
Applied and Computational Mechanics 2 (2008) 227–234

Input Shaping Control with Reentry Commands

of Prescribed Duration
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Abstract

Control of flexible mechanical structures often deals with the problem of unwanted vibration. The input shaping is a

feedforward method based on modification of the input signal so that the output performs the demanded behaviour.

The presented approach is based on a finite-time Laplace transform. It leads to no-vibration control signal without

any limitations on its time duration because it is not strictly connected to the system resonant frequency. This idea

used for synthesis of control input is extended to design of dynamical shaper with reentry property that transform

an arbitrary input signal to the signal that cause no vibration. All these theoretical tasks are supported by the results

of simulation experiments.
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1. Introduction

Precise positioning is very common task form many mechatronical systems. But flexible me-

chanical systems have to deal with the problem of residual vibration. This unwanted perfor-

mance can be more or less improved using materials of a very high stiffness in combination

with powerful motors. But despite proper optimization of these design properties machines are

still limited by their own dynamics and control actions cause vibration of the overall system.

The flexible structures can be basically controlled by two main approaches — feedback or

feedforward. The method described in this paper — input shaping control belongs to the latter

group. It is based on modification of the input signal in such way that it leads to zero residual

vibration. This principle is shown in fig. 1 and has been effectively used in many applications

such as robot manipulator [4], telescopic handler [6], antisway crane [8] etc.

We can find more than one approach to vibration suppression based on modification of

the input signal. Singer and Seering [7] proposed a pre-shaping technique which consists of

convolving a control input with a sequence of impulses. The duration of this sequence is de-

termined by the system resonant frequencies and leads to time delays. Especially in the case

of more complex systems this could be unacceptable. In 1993 Miu [5] published a theory that

explains many other methods (including above mentioned convolution) using formulation of the

point-to-point control problem in Laplace s-domain. The basic idea of almost all input shap-

ing theories is that the system resonant frequency must not be excited by control signal. The

strength of Miu’s theory is that even resonant frequencies can be excited. The only condition
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is that all the energy trapped in the elastic elements must be completely relieved at the end of

rigid body travel.
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Fig. 1. Input shaping for vibration suppression

This paper is based on Miu’s approach but instead of one single point-to-point maneuver it

extends this idea to the development of the shaper that modifies any arbitrary input signal to the

signal that causes no vibration. Similarly to Singer/Seeing method it leads to the time delay in

the input signal but in this case we can choose this delay as a free parameter of the shaper. It is

no longer connected to the system resonant frequencies.

2. Description of the theory

The behaviour of linear under-actuated and time-invariant dynamical system can be charac-

terised by the matrix equation

ẏ(t) = Ay(t) + Bu(t), (1)

where A and B are constant system matrixes, vector y[m×1] denotes system states and u[n×1]
is control input, where at least m/2 > n, i.e. the system includes at least m/2 degrees of

freedom (DOF) the number of which is larger than the number n of actuators.

Dealing with a point-to-point control problem we want to find input u(t) that transforms the

initial state y(t1) to the final state y(t2). Than the solution of (1) is

y(t2) = eA(t2−t1)y(t1) +

∫ t2

t1

eA(t2−τ)Bu(τ) dτ. (2)

Assuming full controllability, eq. (2) can be transformed by a unique transformation to

the Jordan canonical form and with some rearrangement it can be re-written in the following

form [3].

e−Jt2z(t2) − e−Jt1z(t1) =

∫ t2

t1

e−JτCu(τ) dτ, (3)

where

eJt = diag {eJit}, (4)
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P. Beneš et al. / Applied and Computational Mechanics 2 (2008) 227–234

eJit = epit

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 0
t 1 · · · 0 0
...

...
. . .

...
...

tri−1

(ri − 1)!

tri−2

(ri − 2)!
· · · 1 0

tri

ri!

tri−1

(ri − 1)!
· · · t 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

pi is the pole of the i-th Jordan block Ji with multiplicity of ri + 1.

The right hand side of (3) can be rewritten as a sum of contributions from individual inputs

ul

e−Jt2z(t2) − e−Jt1z(t1) =

n∑

l=1

∫ t2

t1

e−Jτul(τ) dτ · cl, (6)

where cl is a column of the matrix C corresponding to ul.

