
A graph based process for easy design of
refinement oracles in hierarchical radiosity

Jérémie Turbet (JeT) - François X. Sillion

iMAGIS – GRAVIR/IMAG INRIA
655 avenue de l’Europe (ZIRST)

38330 Montbonnot Saint Martin, France.
[Jeremie.Turbet|Francois.Sillion]@imag.fr

ABSTRACT

Refinement is the part of the hierarchical radiosity algorithm that decides the best subdivision of the scene
geometry to meet user goals using minimum resources. The refinement oracle is a central component
of the radiosity algorithm, because it affects the computation time and the radiosity computation error.
Hierarchical radiosity refinement remains a research topic today because of the variety of the geometric
and radiometric configurations encountered: currently there does not exist a universal oracle that works
well in all the different scene geometries and lighting configurations. It is therefore highly desirable to
develop flexible tools for the generation of appropriate oracles suited to different tasks. In this paper we
propose a graph structure for the refinement process and a classification of the elementary problems the
oracle can handle during the refinement. This representation clarifies the complex refinement process
by reducing it to the composition of simple tools. New refiners can easily be created or modified with
a marginal increase of the computation time, and many advantages in terms of automatic checking and
performance analysis.

Keywords: radiosity, hierarchical refinement, lighting, global illumination, refinement oracle.

1 Introduction

The radiosity equations were introduced in the 1930s,
but were applied to computer graphics only in the
mid-1980s. The radiosity algorithm has quickly
evolved: the first versions dealt only with very sim-
ple scene geometry, and required heavy computation
times. With the creation of the progressive and then
the hierarchical radiosity algorithms, those limitations
have been seriously diminished. A few commercial
packages nowadays actually use radiosity to produce
realistic images. Hierarchical radiosity requires an or-
acle to decide at which level of the scene hierarchy the
energy exchanges have to be established. The oracle
takes each pair of hierarchical elements in the scene
and decides wether the elements should be linked to-
gether to represent the energy exchange, or be sub-
divided. Despite the apparent simplicity of the de-
cision, existing oracles only work correctly in lim-
ited configurations and are hardly manageable. This
is probably the main reason of the slow development
of radiosity-based tools. New, application-specific or-
acles are needed to give radiosity the popularity of

other global illumination methods.

The generation of refinement criteria is complex due
to the wide range of domains covered. Oracles have
to deal with geometric, energetic and visibility issues,
in a tightly inter-related manner. We propose a classi-
fication of all simple actions occurring during the re-
finement process into a set of elementary tools. Each
tool is able to answer queries about its area of com-
petence, and provides a unique answer from a speci-
fied set of possible ones. The refinement process can
then be seen as a “discussion” between the refinement
oracle and a set of such tools. We use a graph rep-
resentation to describe the oracle: each node of the
graph is an atomic task answered by a tool, and the
last node is the answer of the oracle. This structure
provides a number of advantages. Evolutivity and
modularity are intrinsic, providing maximum flexibil-
ity and ease for tool manipulation and oracle gener-
ation. Furthermore, a number of operations can be
applied generically to the graph, such as automatic
consistency checks or statistics gathering. We vali-
date the structure by re-creating an existing oracle us-



ing a graph and tools, comparing computation times
and results, and discussing the treatment of visibility
queries using different tools.

1.1 The radiosity algorithm

The radiosity algorithm computes an estimation of all
energy exchanges in a scene, limited to diffuse reflec-
tors. The wavelength used for the energy depends
on the application. Radiosity was first used to com-
pute thermal exchanges, especially for heat distribu-
tion [Hotte67]. The method has been extended to the
visible part of the wavelength domain for light simu-
lation [Goral84, Nishi85].

1.2 Mathematical definition

The radiosity equation describes the energy balance in
a scene as an integral equation [Yamau26, Buckl27] :

���� � ���������

�
�

����� ��� ��� ��� ��Æ� (1)

� � is the natural exitance at point x
� � is the diffuse reflectance at point x
� � the relative orientation and distance factor
between x and y
� � the visibility between x and y

The first use of finite elements to propose a global
illumination calculation method dates back to 1934
[Higbi34] but was not used due to the lack of compu-
tation resources at the time.

