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ABSTRACT

This paper 2

presents a novel model for image segmentation under noise: EVRIST (Efficient

Variational Representation for Image Segmentation Technique). In order to segment general
images containing both quite smooth regions and textures, EVRIST, based on a hierarchical
representation obtained by the classical weak membrane, utilizes two channels: one relative to the
mean and another for the edges density. The results achieved on both manual compositions and
on real images, show the high robustness to the noise along with a low computational effort.
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1 INTRODUCTION

One of the more interesting topics in image pro-
cessing is represented by image segmentation be-
cause of its importance as preliminary phase in
a lot of practical applications in various fields.
Its task consists of splitting a given image in re-
gions, in agreement with the human perception
[Lovel92, Berge93].

That’s why there are a lot of proposed approaches
in literature , and, among them, an interesting
class is based on a variational formulation (see
for instance [Blake87]). Main features are multi-
scale detection and selective smoothing, i.e. elim-
ination of the noise with a preservation of the
discontinuities representing the information —
that is not possible employing classical linear ap-
proaches. Contemporaneously to the techniques
oriented to improve the performances on quite
smooth images, the interest of the scientific com-
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munity addressed to possible extensions of this
formulation to images containing textures (see for
instance [Lee92], [Koepf94] and Zhu96).

In [Tronc99] we proposed WCRM (Weak Conti-
nuity Representation based Model), which uti-
lizes the line process of a classical Weak Conti-
nuity (WC) process for building a measure able
to segment textures. In other words the edge
points obtained by a classical WC' process are
utilized for an estimate of the textures coarse-
ness. Thus, based on an earlier Rosenfeld’s idea
(see [Rosen75] and [Jain86]), where different tex-
tures are characterized by a different coarseness,
WCRM is able to segment images containing only
textures, with a high robustness to the noise
[Tronc99].

In this paper we want to generalize WCRM so
that more than one feature, all robust under
noise, will be used and make it able to discrim-
inate among different regions lacking of a signif-
icant coarseness — i.e. the classical (black and
white) chessboard. In particular, as regards Fig.
3 Top image, WCRM would be able to segment



the whole image bar the rightmost and topmost
blocks — uniformly black and white ones.

Thus, these two aspects constitute the topic of
this paper and, as regards the first one, we in-
troduced a vectorial model, where each chan-
nel represents a feature. In order to not exces-
sively complicate the model, two only channels
have been used: one for the edges density and
the other for the mean of the pixels’ grey lev-
els. The problem of discriminating among flat
regions inside an image, can be solved with a
suitable ”filter” which discriminates between flat
regions: it preserves the edges obtained by the
first WC process, while textured regions are pro-
cessed by the whole model. These features have
been taken into account for designing the evo-
lution of WCRM: EVRIST (Efficient Variational
Representation based Image Segmentation Tech-
nique), which achieves very good results under
noise from both an objective and a subjective
point of view.

The organization of the paper is as follows. Sec-
tion 2 presents a short review about the varia-
tional formulation based approaches as well as
WCRM. This allows the reader to better under-
stand Section 3 where EVRIST is presented. In
Section 4, EVRIST has been performed on both
manual compositions of Brodatz textures and real
images showing textures of buildings of historical
importance while some concluding remarks con-
stitutes the topic of Section 5.

2 VARIATIONAL MODELS FOR IM-
AGE SEGMENTATION

Image restoration so as image segmentation un-
der noise, considered as a solution of (see [Jain86]
p. 268 and [Tebou98]) f = gu + n (where f is
an image under noise, u the same image with-
out noise and g and n are two kinds of distortion,
g = Idi.e. Id is the identity operator so that we
have only additive noise) is an ill-posed problem
[Hadam?23].

Following the variational formulation, in order to
estimate the function u over a domain ) (open
and bounded set in R?), starting from the data f,
we have got to minimize the following functional:
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Figure 1: a) EVRIST’s block-scheme with
the involved thresholds, b) the same after
the link between n and n; (see text for de-
tails).

where |V (u)| represents the modulus of the gra-
dient of u and X is a weight factor balancing these
two components (for a taxonomy of the choices of
the function ¢ see [Tebou98)).