The expressions on the right-hand side of (6) resembles the finite time Laplace transform of

the control input as defined in [5]

U(s) =

∫ t2

t1

e−sτu(τ), dτ. (7)

Therefore we can connect Laplace transform of the control input with the states of the

system at the beginning and at the end of the point-to-point maneuver

n∑

l=1

Ul(s)|s=J · cl = e−Jt2z(t2) − e−Jt1z(t1). (8)

The algebraic equation (8) is equivalent with differential equation (1).

3. Zero residual vibration

The formulation of necessary conditions for zero residual vibration will be shown using simple

two-mass spring damper model in fig 2. It has two DOFs x0, x1 and one input f .

Fig. 2. Two-mass spring damper system

The system is described by matrix differential equation

Mẍ(t) + Bẋ(t) + Kx(t) = F(t), (9)

where

x =

[
x0

x1

]

, M =

[
m0 0
0 m1

]

, B =

[
b −b
−b b

]

,

K =

[
k −k
−k k

]

, F =

[
f
0

]

.

(10)
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The point-to-point maneuver without residual vibrations is prescribed using the following

conditions for the final time t2.

x(t)|t=t2 =

[
X0

X0

]

, ẋ(t)|t=t2 =

[
0
0

]

(11)

Using modal coordinates and transformation to the Jordan canonical form equation (9) can

be rewritten as ⎡

⎢
⎢
⎣

ż1

ż2

ż3

ż4

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

ż

=

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
0 0 p 0
0 0 0 p∗

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

J

⎡

⎢
⎢
⎣

z1

z2

z3

z4

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

z

+

⎡

⎢
⎢
⎣

1
0
1
1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

c

u, (12)

where p and p∗ are complex conjugated poles of the flexible mode. The system has two poles at

zero as well. Now it is described as by (1).

Using above mentioned theory and assuming that t1 = 0, t2 = T and zero initial conditions

it can be derived [2, 5] that necessary conditions for zero residual vibration are

U(s)|s=0 = 0,
dU(s)

ds
|s=0 = X0, U(s)|s=p. = 0, U(s)|s=p∗ = 0. (13)

A physical interpretation of these conditions is that for point-to-point control without resid-

ual vibrations the time-bounded input signal has to contain zero resultant energy at the poles of

the flexible modes. If the system is un-damped and so has poles along the imaginary axis this

condition means that the Fourier transform of the input signal has zero amplitude at the system

resonant frequency.

4. Control input synthesis

There is an infinite number of signals u(t) that satisfy the condition (13). Now we can use so

called s-domain synthesis technique [5] to find a unique solution. Assuming that the control

input can be written as a linear combination of functions from linear independent basis it can

be written

u(t) =
2n+2∑

i=1

λiφi(t), (14)

where φi(t) is the basis function, λi is weighting coefficient, n is number of flexible modes.

Then according to conditions (13)

Sλ = [0, X0, 0, . . . , 0]T , S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1(0) · · · Φ2n+2(0)
dΦ1(0)

ds
· · ·

dΦ2n+2(0)

ds
Φ1(p1) · · · Φ2n+2(p1)

...
. . .

...

Φ1(p
∗

n) · · · Φ2n+2(p
∗

n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

where Φi(s) is a finite time Laplace transform of φi(t) and λ = [λ1, λ2, . . . , λ2n+2]
T

.

From Eq. (15) definition for λ can be derived

λ = S−1 [0, X0, 0, . . . , 0]T . (16)
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The crucial point of this method is the selection of basis functions. In [1] examples using

polynomials can be found. In order to achieve simple reentry model we can choose control

input in the following form of damped sinusoids

u(t) = λ1e
at sin

2π

T
t + λ2e

at sin
4π

T
t + λ3e

at cos
2π

T
t + λ4e

at cos
4π

T
t, (17)

where a < 0 and T are parameters of the shaper. Speaking about single point-to-point maneu-

ver, parameter T represents its time duration. In the case of shaper it is the resulting time delay

of the input signal.