1.3 Hierarchical radiosity

The idea of the hierarchical radiosity is to let the com-
puter manage the geometry depending on the radios-
ity function. [Hanra91] introduced a hierarchical def-
inition of the surface geometry. This gives the algo-
rithm the flexibility it needed to choose the right size
of any surface element. The radiative exchanges are
estimated between two surface elements, a criterion
estimates wether the representation is adequate or not
at this level of the surface hierarchy. If not, one or
both elements have to be subdivided into a finer hi-
erarchy. Energy exchanges are represented by links
which transport the light from the emitter to the re-
ceiver.

The hierarchical radiosity reduces the modeling prob-
lem because there is no more need of taking into ac-
count the energy distribution in the scene.

This formulation greatly limits the number of vis-
ibility factors to be computed, thereby decreasing
the computation times. But the complexity is still
quadratic in the number of input surfaces, which lim-
its the use of the algorithm to small scenes. The no-
tion of surface hierarchy has been extended to vol-
umes (clusters) to achieve a O(	
���	�) complexity
[Kok93, Silli94, Smits94], but the choice of group-
ing elements is not trivial and is still a research topic
[Hasen99].

2 The issue of hierarchical refinement

Hierarchical radiosity allows to control the solution
accuracy by the element subdivision choice. If the er-
ror of the estimated energy exchange on a hierarchi-
cal element (surface or cluster) is far from the desired
representation (uniform for Haar wavelet basis func-
tions, for instance), the refinement of the link (one or
both elements) will reduce the error. Some current
researches on radiosity focus on the heuristic of the
refinement process, called refinement criterion or re-
finement oracle.

A first set of oracles assume that the error on a hi-
erarchical element is proportional to the energy it re-
ceives. The most simple criterion in this oracle class
is the ”BF criterion” [Hanra90, Hanra91]. It takes its
decision of refining or not only with a threshold on the
irradiance. The advantage of this oracle is its simplic-
ity and so its rapidity, but it suffers of some important
problems.
� The choice of which element should be split is not
exactly defined.
� The threshold is absolute. Increasing the luminos-
ity of the scene changes the refinement dramatically.
� The computation time and the solution accuracy do
not depend simply on the threshold, despite simple
asymptotic laws. This refiner is very hard to manipu-
late.
A second class of oracle consists of finding a bound of
the radiosity error function on the elements [Smits92,
Holzs98], those criteria are much more precise and
gives better results. But there is a notable overhead of
the computation time, and they often do not treat vis-
ibility very well. The third class estimates the impact
of the refinement on the globality of the radiosity so-
lution [Holzs94, Lisch94]. The time cost is however
even greater.

2.1 Segmenting the problem

A refinement criterion is composed of different
factors, of very different nature. Typically the
subdivision should be finer along the shadow edges
and where the radiosity function is quickly varying.



Those two factors are quite independent and can be
treated separately. We identified the following factors
as playing a key role in refinement :
� Visibility : Higher gradients of the solution are
commonly found along shadow edges resulting from
one or more occluders.
� Energy related : In a total visibility context, the
energy distribution on a hierarchical element depends
on the exitance distribution and the geometry relative
to the two elements.

2.2 Refinement oracle

The refinement oracle is the heuristic which decides
if the energy distribution on the receiver emitted from
another hierarchical element is sufficiently well cap-
tured at the current hierarchical level. Depending on
its answer, it establishes the link between the two el-
ements, or splits the link to try to establish it at the
directly lower level of the hierarchy. The oracle can
use different refinement criteria according to the dif-
ferent configurations of the elements. In fact it can
be seen as a selector of criteria, but the discrimina-
tion of such configurations is not trivial. Applica-
tions can have very different needs in global illumi-
nation: In the lighting engineering field, users will
want to guarantee a minimal energy error in the scene,
but probably do not care much for beautiful shadow
boundaries. Conversely, creators of virtual reality en-
vironments may prefer beautiful shadows but not care
about the reliability of the solution. The different cri-
teria used and the order they are employed in an oracle
define how the refiner will work, and can be guided to
match the application needs.