More in general, it can be shown [Tebou98,
Lazar96, Chamb95] that the choice of a regular-
izing function convex and linear at infinity guar-
antees a unique solution in a Bounded Variation
(BV) functions space. Nonetheless, if on one hand
using a non convex ¢ allows us to get a selective
smoothing, preserving the information contained
in the "good” discontinuities, on the other repre-
sents an ill-posed problem, with a minimum only
in the discrete version of the functional, where
stability and uniqueness are still an open prob-
lem.

In this paper, we focus on the functional of
Mumford-Shah [Mumfo89], using the minimiza-
tion proposed by Blake and Zissermann [Blake87].
Other functionals are also suitable (es: Geman
and Geman [Geman84]) for our model, but only
under the constraint of an edge-preserving regu-
larization.

The functional we consider (for f € R? it is
known as weak membrane) can be written as fol-
lows:

ﬂwK)=Aw—fV+

w1 Vu-Vu+ ws / do, (2)
Q/K K

where w; and ws are again weight factors pro-



viding a good compromise among these different
components.

Thus, in order to minimize the functional, as non
convex, GNC (Graduated Non Convex) algorithm
can be performed: it consists in a gradual mod-
ification (more and more non convex) of a start-
ing and convex functional. Though the procedure
guarantees a local minimum, the results are gen-
erally good, employing a low computational time.

On a such formulation is based WCRM, whose
description is contained indetail within the next
section.

2.1 WCRM’S REVIEW

In this section we want to give a short review
about WCRM in order to explain some (theoret-
ical and implementation) details so that the fol-
lowing will be more clear for the reader.

(a) (b)

TL
(d)

(c)

Figure 2: A Brodatz textures composition:
a) Original, b) W(C’s output, ¢) Split phase
output (edges density case), d) final seg-
mentation.

In order to better explain the effect of each phase
of WCRM we consider the textures composition
in Fig. 2.a. This latter is composed by four
Brodatz textures. On this image we perform the
first WC process. In practice, for an easy repro-
ducibility we utilized the algorithm contained in
[Blake87] pg. 157. The employed thresholds are
w; and wsy corresponding to A and hyg in [Blake87],
i.e. scale factor and noise sensitivity. After this
process, we have as output a binary image con-
taining the edges computed (shown in Fig. 1.b):

K set in (2). We have the value 1 in correspon-
dence of edge points and zero elsewhere. On this
image we can compute the classical Split phase.
As criterion for discriminating among different re-
gions (different textures), we utilized the edges
density. In particular, we compute 1’s number
per unit area. This phase utilizes a threshold
that we call ;. It takes into account the dif-
ference of edges density between the father and
his sons, using a quadtree partitioning. At the
end of this phase we obtain uniform areas where
for each pixel of a given uniform square block we
have the value of the edge density of the whole
uniform block. The results is shown in Fig. 1.c,
where the different gray color of each one of the
four blocks belonging to the composition is pro-
portional to the edges density of the considered
block. At this point we perform the last phase,
i.e. the Merge phase. Here, instead of performing
a classical Merge we utilize again a WC process
so that we have a Modified Split and Merge. The
task of this phase is to find the edges of Fig. 1.c.
The thresholds w; and ws have the same mean-
ing of the first WC process (the algorithm is the
same). The final output is shown in Fig. 1.d.

WCRM corresponds to the only first channel (rel-
ative to the edges density) in Fig. 1.a), without
the Density Computing phase and the OR final
phase that will be explained later.

The achieved results have been very good, espe-
cially for segmentations under noise so that a gen-
eralization of this model, EVRIST, has been de-
veloped and will be presented in the next section.

3 ABOUT EVRIST

After a short review about some variational
approaches for image segmentation along with
WCRM, in this section we will show EVRIST
(whose block scheme is shown in Fig. 1). It has
been designed:

e to build a WCRM generalization able to
segment generic images, i.e. containing tex-
tures and not;

o utilizing more features so that an improved
segmentation under noise is possible —
EVRIST is a vectorial version of WCRM.

More in detail, for a generic input image f on a
domain Q € R?, the first step is the minimization
of a WC process

B K) = [ (- P+

Q



wl/ Vu~Vu+w2/ do (3)
Q/K K

providing the set K and the recovered image u,
on which we can define a generalized (in WCRM
formulation this function was binary, i.e. u(z,y)
was replaced by 1) colored characteristic function
X:Q— R as:

& _ U/(ZU,y) lf a:,y S Kw17w2
X(@,y) = { 0 otherwise. (4)

So, the image can be represented by their hierar-
chically most important points, i.e. the disconti-
nuities, at a given scale level.

