
Using CORBA Middleware to Support the Development of Distributed
Virtual Environment Applications

S. Wilson, H. Sayers, M. D. J. McNeill

Virtual Environment Applications Group
School of Computing and Mathematical Sciences

Faculty of Informatics, Magee College, University of Ulster
Northland Road, Derry, BT48 7JL

Northern Ireland
<s.wilson,hm.sayers, mdj.mcneill>@ulst.ac.uk

ABSTRACT
In this paper we report on using Common Object Request Broker Architecture (CORBA) middleware as a means
of supporting the rapid development of Distributed Virtual Environment (DVE) applications. We show how
CORBA services can be exploited to provide many of the typical functional requirements that developers of
DVE applications require, thus reducing the programming effort necessary to develop DVE applications rapidly.
We also present the design, implementation and experimental results of NOMAD, our CORBA-based
framework for developing DVE applications.

Keywords: Virtual Reality, Distributed Virtual Environments, CORBA, Real-time, Component-Based Design,
Computer Graphics.

1. Introduction

Jaron Lanier originally coined the term Virtual
Reality in the 1980s to describe a computer graphics
system using immersive technology such as head-
mounted displays and data gloves. The term Virtual
Environment (VE) is used to describe the three-
dimensional world in which the user is immersed
when using a VR system. Although there is no
standard definition for a virtual environment, VEs
do share a number of characteristics including:

� The user is immersed in an alternative 3D
graphical world that simulates a real or
imaginary world.

� Users can navigate through the environment,
usually assisted by a user embodiment or avatar.

� Users can examine, interact with and
manipulate virtual environment objects.

Distributed Virtual Environments (DVEs) provide
users with the illusion that they inhabit a shared
virtual world where they may collaborate,
communicate and interact with other participants as
well as the environment. When the avatar of a
remote participant moves though part of the DVE,
the other participants will see that avatar move on
their screens. To successfully perform this function
several additional functional requirements not
provided by stand-alone VEs must be met. These
additional functional requirements include [1]:

� Support for multiple participants
Multiple participants should not only be capable
of inhabiting the environment simultaneously
but also be able to communicate and interact
with each other. Thus allowing them to share
information and collaborate on common tasks.

� Data distribution and management
To achieve acceptable frame rates the rendering
processes of the remote participants must have
local access to the geometry model, so this data
must be replicated and/or distributed to clients
[1]. As a result, changes in one copy of the
shared virtual environment (e.g. a user moves
their avatar) must be applied to every other copy
of the shared virtual environment. The
distribution, maintenance and synchronisation
of the environment state represents one of the
most demanding technical challenges associated
with DVE application development [11].

� Event notification
Mechanisms must be provided to notify clients
of events such as object and environment state
changes in a timely manner. Failure to do so
may result in several unwanted phenomena such
as network lag or high degrees of inconsistency
between users. High levels of lag and
inconsistency can ruin the illusion of an
interactive shared virtual space.

� Network communication
The efficient use of communication protocols is
necessary to facilitate collaboration between
multiple participants and distribute application
components, environment data and subsequent
updates to the environment model.

� Scalability
The DVE should scale well and allow multiple
participants to join the environment without
seriously degrading the quality of service of the
other connected participants.

Traditionally developers of distributed virtual
environment (DVE) toolkits and applications have
produced bespoke solutions to address the associated
functional requirements and research challenges [3].
This has largely been due to the lack of supporting
high level software libraries and APIs that provide
the functionality required for developing DVE
applications. Developing such a toolkit or
framework is not straightforward, as one has to
provide a diverse variety of functionality to satisfy
functional requirements such as data distribution and
management, network architecture and
communication protocol configuration, remote
object locking and synchronisation. Although these
bespoke solutions offer appropriate solutions, they
often still require considerable programming and
design effort on the behalf of the developer. Such
effort early in the development process often
restricts changes in the design at later stages [1], and
means that the development time is unnecessarily
long.