To take into account all the possible oracles, we
choose to represent the refinement process as a set
of atomic (simple) questions and actions (each im-
plemented in a tool), combined to obtain a complete
decision process. Each tool will answer a question
or perform a well-defined operation. The refinement
process can then be seen as a discussion between
the oracle and the set of tools. At the end of the
discussion, the oracle will take its decision (Fig. 1).
The possibles decisions are :
� Establish the link at this level.
� Split the link and reiterate its process with the
elements children.

The user needs to influence the refinement in the
direction he wants, he can do it using parameters
plugged into the tools. Those parameters are the
communication media through the refinement pro-
cess. We differentiate between two different sort of
tools, those that answer a question (question tool), and

those that are performing a task (command tool).

Decision

Oracle

Parameters

Tools

Refiner

Refiner

Figure 1: Refinement process structure as a
discussion between tools and the oracle.

3 Tools

The tools are the minimal bricks essential to the con-
struction of an oracle, they all have the same general
structure so that they can be combined in a sort of
“lego” construction.

3.1 Question tools

Question tools are those that answer a question, they
constitute the body of the discussion, and guide the
oracle into its decision. Three different types of
answers can be distinguished :
� Precise answers : those answers are guaranteed to
be true. For example, for a visibility classification
tool, a precise answer is ”the visibility is null between
the two elements”.
� Approximate answers : these are used when a
precise answer can not be given. The answer is not
guaranteed, it indicates a probability, such as ”the
visibility is probably null between the too elements”.
� other answers : these do not answer the question
asked, but rather indicate another form of information
from the tool, which can result from a failure of
the algorithm, or the realization that computing an
answer would be too costly. A tool can use such
answers to say ”I do not know what the visibility
class is, but the situation is so complex that you
should probably subdivide rather than attempt to get
an answer”. This type of answer is very useful since
it lets us model complex situations without forcing us
to answer all questions exactly as they were asked.

We distinguish three different classes of questions, all
of them are allowed to answer an answer taken from



a set. The set of possible answers, precise and/or ap-
proximative, is defined once for each question tool.

3.1.1 Energy-related tools

Energy-related tools answer questions about radiative
exchanges along the link during the refinement. For
example, they can determine if there is enough energy
on the link, or if the incoming energy will change sig-
nificantly the receiver radiosity, etc.

3.1.2 Visibility tools

Visibility tools classify the visibility between the
emitter and the receiver. This task is very specific,
but it is typically the hardest and the most time
consuming one of the refinement process. There is
no limits on the number of answers, each tool has its
own set. But 6 classes are frequently used, the three
precise ones and their corresponding approximative
answers.
� Visible : There is no occluder between the emitter
and the receiver: no segments from one element to
the other is occluded. The visibility factor is 1.
� Invisible : One or more occluder completely
occlude the emitter from the receiver. All segments
from one element to the other are blocked. The
visibility factor is 0.
� Partial : There is one or more occluders between
the emitter and the receiver, disposed such that at
least one segment from one element to the other is
blocked, while another one is not. The visibility
factor lies between 0 and 1.

3.1.3 Geometric tools

Geometric tools and energy related tools are some-
times overlapping, because the energy distribution de-
pends on the geometry. But geometric tools can be
distinguished by their absence of notion of radiative
flux. The treated problems include self intersecting
surfaces, normal cones, etc. They are very useful to
guarantee the proper functioning of other tools which
require a specific geometric disposition. For example
most of form factor computation algorithms cannot
handle intersecting support plan surfaces (Fig. 2), the
use of a geometric tool guarantee a valid answer.