Using the symbol P(y) for indicating a vectorial
statistic — each component represents a statistic
— defined on the matrix produced by ¥, we can
define the Split phase as follows:

S(P(x(z,9)),t) =8, (5)

where t is an array containing the used thresh-
olds, while g represents the output images.

Thus, if we have N channels:

E(v, M) = /Q (v—g) +

wil/ Vv-Vv—i—wig/ do

1<i<N. (6)

On the three images coming from each channel,
an or operation is performed in order to obtain
the final segmentation.

Similarly to [Tronc99], for each channel, the deci-
mation of the image g, (" Under Sampling” in Fig.
1.b.) whenever possible, allows a saving of com-
putational effort in the latter WC process. Obvi-
ously, the output of the second WC process will
have to be over sampled, in order to obtain the
same size of the input image.

The problem of discriminating among ”flat” re-
gions characterized by different gray scale levels
can be solved introducing a filter before the in-
put of the channels as shown in Fig. 1.a: Density
Computing. Tts task consists, utilizing the first
WC process output edges density, in distinguish-
ing among textures and flat regions. A generic
texture will have a lot of edges, that is a consis-
tent coarseness, while, as regards flat regions, the
edges density will be little or absent.

The implementation of EV RIST is very simple
as it results in a vectorial version of WCRM

where besides the edges density the mean of the
pixels’ grey levels has been employed. In addi-
tion, we have the third channel which is relative
to those regions (non textured) that go directly
to the or operator.

3.1 THE THRESHOLDS PROBLEM

EVRIST utilizes two only channels so that it
involves Np,r = 9 parameters to be tuned.
Nonetheless, as we will see in the following, only
four thresholds will be free. In Fig. 1.a) have been
written the thresholds employed for each phase.

w; and ws of the first W, since they represent
respectively the scale level at which we want to
study the input image and the threshold oriented
to discard the noise (see [Blake87] p. 52), have to
be free.

While n; relative to the Split processes have to
be free, representing a measure of uniformity of
the textures, 7 is tied to 7 by the following con-
straint: n = 1, X 1, where 1 is the highest den-
sity. In other words, a given region is considered
flat if its density is not greater than 5, that is,
homogeneous with regions with density = 0 and
then perfectly flat. It is evident that such a con-
straint leads the edges density split phase to not
detect flat regions, in the sense that, ;’s working
contains 7. Hence the new model becomes as in
Fig. 1.b.

As regards the other two WC processes, all their
parameters can be fixed. In fact, w;; and wo
(the first index represents the number of the
channel) can be set at 1 whenever the decima-
tion/interpolation is performed [Tronc99], and
also w1 and wsys can be set a priori as follows.
Let us consider only one channel, for instance the
edges density one, for the sake of simplicity. Gen-
erally, the output we obtain from the Split phase
is an image containing uniform regions, each one
containing pixels’ set at the value of its density
— see the foregoing Section. So wsyo can be fixed
by the following constraint: wss < 12 X mindens
where mindens represents the value of the low-
ermost density value computed inside the image.
Summing up, after these considerations, the free
thresholds are wy (scale level), wy (elimination
of noise), 1 (uniformity relative to edges density
predicate) and 72 (uniformity relative to mean
predicate).

4 SOME EXPERIMENTAL RESULTS

EVRIST has shown very good performances on



various images. For the sake of brevity, we
present here two only examples along with some
comparisons. These have been evaluated as good
for understanding the potentialities of the pro-
posed approach.

Figure 3: The textured chessboard where
the black and white blocks are set at 10
and 240 (Top); EV RIST segmentation (see
text) at 90% (middle); EVRIST segmen-
tation at 91% (bottom).

The first image we deal with is the chessboard
shown in Fig. 3 (Top). This case is very inter-
esting, since it allows us, by means of the Har-
alick’s metrics [Haral84], to get objective mea-
sures under noise on a relatively complicate im-
age containing Brodatz textures [Broda66] along
with black and white blocks.

EVRIST achieves a correct segmentation both on
the original chessboard (w; = 2,ws = 25,1 =
40,7 = 22) and on the same image with additive
gaussian noise (zero mean) up to 90% (SNR=6.98
db) with wy = 2,ws = 37,1 = 14,10 = 22, as

Figure 4: An example of segmentation of a
pudding stone with its degradation: Top)
original, bottom) a possible segmentation

shown in Fig 3 (Middle).