Our approach focuses on using the
Adaptive Communication Environment (ACE)
framework [24] and its CORBA ORB TAO [9] to
address many of the functional requirements of DVE
application development. In section two of this
paper we review related work in this field. In section
three we provide a brief overview of the CORBA
architecture and how these may be exploited in DVE
application development. In section four we present
the design of NOMAD, our CORBA-based software
framework for the development of DVE
applications. Section five contains experimental
results obtained from a multi-user DVE simulation
implemented with the NOMAD framework. Section
six presents an overview of alternative approaches
and future extensions to the NOMAD framework.
We finish the paper by presenting our conclusions in
section seven.

2. Related Work

With the recent exception of [20,3], VE toolkits such
as Maverik [13], DIVE [14], MASSIVE [15] and
CAVERN [16] have avoided exploiting the CORBA
architecture in the development of DVE
applications. Early versions of the CORBA

specification were unsuitable for supporting the
distribution and management of data within
distributed interactive graphical applications for a
number of reasons. Firstly, to achieve acceptable
frame rates the data used in the client-side rendering
process requires the data to be local. Therefore pure
client server approaches, where all the environment
data is stored centrally at one site, are unsuitable, as
some amount of the data must be replicated.
Secondly, until recently CORBA only provided
synchronous remote method invocations which are
unsuitable for graphical applications where rapidly
changing shared data must be asynchronously
updated. Thirdly, the early versions of the CORBA
specifications lacked the necessary levels of support
for functionality such as load balancing, fault
tolerance, real-time characteristics and quality of
service specifications making CORBA unsuitable
for deployment within time critical applications.
However due to the adoption of asynchronous
messaging [6] and research into real-time CORBA
[7,8,9,10,21], CORBA now represents a technology
mature enough to provide much of the functionality
required in DVE development.

Typically, most DVE applications and
DVE development toolkits use distributed callbacks
extensively as a method of event notification
[1,13,14,15,16]. Distributed callbacks are often not
straightforward to program and have some inherent
problems regarding object reference equality,
persistence, callback failure and notification
scalability [17]. CORBA provides two object
services that support event notification, the event
service [4] and the notification service [18].

3. The Common Object Request Broker
Architecture

In 1989 the Object Management Group (OMG) was
formed to “establish industry guidelines and
detailed object management specifications to
provide a common framework for application
development” [2]. To date the OMG have produced
a number of specifications most notable of which is
the Object Management Architecture (OMA) and its
core the Common Object Request Broker
Architecture (CORBA). The CORBA specification
describes how applications and their objects can be
written in different programming languages yet still
interoperate across heterogeneous operating systems
and networks. The key elements of the architecture
are:

� The Object Request Broker (ORB)
The ORB allows application objects to
communicate with other application objects and
elements of the OMG reference model in a
network and platform independent manner. The
primary responsibility of the ORB is to resolve
requests for object references, enabling

application objects to interoperate. Once a client
has obtained a reference to an application object
it may invoke methods of that object. The ORB
is also responsible for translating method input
parameters into a format that may be
transmitted across the network to the remote
object. The ORB also unmarshals parameters
once they are transmitted across the network
into a system-independent format the receiving
object can use.

� Object Services, Common Facilities and
Domain Interfaces
Object services provide a core set of commonly
used interfaces for object management (object
creation and location). Examples of object
services include the event, naming, time,
trading, property and life cycle services [4].
Common Facilities are services that many
applications may share, but which are not as
fundamental as the Object Services. An
example is the mobile agent facility [5], which
specifies the interaction between various
manufactures agent systems. Domain Interfaces
provide standard interfaces for specific
application domains. Such interfaces exist for
application domains such as finance,
manufacturing, telecommunications and health
care.

� Application Objects
These objects are created by application
developers to perform specific tasks for users.
Most distributed systems consist of a large
number of application objects that typically
utilise functionality provided by the other
components of the OMG reference model such
as the naming service of the object services
component.