3.2 Command tools

Command tools are particular tools executing an
action (an order). Their answers are only ”ok I have
done it” or for some tools, ”No I cannot do it”.

Emitter
Receiver

Figure 2: Example of a geometric tool which
determine self intersection support plans of
surfaces.

They can be used to compute a value using a special
algorithm, mark an elements, etc. An example is the
computation of the visibility factor (in case of partial
classification). These tools are very useful to debug a
refiner during its creation. The action the refiner has
to do after the oracle gives its answer is a command
tool. Those are called decision tools because they
only appear at the end of the discussion when the
oracle takes its decision.
The set of decision tools includes all possible actions
after the oracle gives its answer. They only take place
at the end of the refinement process for a pair of
elements. Those tools are the only ones which do
not have any answer, they are the conclusion of the
discussion.
� Link establishment : when the oracle estimates that
the radiosity function is sufficiently well represented,
this tool establishes a link between the receiver and
the emitter to symbolize the energy transfer.
� Subdivide : when the energy distribution seems
not correct at this level of hierarchy, the refiner goes
deeper in the hierarchy to try to link at lower levels.
There is a choice for the subdivision to split the
emitter, the receiver or both. This decision is a part of
the oracle. The two subdivision tools just subdivide
the emitter and subdivide the receiver.
� Stop : if the energy transfer doesn’t change
anything to the solution, there is no need to link or
to subdivide an element, because it will not change
anything more. So we just stop the refinement
process. For example, it occurs when the visibility is
null.

4 Oracle graph structure

The oracle follows its procedure by asking questions
to the tools, and taking appropriate action depend-
ing on the answers: it can either ask another ques-



tion or perform an action. From question to question,
it can finally express what it considers the best de-
cision. We represent the set of possibles discussions
by a graph structure. Each node contains a question
tool or a command tool, each arc an answer of the
tool-node and each leaf contains a decision tool (Fig.
3). We call these graph oracles ”decision graphs”.
The node encapsulation of the tool is necessary for
the graph structuration, moreover it allows many ad-
vantages (cf. section 4.3). There is a single tool for a
node, and its answers are mapped by the node to other
nodes.

Decision graph

map

Ans. Ans.
1 2 3

Root node

map

Ans.

Ans.

Tool

Tool

Action

map

Tool

Ans.
2

Ans.
1

1 2

Decision
Action

Ans.

Tool

Ans. Ans. Ans.

map

321

Figure 3: Tree structure of the decision graph.

The graph has to be acyclic, because this could re-
sult into a infinite refinement process, therefore it is a
DAG (Directed Acyclic Graph).

4.1 Data manager

All along the discussion, the different tools often use
common data. For example the principal axis be-
tween the receiver and the emitter is used by many
geometric and visibility tools. But the modularity and
the independence of the tools prohibits direct discus-
sion between them, and so, the exchange of data. We
have to use another actor in the discussion which is
the ”memory” of what has been said, this is only a
data manager. Each tool has to ask the data manager
about the existence of the terms he needs to use in its
execution. If a term has not already been computed,
the tool, by its own, computes the value and tells the
data manager it has done the work. This data man-

ager stores all the values which are likely to be useful
to the others.

A precision level is assigned to each value in the
data manager. In this way, if a tool needs a precise
term and the value has already been computed using a
coarse estimation, it can recompute the precise term,
and submit it back to the data manager. For example,
the visibility term can be estimated during the visi-
bility classification step but it can be insufficient to
the linking tool which will recompute a more precise
value of the visibility factor.

4.2 Parametrisation

Each tool can use some parameters, often threshold
are used to influence their answer. Those parameters
can be computed in two different ways :
� Fixed parameter : the value of the parameter is eval-
uated once at the beginning of the refinement process.
The value can be fixed by the creator of the refiner
(it is not noticed by the user). Another way is to give
the control of the value to the user through a graphical
user interface.
� Computed parameter : the parameters can be com-
puted at each execution of the tool by a callback de-
fined by the creator of the refiner. It allows a modifica-
tion of the tools behavior all along the refinement pro-
cess. The computation of the parameter values may
need some values which are only accessible during
the execution of the graph (through the data manager).
Computed parameters are able to modify locally and
automatically the refinement to the scene specificities.
The parametrisation of all the tools is the parametrisa-
tion of the oracle, it gives the user great flexibility to
control the refinement, even for a fixed graph layout.