In this latter, noisy case, we can see that both
channels are fundamental for getting good per-
formance. In fact, the solid line shows the edges
obtained using the mean channel while the dot-
ted line is relative to the edge density one. The
combination of both leads to a correct result.
Moreover, it is worth pointing out that the fil-
ter discriminating between flat regions and tex-
tured ones is required only when the noise am-
plitude is low, otherwise the two channels above
are enough. In fact, when the noise amplitude
is high, some edges due to the noise are not dis-
carded producing an artificial coarseness. Since
we have a bias due to the gray level of the un-
derlying information (without noise) we are still
able to perform the segmentation. In other words,
in FVRIST there isn’t the hypotesis that high
amplitudes constitute the information, while low
gradients are the noise.

From 91% onwards, EVRIST becomes unstable,
in the sense that is able to correctly segment the
image only for some percentage of noise. In par-
ticular, at 91% of noise, the Haralick’s values are
P(DTE|TE) = .83 and P(DTE|DE) = 1, as
shown in Fig. 3 (Bottom): some contours have
been missing, but no spurious edge is detected,
as WCRM did [Tronc99].



(c)

Figure 5: Black and white chessboard: a)
Original, b) with 60% of gaussian noise, c)
EV RIST segmentation.

Before presenting the second example, there are
some considerations to be made. First, it is trivial
to prove that FVRIST is invariant to any bias of
the adding noise so that the hypothesis of zero
mean is not necessary. Second, though there are
four thresholds to be tuned, their behavior is very
simple. The scale level w; is fixed, wy obviously
grows as the noise increases, while both 7, and 72
have a decreasing behavior, since the elimination
of the noise edges leads to eliminate also the good
edges [Tronc99].

The second example is a "natural” image showing
a pudding stone medium grain with an evident
degradation: the alveolization (Fig. 4, Top) along
with its segmentation (Fig. 4, Bottom). The re-
sult shows a possible EVRIST s segmentation on
a given image without noise.

Summing up, the combination of the weak rep-

(c)

Figure 6: The textures composition pro-
posed in [Liu00]: a) Original, b) their seg-
mentation, c) our segmentation at 99% of
noise.

resentation along with the couple of the two WC
processes seems to constitute a very promising ap-
proach for image segmentation. Moreover, its ro-
bustness to the noise along with a reasonably low
computational effort (five seconds are required
to segment the chessboard at 90% of noise on
a workstation Octane/SI R10000 175 MHz/1Mb
cache) leads to consider EVRIST as a good candi-
date for an extension of classical weak membrane
approach to the textures.

Before concluding this section, it is possible to
compute the upper-bound of EVRIST and to
do some comparisons. As regards ”flat regions”
(i.e. non textured ones) we built a chessboard
composed by only four blocks (black=120 and
white=130). On this image, it is possible to ob-
tain a perfect segmentation up to 60% of noise, as
in Fig. 5. As regards textures, we considered the
composition in Fig. 6 (Top), presented in [Liu00].



In the same Figure, we find the segmentation pro-
posed in [Liu00] without noise(Medium), and our
result (Bottom) at 99% of noise. These results are
very promising and lead us to consider EVRIST
as a candidate for the Weak Membrane extension,
able to segment also textures.

5 CONCLUDING REMARKS

In this paper, we have presented EVRIST, a
model able to segment images using mean of the
pixels’ grey levels and edges density as features
of a suitable representation of the input image.
It represents an evolution of WCRM which rep-
resented an efficacious technique for segmenting
images containing only textures under noise. As
WCRM did, EVRIST presents a high robust-
ness to the noise, a low computational time along
with an easy implementation. In conclusion, we
outline that the weak continuity representation
seems to open a promising way to be better in-
vestigated. Nonetheless, the future research in-
volves a more efficacious criterion for looking for
the edges. In other words, the modified Split and
Merge, for segmentation under noise, is not ef-
ficacious for complicate shapes. This is due to
the fact that, because of the quadtree partition,
in corrispondence of some shapes the Split phase
produces very little regions, where optimal detec-
tion under noise is not possible (see [Zhu96] for
similar considerations using the uncertainty prin-
ciple). So, the future work will consist of produc-
ing a more efficacious model for this aim preserv-
ing the same hierarchical representation.
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