The OMG Reference Model Architecture
Figure 1

One of the cornerstones of CORBA is the Interface
Definition Language (IDL). As the name suggests
IDL is a definition language, not a programming
language. IDL is used within CORBA development
to define the public interface of an object in a
language-independent manner. With IDL language
mappings for a number of languages including C,

C++, Java, COBOL and Smalltalk it is possible for
application objects implemented in different
languages to interoperate. IDL is one of the key
elements within CORBA that supports the
development and integration of heterogeneous
systems.

The CORBA architecture has several
advantageous features that can greatly simplify the
development of DVE applications. The advantages
include:

� Location Transparency
To access the services of a remote object a DVE
application developer has only to obtain a
reference to that object. They need not concern
themselves about the location of the object.

� Component-based Development Approach
As CORBA supports language mappings for
popular object oriented programming languages
such as Java and C++, DVE developers can
create distributable object and components that
can be reusable and portable.

� Support for Commonly used Services
CORBA provides an array of services that DVE
application developers can use distribute and
managing data in a DVE. Common services
such as the naming and trading services [4,19]
provide functionality to support object location,
whereas the event and notification services
allow update messages to be sent to clients in an
efficient and timely manner.

� Interoperability
CORBA allows a DVE application developer to
seamlessly develop DVE applications consisting
of objects written in different languages that can
interoperate across heterogeneous networks,
platforms and operating systems.

� High level of abstraction
CORBA provides it services at a high enough
level to allow application developers to ignore
the underlying complexities of the architecture,
thus speeding up the development process.

4. The NOMAD Framework

We have developed a framework or toolkit based on
CORBA to accelerate the development of distributed
virtual environment applications. A framework is a
reusable, “semi-complete'' application that can be
specialised to produce custom applications [22].
NOMAD consists of a group of components and
application objects that together form an object
oriented application framework to support DVE
application development. NOMAD exploits CORBA
to provide much of the core functionality required
by DVE application developers. Several distinct

specialised components reside ‘above’ the layer of
core NOMAD application objects. These
components provide specialised high level
functionality such as environment object
management, area of interest management and event
notification. They are designed in such a manner
that they can either be dynamically configured to
address specific development needs or replaced
entirely with custom components developed by the
user.

The Nomad component Architecture
Figure 2

4.1. Server Hierarchy

One of the key concepts employed by the NOMAD
framework is the concept of locales. To provide
scalability our approach divides the environment
data into more manageable segments (locales), an
approach originated by SPLINE [12]. Each locale
represents a geographical region of the virtual
environment. We implement this concept by
utilising a range of CORBA services to develop a
variety of distributed objects to coordinate the
management of the CVE application. We call these
components the environment server, session
managers, area managers and locale managers.

Any NOMAD based DVE will typically consist
of several server objects, each of which perform a
specific set of tasks. At the root of any NOMAD
application is the environment manager. The
environment manager is a CORBA server object that
manages the DVE at a high level, acting as the first
point of contact for any client (user) that wishes to
join the DVE. Client processes wishing to join the
DVE will register themselves with the environment
manager and issue a request to join the DVE. Based
on the starting location of the client processes avatar,
the environment server will pass the client request to

join the DVE onto the next server object in the
hierarchy, the session manager.

We envisage NOMAD supporting DVE
applications with many users at locations
geographically distributed over a wide area. Each
region of the area has a session manager, a process
which maintains a complete copy of the environment
model. This approach allows a NOMAD DVE and
its environment model to be extended and enriched
simply by launching a new session manager at a
remote site. The session manager coordinates and
manages the VE model by delegating
responsibilities to other CORBA sever objects such
as the area manager and the locale manager. The
main responsibilities of the session manager include:

� Sub-dividing the environment model into
distinct regions.

� Creating area managers to coordinate the
distinct regions of the environment model.

� Initialising clients who wish to join the session
managers region of the DVE.

Depending on a number of factors including the size
and complexity of the environment model and the
maximum number of clients the session manager has
been configured to support, one or more area
managers are created by the session manager. An
area manager is responsible for a number of
activities including:

� Creating and initialising locale managers and
assigning them elements of a particular region
of the virtual environment to manage.