5. Shaper with reentry property

Using knowledge from previous chapters it is possible to design single control input in the form

of eq. (17) that ensures translation X0 of masses m0, m1 in the chosen time period T without

residual vibration. Coefficients λi are from eq. (16). The last parameter a can be set arbitrary

in order to achieve better properties of control input.

Described approach is suitable for the design of one single point-to-point maneuver with

predefined travel length and time duration. But this concept is not usable for continuous op-

erating of the system where the new input to the system starts before the previous one ends,

e.g. manual operating of the crane. In such case a system with reentry property is needed.

This means that the system accepts new commands even during performing of previously set

commands, i.e. the shaper is re-entered before it has ended. And it has to satisfy zero vibration

condition as well. The continuous input to the shaper is the desired final position X0.

To design the shaper with reentry property the control input (17) cannot be directly con-

structed as time function but the solution is to realize the time function as dynamic blocks. If

the function φi(t) is created by the output of a dynamical block then this output is created to any

input even a continuous function exactly as the solution of differential equation. Thus the solu-

tion is that the basis functions from (14) are represented as dynamical blocks, for example the

sinus pulse in fig. 3. If a Dirac pulse is an input to the scheme than the output is one sinus wave

with the period T . Damped sinusoids from eq. (17) are a bit more complex. Final shaper is a

summa of all dynamically represented basis functions multiplied by corresponding coefficients

λi from eq. (16) giving the control input (17) from the basis functions φi(t).

Fig. 3. Dynamical block — sinus
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6. Simulation experiments

6.1. Experiments with time period of the shaper

Simulation experiments were performed using two-mass model from chapter 3. . Natural fre-

quency of the system was set to 1 Hz, travel distance X0 is 1 m. Input signal was in the form of

eq. (17).

In the first set of experiments the time duration of the input signal (the period of sinusoids)

was set to 1 second, so it exactly matches system resonant frequency. In the first experiment the

damping parameter of sinusoids a = −5 and in the second one it was set to −20. The results

are in fig. 4.
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Fig. 4. Shaper period equals system resonant period

Both cases the final position was reached in predefined time of 1 second without residual

vibration. However during maneuver with slightly damped input the final position was “over-

shoot”. In the second experiment the overshoot vanished and stabilization was faster. On the

other hand realization of this input needs more power from actuator but that could be improved

using additional conditions for input signal.

The second experiment was performed with the time period set up to 0.5 second that is in

accordance with one half of system resonant period, fig. 5.
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Fig. 5. Shaper period equals one half of system resonant period
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Again there is an overshoot for smaller damping parameter. But the most important is the

fact that the period of the shaper was shortened bellow the value of system resonant frequency

and no vibration appears. It illustrates that shaper’s period could be arbitrary shortened without

lost of no-vibration property.

The third experiment was performed with the time period set up to 2 seconds. Results are

in fig. 6.
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6.2. Experiment with reentry property

The last experiment shows the modification of arbitrary input signal (here represented as a ramp

signal) by the shaper, fig. 7. In fig. 8 there is a two-mass system response to this input. The

shaper function was used in the following form

u(t) = λ1e
at sin

2π

T
t + λ2e

at sin
6π

T
t + λ3e

at sin
8π

T
t + λ4e

at sin
4π

T
t (18)

that ensures zero initial and final value in prescribed period T by itself without any further

restriction. Time period was set to 1 second.
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In fig. 7 both original and shaped signal start at the time 0.5 second. But when the ramp

signal ends at the time 1.5 second shaper has to release energy trapped in flexible modes. So it

performs additional sequence with prescribed duration 1 second (period of the shaper).
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7. Conclusion

The description of the input shaper design was made. The basic principle is based on formula-

tion of point-to-point control problem in Laplace domain [5]. Its advantage over other theories

is in unrestricted length of the signal that is not connected to system resonant frequency. This

approach was further extended to creation of the dynamical shaper with reentry property. This

shaper is able to modify any input signal to signal that cause no residual vibration in prescribed

time.

The results were proved by simulation experiments. Further development of the method will

be focused on improvement of shaped control properties. One possible way is to put additional

conditions to s-domain synthesis technique [2, 5]. The other way is searching for advanced

basis functions. The criteria for these improvements could be e.g. suppression of position

“overshoots” or the energy saving.
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