals As
Real-Time Graphics Model, Computers &
Graphics, Vol. 21, No.3, 367-370, 1997.

[Dem85] Demko, S., L. Hodges and B. Naylor,
Construction of Fractal Objects with Iterated
Function Systems, Computer Graphics, Vol. 19,
No. 3, 1985, 271-278.

[Fol90] Foley, Van Dam, Feiner and Hughes,
Computer Graphics: Principles and Practice, 2™
edition, Addison Wesley, 1990.

[Gir85] Girard, M. and A. A. Maciejewski,
Computational Modeling for the Computer
Animation of Legged Figures, Computer Graphics,
Vol. 20, No. 3, 1985, 263-270.

[Grz95] Grzezcuzuk, R. and D. Terzopoulos,
Automated  Learning of  Muscle-Actuated
Locomotion  Through  Control  Abstraction,
Computer Graphics, 1995, 63-70.

[Har91] Hart, J. C. and T. A. DeFanti, Efficient
Antialiased Rendering of 3-D Linear Fractals,
Computer Graphics, Vol. 25, No. 4, 1991, 91-100.
[Hau96] Hausdorff, J M, et. al., Fractal Dynamics
of Human Gait: Stability of Long-range
Correlations in Stride Interval Fluctuations, Journal
of Applied Physiology, 80(5), 1996, 1448-1457.
[Ip94] Ip, HH S, HT F Wong and F Y Mong,
Fractal Coding of Chinese Scalable Callographic
Fonts, Computers & Graphics, Vol. 18, No. 3, 343-
351, 1994.

[Pan93] Panne, M. V. D. and E. Fiume, Sensor-
Actuator Networks, Computer Graphics, 1993, 335-
342.

[Per93] Peruggia, M., Discrete Iterated Function
Systems, A K Peters, 1993.

[Per95] Perlin, Ken, Real Time Responsive
Animation with Personality, IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, No.
1, March 1995, 5-15.

[Unu95] Unuma, M., K. Anjyo and R. Takeuchi,
Fourier Principles for Emotion-based Human Figure
Animation, Computer Graphics, 1995, 91-96.