� Overseeing load balancing at a lower level by
spawning new locale managers when connected
clients begin to suffer degradation in
performance due to the locale managers
becoming overburdened by client requests and
update messages.

� Dynamically resizing locales to maintain
optimum levels of performance. If locales
represent very small regions of the environment
(such as a corridor or a single room), moving
around this small area may cause degradation in
interactivity from continually registering with
new locale managers and downloading new
portions of the environment model. In this case
the locale manager would be assigned a larger
portion of the environment. In this case a locale
manager can be assigned a larger portion of the
environment, thereby reducing these events.

� Distributing data such as interparticipant
communication data to other area and locale
mangers for eventual distribution to client
processes.

CORBA server objects known as locale managers
synchronise all client activity within the portion of
the environment model represented by the locale.

Synchronisation of the portion of the environment
model is achieved by maintaining a list of changes
made to the persistent copy of the environment
model since the initialisation of the environment.
This persistent copy of the environment model
represents a complete copy environment model
before any changes in environment state occurred.
Changes in the environment state are distributed to
clients registered with the locale manager via the
CORBA event service. Locale Managers are
responsible for a number of duties including:

� Maintaining a dynamic copy of the environment
state, which contains changes that have been
made to the persistent environment information
since the environment was initialised.

� Ensuring local client copies of the environment
model are synchronised by sending environment
state change data to a client who has requested
the information.

� Registering new client processes when they join
the environment and ensuring they obtain the
entire necessary environment model object
descriptions and updates.

� Managing the routing of interparticipant
audio/video communication streams to clients
within the locale and/or other locales.

Figure 3 shows how the server hierarchy may evolve
when three session managers connect to a NOMAD
environment manager. Each of the session managers
subdivides its environment model into distinct
regions and creates area manager objects to
coordinate the management of these regions of the
environment model. In turn each of these area
managers further subdivides their region of the
environment model into smaller locales, each of
which is managed by a locale manager. Once the
locale managers have been created and initialised,
the environment server is ready to accept client
requests.

An example of a server object hierarchy of a
NOMAD DVE application

Figure 3

4.2. Object distribution and environment state
management

Once the DVE has been initialised and all of the
server objects have been created the environment
server is ready to accept client requests to join the
environment. Based on the starting location of the
participant’s avatar, the request to join the
environment is propagated down though the server
hierarchy to the appropriate locale manager. During
this process, the session manager and the area
manager may dynamically reconfigure the server
hierarchy by creating a new server object to
accommodate the addition of a new client to the
environment. For example, if an area manager has
reached the maximum number of clients it can
support (which can be dynamically reconfigured),
the session manager may create a new area manager
server object and sub-divide the original region of
the VE between the two area managers. Load
balancing and dynamic reconfiguration of the
NOMAD server hierarchy are two of the core
elements supporting the development of scalable
DVE applications.

Once the client request has reached a locale
manager, the client is registered with the group
communication channel. In addition the client
process is provided with a copy of the current state
of the environment model of the locale. The client
process is also sent the location of the geometry
models of adjoining locales. One locale is
considered to be adjoining another locale if one can
move into, see or hear the other locale. The caching
of adjoining locale environment data ensures that
clients minimise delays when they have to de-
register and re-register with locale managers as they
move from one locale to another.

To ensure consistency between remote
clients, replicated copies of the environment model
must be synchronised. When the state of an
environment object changes, details of this update
must be sent to all of the affected clients. As the
virtual environment has been sub-divided into
locales, the effected clients will typically only be
those in the immediate locale and possibly the
adjoining locales. Therefore the number of clients
that have to be informed of the update will typically
be a small percentage of the total number
participating in the DVE as a whole, thereby keeping
data communication to a minimum.