4.3 Advantages of the DAG structure

The graph structure and the power of inheritance in
object programming have many intrinsic advantages.
The main ones are :
� Modularity : all the tools follow the same design,
so they can be easily exchanged, added, replaced,
deleted from the DAG. They all are independent of
the context and only discuss with the data manager
(which can be empty).
� Evolutivity : because the design scheme is the
same for each tool and the number of requirements is
limited to the minimum (the current treated link and
the data manager), new features can be added with
few limitations.
� Execution track : during the refinement process,
each node can print its execution showing the branch
in the DAG taken by a specific link refinement and
the values it is composed or it returns



� Debugging : by defining manually an emitter and a
receiver, and launching the execution track on them,
we can determine very quickly what happens in the
refinement process between two elements. Time
consumption, answers of the tools, branch in the
graph, ... This is very useful for debugging a refiner
and understanding how it works.
� Graph validation : after the generation of the
decision graph, it is possible to automatically test the
validity of the graph : No cycle, no empty nodes, all
tool answers are linked, etc.
� Visualization : the graph structure can be visualized
with a drawing which is natural for the human eye.
This representation is much more understandable
than a source code.
� Interface generation : each tool owns its interface
with the parameters manipulators. The collection
of all tools interface can be packed together for an
automatic graph interface generation.
� Branches reuse : it is easy to re-use branches of
other refinement graphs without code duplication or
complex flow control.
� Statistics : statistics are easily generated on the
nodes of the graph, time computation, number of
calls, unused branches, etc. Bottlenecks can be easily
determined using this characteristic. Millions of links
are refined during a refinement process, statistics
generation is an important feature to understand this
very complex task.

4.4 Computation times

In this section, we measure the overhead of time in-
duced by the graph structure. We expect the refine-
ment process using our DAG structure to be slightly
more time consuming because at each node execu-
tion, the node has to research into its answer-mapping
table the next node to execute. It is possible, once
the refiner graph is designed, to create an iterative re-
lease of the refiner. This is done by a code generator
which creates a new refiner source file. The main pro-
cedure contains all the branches of the graph using
many switching instructions. The resulting refiner do
not contains nodes and arcs anymore, only the tools
and their relations are present.

We tested three similar refiners based on the well
known BF criterion:
� BF : this is the standard refiner expressed in a
single function.
� DAG release : this is the BF developed using the
DAG refiner structure, it is composed of three main
tools and six command tools.
� Flat release : this is the refiner self generated by
the DAG release, it changes the DAG into a single
function.

We tested these refiners on the following set of
scenes:
� Room : Small scene, inside of a room with very
few visibility problems.
� TD : Small scene with heterogeneous size of
objects, creating some visibility problems.
� Maze : Labyrinth scene with an important visibility
factor.
� Soda : Complex inside of a bar scene, with a
medium visibility factor.
� Séjour : Complex scene with heterogeneous size
of objects.

scene BF DAG flat
release release release

Room 0.70 s. 1.07 s. 0.80 s.
+53% +14%

TD 2.30 s. 3.40 s. 2.47 s.
+48% +7%

Maze 24.47 s. 43.50 s. 26.47 s.
+78% +8%

Soda 83.70 s. 93.80 s. 84.27 s.
+12% +1%

Séjour 164.23 183.90 s. 167.49 s.
+12% +2%

We observe that the time overhead is inversely cor-
related to the scene complexity. The difference de-
creases progressively to 10% for the DAG release and
almost zero for the flat release as the complexity of the
scene increases. But for simple scenes the overhead
induced by the structure is not negligible compared to
the ”only-refinement” time. Since our goal is to work
with realistic and very complex scenes, the refinement
DAG structure seems a valid choice.