The NOMAD framework utilises the TAO
real-time event service [23] to notify clients of
environment state changes on a locale and global
level. The OMG Event Service allows events to be
sent to one or more recipients with a single call. In
the event service objects that create events are called
suppliers and objects that receive them are called
consumers. Both suppliers and consumers are
connected together via an event channel. The event
channel is responsible for supplier and consumer

registration, error handling and the dispatching of
events. In addition to the standard functionality, the
TAO event service provides real-time extensions
such as:

� Prioritisation of event dispatching
� Event filtering
� Specification of event notification criteria
� Periodic event notification

In NOMAD each locale manager maintains two
event channels for that locale. When a client changes
the state of an environment object it owns, the
details of the change in state is sent to the locale
manager via the locale managers consumer event
channel. The locale manager then transmits this
update to other users in that locale though its
supplier event channel. Such an approach has
several advantages. Large numbers of updates can
be merged and compressed into one update message
by the locale manager and transmitted to only the
affected clients. Messages can also be filtered,
ensuring updates are only sent to client processes
that have a genuine interest in the update message.

4.5. Discussion of the NOMAD framework

The primary advantage of the NOMAD framework
is it provides the developer of DVE applications
with commonly required functionality at a high level
of abstraction. This allows developers to focus on
developing the DVE application without having to
concern themselves with the underlying
complexities of the communication and
synchronisation of data or load balancing.

The multiple server approach offers several
benefits over implementations that employ a pure
client-server hierarchy. The VE can be easily
extended during execution of the DVE by registering
another session manager with the environment
server. Load balancing can occur while the DVE is
running by creating new server objects, dynamically
balancing and reconfiguring the server hierarchy.

The effect of environment state changes are
typically restricted to only the clients in the
immediate locale and a subset of the adjoining
locales. When updates are sent to the locale manager
the opportunity arises to merge several update
messages into larger packets, thus further reducing
the number of update messages that have to be
transmitted. This allows the efficient transmission of
update messages to only those clients that are
affected. As the locale manager is largely
responsible for the transmission of environment state
updates, it can control the flow at which updates are
sent to clients.

The major disadvantage of the above
design is that latency is introduced, as update
messages are not transmitted directly between
participating clients, but rather via the locale
manager. This effect is further exaggerated if the
locale manager is inundated with a high number of

updates or if the locale manager processes the
updates in some manner. Further work is required to
quantify the latency and determine what can be done
to minimise this effect.

5. Results

One of the key concepts of the NOMAD architecture
is the sub-division of the environment model into
locales as a means of increasing the scalability of the
DVE. It is therefore important that the component
responsible for the transmission of environment
updates operates efficiently. As the update messages
are transmitted though an event channel and not
directly to their destinations, we conducted a number
of experiments to determine the latency introduced
by the event channel when sending varying amounts
of data.

The tests described below were conducted
on two CPU Pentium II 400 MHz PCs with 256MB
RAM running MS Windows 2000. The network
used had a bandwidth of 10Mbits per second and
approximately 250 other PCs connected to it. During
the execution of the tests many of the other PCs
were also using the network. Although a dedicated
network could have been set-up for the tests, it was
decided that running the tests on a “live” network
would provide more realistic figures. Each test
involved sending 100 events in 10 bursts with a
delay of 100 milliseconds between bursts from one
supplier to one, five and fifteen respectively. The
data transmitted represented environment state
changes such as changes in avatar location and not
environment scene data such as texture maps. In the
first set of tests the consumers, supplier and ORB
services all executed as separate processes on the
same workstation. In the second set of tests the
supplier and consumers resided on separate
workstations. Neither the locale manager nor the
consumer of the event performed any processing
other than to keep track of timings. The payload
(data packet excluding event header information)
associated with each event ranged from 8KB to
150KB and the average latency incurred by the first
consumer was recorded.

Latency of event delivery with 1 consumer
Figure 4

The chart in Fig.4. plots the average time taken to
deliver an event to 1 consumer as the data payload
increases. Unexpectedly the time taken to deliver the
event did not initially increase, as expected. Instead
the latency of event delivery continued to fall from
0.062 ms for 8KB to 0.044 ms for 32KB, before
making a steady increase. Table 5 shows the
payload size, latency and number of events per
second. The time taken to deliver an event remains
fairly constant until the payload reaches 100KB
while the number of events per second falls from as
the payload increases. At 100KB per payload, some
50 events per second are transmitted (TAO reduces
the number of events per second in order to maintain
performance).

Payload on KB Events per sec. Event latency ms.
8 317 0.062

16 217 0.048
32 127 0.044
64 74 0.049
80 61 0.058
90 55 0.053

100 50 0.057
111 45 0.064
120 43 0.066
130 40 0.072
140 36 0.080
150 33 0.086

Throughput and event latency times for 1 consumer
Table 5

Latency of event delivery with 5 consumers
Figure 6

Both of the tests for 5 consumers and 15 consumers
showed a similar trend as the test for 1 consumer,
although the average delivery time of events
increased with the number of consumers. In all three
tests the event delivery time began to increase
dramatically once the payload of the event was
greater than 100 KB. This suggests that the optimum
payload size should not be greater than 100KB to

ensure reasonably high throughput. Although
100KB is not sufficient in size to send large data sets
such as complete scene descriptions, it is more than
adequate in size to transmit events notifying clients
of changes in environment state.

Latency of event delivery for 15 consumers
Figure 7

When the tests were executed across a network there
was a dramatic increase in event latency. Table 9
shows the latency (in microseconds) incurred when
events of 100 KB in size are transmitted across a
live network. Although these figures are much
higher than those presented previously, the values
are still quite small. Our experiments (run across a
10Mbit/sec network) show that the real-time
efficient delivery of events up to 100 KB in size can
be achieved by the NOMAD framework.

Consumers Latency ms Payload KB Events p/sec.
1 1921.71 100 50
5 2030.71 100 8.89

15 2124.50 100 7.64

Latency of event delivery with 5 consumers
Table 8

7. Conclusions

Due to the technical and research challenges
associated with DVE application development there
is a need for high level programming support. The
CORBA architecture and its real-time extensions
now provide a flexible and efficient solution to
many of the technical issues in DVE application
development.

As our results demonstrate, it is feasible to
use the CORBA and TAO’s real-time event service
as a method to deliver environment state changes to
a number of clients within a predictable, timely and
efficient manner. By sub-dividing the environment
model into many locales one can reduce the burden
on each DVE server object whilst providing a
scalable and efficient solution. However further
research is required to determine the exact optimum
throughput and event payload size. More tests need
to be performed involving several locale managers

each with many connected clients. Furthermore, in a
working system each of the client processes will be
processing event data (rendering and updating their
persistent store) in addition to sending and receiving
events. Our next goal is to show how the NOMAD
framework performs with a larger number of users
supporting a real distributed virtual environment
application.

References
1. B. MacIntyre and S. Feiner, “A Distributed 3D

Graphics Library”, Computer Graphics
(SIGGRAPH 98 proceedings), 1998

2. The Object Management Group,
http://www.omg.org

3. D. Dias, G. Fox, W. Furmanski, V. Mehra, B.
Natarajan, H.T. Ozdemir, S. Pallickara, Z.
Ozdemir, “Exploring JSDA, CORBA and HLA
based MuTech's for Scalable Televirtual (TVR)
Environments“,Workshop on Object Orientation
and VRML, VRML conference 1998,
Monterey, California, 1998

4. The Object Management Group,
“CORBAservices: Common Object Services
Sepcification”,
ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf

5. The Object Management Group, “Common
Facilities Specification - Mobile Agent
Specification”,
ftp://ftp.omg.org/pub/docs/formal/00-01-02.pdf

6. Alexander B. Arulanthu, Carlos O'Ryan,
Douglas C. Schmidt, Michael Kircher, and Jeff
Parsons, “The Design and Performance of a
Scalable ORB Architecture for CORBA
Asynchronous Messaging”, Proceedings of the
IFIP/ACM Middleware 2000 Conference,
Pallisades, New York, April 3-7, 2000

7. Douglas C. Schmidt, David L. Levine, and
Chris Cleeland, “Architectures and Patterns for
High-performance, Real-time ORB
Endsystems”, Advances in Computers,
Academic Press, Ed., Marvin Zelkowitz, 1999

8. Douglas C. Schmidt and Fred Kuhns, “An
Overview of the Real-time CORBA
Specification”, IEEE Computer, Special Issue
on Object-Oriented Real-time Distributed
Computing, edited by Eltefaat Shokri and Philip
Sheu, June 2000.