5 Example of the graph usage

There are many applications of the graph structure
due to the appreciable number of advantages. We
present in this section an example of the use of the
DAG statistic generation advantage applied to a visi-
bility study. The visibility study we chose deals with
tools based on rays. We want to determine if there
is a correlation between the size of the elements, the
number of rays and the reliability of the tool’s answer.
We plugged into an existing refiner, a branch of tools
that will execute our tests. It is composed of a geo-
metric tool that computes the projected area of the el-
ements along their center-center direction, a reference
tool that will give us a reference visibility classifica-
tion, and all the tools we want to test. Those tools
are, in our case, only visibility tools based on rays



with different sampling rates. We choose 3 sampling
rates: 4, 16 and 64 rays per link to classify the visi-
bility. The geometric tool is linked to the test branch
if the emitter and the receiver projected areas are un-
der a specified threshold, if not, nothing more than the
”normal” refinement is performed (Fig. 4).

decision

"normal" refiner

Projected area tool

visibility tool (4 Rays)

visibility tool (16 Rays)

visibility tool (64 Rays)

Figure 4: Graph scheme of the visibility tester
refiner.

We used several values of threshold for the geomet-
ric tool to understand the behavior of each visibility
tool in front of a specific geometric situation. By
setting the generation of statistics in the refinement
scheme, we collect after each refinement process in
the all set of statistics, the number of each answer of
the tools. We can compare the number of reference
answer with the number of equivalent tool answer to
compute a ”reliability” factor for each tool. The re-
sults are shown in figure 5.

14 181610 128

64 rays

projected area threshold

error %

16 rays
4 rays

20

15

10

5

0

20

642

30

25

Figure 5: Error functions of the ray casting
based visibility tools.

The reliability has been computed by summing all the
erroneous classifications of each tools divided by the
number of answers given (equal to the number of links

refined). Values are presented in table 5. The thresh-
old is expressed in area units, the minimum units in
refinement process is 0,5 area units. The test scene
is the ”TD” one previously discussed. Two iterations
have been used to compute the values.

 # links 4 rays 16 rays 64 rays
2 2266 0 % 0 % 0 %
3 3912 0 % 0 % 0 %
5 8040 12,01 % 1,09 % 0,57 %

7,5 14725 22,89 % 2,74 % 0,65 %
10 19025 24,87 % 3,98 % 1,65 %
15 19808 25,02 % 4,07 % 1,68 %

The result is as expected: the reliability of the ray
casting based answer tools depends on the size of the
elements and the number of rays used. It gives a valu-
ation of this reliability to guarantee percentage of er-
ror. The important part of this study do not focus on
the visibility results, but on the usability and the con-
tribution of the DAG structure: statistics are easily
gathered, and the graph can then be easily modified
to, for instance, use a different visibility tool based
on the outcome of a geometric tool, with parameters
extracted from the analysis of such experiments.

If this structure were not used, a refiner would have
been ”hacked” to integrate the ray casting tools in
it, the ray casting function should have been instru-
mented to store all their answers, values should have
been packed together from various functions (rays, re-
finer) to compute statistics... In our method, nodes
have been added without interfering with the ”nor-
mal” refiner, and statistics are given in a well formed
shape at the end of the refinement.

6 Conclusions

The refinement oracle in hierarchical radiosity re-
mains one of the difficult problems with this tech-
nique. Despite the vast body of research on this topic,
there is not a valid answer working for all the differ-
ent cases we can encounter in the radiosity process.
Some criteria works well for a specific class of geom-
etry, but are unusable in the next class. All the exist-
ing oracles are using their own structure specialized
in the work they were created for. They all have com-
mon parts but it is impossible to reuse them because
of their structure differences. In order to make radios-
ity usable for real-world applications, specific oracles
must be designed to cope with all possible situations,
and arranged appropriately depending on each appli-
cation’s requirements. Our idea is to create a common
open structure for all refiners. To achieve this goal we
choose to design the refiners as a graph composed of
elementary tools. Each tool is completely indepen-
dent of the others and, answers a question or executes



an action. The modularity of the DAG structure pro-
vides many advantages in the creation of new refiners
and allows to reuse branches of the graph.