9. D. C. Schmidt, D. Levine, and S. Mungee, “The
Design of the TAO Real-Time Object Request
Broker”, Computer Communications Special
Issue on Building Quality of Service into
Distributed Systems, Elsevier Science, Volume
21, No. 4, April, 1998

10. The Object Management Group, “Real-time
CORBA – A joint Revised Submission”, 1999

11. S. Singhal and M. Zyda, “Networked Virtual
Environments – Design and Implementation”,
Addison-Wesley, ISBN: 0-201-32557-8, 1999

12. D. Anderson, J. Barrus, J. Howard, C. Rich, C.
Shen, R. Waters, “Building Multi-User
Interactive Multimedia Environments at
MERL”, IEEE Multimedia, vol.2, no.4, Winter
1995, pages. 77-82

13. R. Hubbold, X. Dongbo, S. Gibson, “Maverik –
the Manchester Virtual Environment Interface
Kernael”, Proceedings of the third
Eurographics Workshop on Virtual
Environments, 1996

14. O. Carlsson and O. Hagsand, “DIVE – A
Platform for Multi-User Virtual Environments”,
Computer & Graphics, Vol. 17, No.6, pp 663-
669, 1993

15. C. Greenhalgh, and S. Benford, “MASSIVE, A
Collaborative Virtual Environment for
Teleconferencing”, ACM Transactions on
Computer, Human Interaction,. 2(3), 1995

16. Leigh, J., Johnson, A., DeFanti, T., CAVERN:
A Distributed Architecture for Supporting
Scalable Persistence and Interoperability in
Collaborative Virtual Environments, in Virtual
Reality: Research, Development and
Applications, Vol 2.2, 1997

17. M. Henning and S. Vinoski, “Advanced
CORBA Programming with C++”, Addison-
Wesley, ISBN 0-201-37927-9, 1999

18. The Object Management Group, “The
Notification Service Specification”, June 2000,
available at
ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf

19. The Object Management Group, “The Trading
Object Service Specification”, May 2000,
available at
ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf

20. F. V. Deriggi, M.M. Kubo, A. C. Sementille, J.
R. Brega, S. G. dos Santos and C. Kirner,
“CORBA Platform as Supportt for Distributed
Virtual Environments”, Proceedings of IEEE
Virtual Reality, 1999, pp 8-13

21. A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M.
Kircher and J. Parsons, “The design and
Performance of a Pluggable Protocols
Framework for Real-time Distributed Object
Computing Middleware”, Proceedings of the
IFIP/ACM, Middleware 2000 Conference, 2000

22. R. Johnson and B. Foote, “Designing Reusable
Classes”, Journal of Object-Oriented
Programming, SIGS, 1, 5, 1988

23. T. Harrison, D. Levine and D. C. Schmidt, “The
Design and Performance of a Real-time
CORBA Event Service”, Proceedings of
OOPSLA’97, ACM, Atlanta, GA, October 6-7,
1997

24. D. C. Schmidt, “An Architectural Overview of
the ACE Framework: A Case-study of
Successful Cross-platform Systems Software
Reuse”, USENIX login magazine, Tools special
issue, November, 1998

http://www.omg.org/
ftp://ftp.omg.org/pub/docs/formal/98-07-05.pdf
ftp://ftp.omg.org/pub/docs/formal/00-01-02.pdf
ftp://ftp.omg.org/pub/docs/formal/00-06-20.pdf
ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf

	Using CORBA Middleware to Support the Development of Distributed Virtual Environment Applications
	I
	Introduction
	2. Related Work
	The Common Object Request Broker Architecture
	The NOMAD Framework
	4.1. Server Hierarchy
	Object distribution and environment state management
	4.5. Discussion of the NOMAD framework

	Results
	
	Event latency ms.

	7. Conclusions
	References