REFERENCES

[Buckl27] H. Buckley. On the radiation from the in-
side of a circular cylinder. Philosophical Mag-
azine Series 7, 4(23):753–762, October 1927.
one of the first papers on Fredholm integrals in
radiative transfer theory.

[Goral84] Cindy M. Goral, Kenneth K. Torrance,
Donald P. Greenberg, and Bennett Battaile.
Modelling the interaction of light between dif-
fuse surfaces. Computer Graphics, 18(3):213–
222, July 1984.

[Hanra90] Pat Hanrahan and David Salzman. A
rapid hierarchical radiosity algorithm for un-
occluded environments. In Proceedings Euro-
graphics Workshop on Photosimulation, Real-
ism and Physics in Computer Graphics, pages
151–71, Rennes, France, June 1990.

[Hanra91] Pat Hanrahan, David Salzman, and Larry
Aupperle. A rapid hierarchical radiosity al-
gorithm. Computer Graphics, 25(4):197–206,
July 1991.

[Hasen99] Jean-Marc Hasenfratz, Cyrille Damez,
Francois Sillion, and George Drettakis. A
practical analysis of clustering strategies for
hierarchical radiosity. In Computer Graphics
Forum (Proc. Eurographics ’99), volume 18,
September 1999. To appear.

[Higbi34] H. H. Higbie. Lighting Calculations. John
Wiley & Sons, New York, NY, 1934.

[Holzs94] Nicolas Holzschuch, Francois Sillion, and
George Drettakis. An Efficient Progressive
Refinement Strategy for Hierarchical Radios-
ity. In Fifth Eurographics Workshop on Ren-
dering, pages 343–357, Darmstadt, Germany,
June 1994.

[Holzs98] Nicholas Holzschuch and Francois. X. Sil-
lion. An exhaustive error-bounding algorithm
for hierarchical radiosity. Computer Graphics
Forum, 17(4):197–218, December 1998.

[Hotte67] Hoyt C. Hottel and Adel F. Sarofim. Ra-
diative Transfer. McGraw Hill, New York,
NY, 1967.

[Kok93] Arjan J. F. Kok, Frederik W. Jansen, and
C. Woodward. Efficient, Complete Radios-
ity Ray Tracing Using a Shadow-Coherence
Method. The Visual Computer, 10(1):19–33,
1993.

[Lisch94] Dani Lischinski, Brian Smits, and Don-
ald P. Greenberg. Bounds and error estimates
for radiosity. Computer Graphics, 28(Annual
Conference Series):67–74, July 1994.

[Nishi85] T. Nishita, I. Okamura, and E. Nakamae.
Shading models for point and linear sources.
ACM Transactions on Graphics, 4(2):124–
146, April 1985.

[Silli94] Francois Sillion. Clustering and Volume
Scattering for Hierarchical Radiosity Calcula-
tions. In Fifth Eurographics Workshop on Ren-
dering, pages 105–117, Darmstadt, Germany,
June 1994.

[Smits92] Brian E. Smits, James R. Arvo, and
David H. Salesin. An importance-driven
radiosity algorithm. Computer Graphics,
26(2):273–282, July 1992.

[Smits94] Brian Smits, James Arvo, and Donald
Greenberg. A clustering algorithm for ra-
diosity in complex environments. In An-
drew Glassner, editor, Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, An-
nual Conference Series, pages 435–442. ACM
SIGGRAPH, ACM Press, July 1994. ISBN 0-
89791-667-0.

[Yamau26] Zito Yamauti. The Light Flux Distribu-
tion of a System of Interreflecting Surfaces.
Journal of the Optical Society of America,
13:561–571, November 1926.


