

FIXED-POINT ELLIPSE DRAWING ALGORITHM1

Ramón Mollá, Roberto Vivó

Department of Computer Systems and Computation
Polytechnical University of Valencia, Camino de Vera, 14

46022 Valencia
Spain

e-mail: rmolla@dsic.upv.es, rvivo@dsic.upv.es

ABSTRACT

This algorithm draws ellipses with integer centres and decimal radii on discrete devices using

fixed-point arithmetic. These ellipses have both X and Y axis parallel to the coordinate axes. It uses forward
differences to diminish its cost. It has a low comp utational complexity while the error is lower than
traditional algorithms. This algorithm works in the squared R2 space (fixed-point) and translates directly
the decimal points to the Z2 natural screen space.

Keywords: Fixed-point arithmetic, ellipse-drawing, scan conversion.

1 This paper has been developed partially thanks to CICYT TIC9-0510-C02-01

1. INTRODUCTION

An ellipse is a basic graphic primitive in

computer graphics. It is a common shape in many
graphics applications and appears naturally when
viewing circles from a lateral position or when a circle
primitive has to be drawn into a non-isotropic device.
This primitive is defined by the following equations

1
2

22

2

=+
A
Y

B
X

−= 2

2
22 1

B
XAY

−= 2

2
22 1

A
YBX

Where A and B, are the vertical and

horizontal ellipse axes respectively parallel to the grid
lines. No zero axis is allowed also, since this ellipse
degenerates into a line. We are concerned with
approximating an ellipse by lighting pixels on a
bitmap. In order to draw this primitive incrementally,
it is commonly accepted that the ellipse is divided
into two areas. So all the algorithms use two internal
drawing loops. One for each area. See the Figure 1.

Taking advantage of the primitive symmetry,
it is normally used the 4 points algorithm in order to
accelerate the drawing process. So, for clarity
purposes, this paper analyses only the drawing

problem for the first quarter (the right up one). The
other three ones may be obtained from it obviously.

A

B

Y

X

1

2

Figure 1. Parallel ellipse. "A" means the vertical
ellipse axis, "B" the horizontal one and 1 and 2

represent the two areas that divide the ellipse in two
drawing loops.

The major concern of this article is the time
complexity of ellipse algorithms, since fast scan
conversion is crucial both for real-time interaction
and for animation in computer graphics, specially in
low-cost or slow devices like PDAs, palmtops,
microcontrollers, e-books, WAP devices, low price
printers,… where there is processing power shortage
and where accurated algorithms of low complexity are
also of great significance. In these cases, simple
algorithms are mandatory, especially for basic
primitives like lines, circles or ellipses. The algorithm
presented in this paper takes advantage of all the

previously ideas introduced by the bibliography: it is
an incremental algorithm based on the second order
differences [Foley92], it uses an error function based
on the middle point [Fellner94], it uses the 4 point
symmetry and it uses fixed-point arithmetic
[Fellner93]. It uses 32 and 64 bits mantissas. It works
with decimal numbers radii. Although the operations
works internally with decimal numbers, they use
fixed-point arithmetic [Marven94], so there is no
floating point penalty. The format change overhead
(integer to fixed-point and vice versa) is practically
avoided, so no significant penalty is noticed in
practice compared to other algorithms that uses
fixed-point arithmetic also.
2. PREVIOUS WORK

All the scan conversion algorithms work on
the screen discrete space. This space is a quantum
grid where only some given movements are allowed.
This restriction forces to calculate only some points
which X or Y coordinate are previously known and
not all the infinite possible points. An order
relationship is set between all these points since two
neighbours are separated by one unit. This situation
let many scan conversion algorithms to be based on
incremental techniques. A ellipse is a primitive that
works with squared values, many algorithms
[Pitteway67] [Bresenham77] use the second order
differences principle (Foley 1992) to allow easy
incremental techniques. Diophantine equations are
also used to improve speed-up [Andres94]. The
incremental technique [Kappel85] is based on an
error function adapted to ellipses that determines the
decision for every loop step. The error function is
based in the proximity between the primitive and the
discrete screen grid. Although for circles, whatever
criterion is equivalent: the function residual value,
the orthogonal distance or the vertical distance
[Bresenham85] [McIlroy83], it is not really true for
ellipses [McIlroy92]. A better study of this problem
may be seen at [Fellner94]. For these reasons, there
are some approximations that can manage with
extreme cases [Wu87] or on the accuracy of the
algorithms [vanAken84]. Many ways have been
proposed in order to increase performance, for
instance, drawing several points at a time [Wu89],
using partial differences [daSilva89]. This is a general
algorithm for drawing conics. Although it may
generate a lower cost solution, the algorithm is very
complicated to develop and debug since this is a
general solution. Other improvements draw this
primitive as a collection of horizontal lines of
different length [Hsu93]. If these lines are drawn
using incremental loops, time savings may be
between 25 and 40% comparing to Bresenham’s if the
radius is higher than 16 pixels. Another way to
reduce the cost is to diminish the amount of I/O
operations to draw each segment [Chengfu95]. Other
approximation departs radically from the traditional

approaches using the Lissahaus figures to produce
not only circles but whatever kind of elliptical arcs or
complete figures [Fellner93]. It requires an
intermediate filter function to eliminate the amount of
points accumulated at parts of increasing curvature.
All the previously presented algorithms change
speed-up by precision, since the parameters (decimal
radius length and decimal position) are approximated
to the screen grid (integer) before drawing the
primitive. The later the conversion is made, the more
precise the drawing is. The FPE algorithm presented
in this paper maintains the decimal numbers even
during the calculation phase. It only approximate the
values to the grid when the values are sent to the
raster, at the very last moment. So the representation
error is the lowest possible as it will be seen in the
following points.

3. BACKGROUND

Initially if X0 = 0, then

2
2

2
2

2

2
022

0
0

11 A
B

A
B
X

AY =

−=

−=

, that is to say,
Y0 = A.

Since at the initial point, the tangent is null,
lower than one, the drawing sweep has to start
through the X axis. Following an incremental
approach, X1 = X0 + 1, and so

() ()

 ++
−=

 +
−=

−= 2

0
2
02

2

2
02

2

2
122

1

12
1

1
11

B
XX

A
B

X
A

B
X

AY

() ()

2
022

02
0

2

2
022

1

1212
1

B
X

AY
B

X
B
X

AY
+

−=

 +
−−=

Let K be the constant element in the last

equation,

()
2

02 12
B

X
AK

+
= , and so KYY −= 2

0
2

1

In the next step,

() ()

 ++
−=

 +
−=

−= 2

1
2

12
2

2
12

2

2
222

2

12
1

1
11

B
XX

A
B

X
A

B
X

AY

() ()

2
22

12
022

12
1

2

2
122

2
221212

1
B

AKY
B

X
AY

B
X

B
X

AY −−=
++

−=

 +
−−=

Let M be the new constant element

appeared, where
2

22
B

AM = , and MKYY −−= 2
1

2
2

On the next iteration,

() ()

 ++
−=

 +
−=

−= 2

2
2
22

2

2
22

2

2
322

3

12
1

1
11

B
XX

A
B

X
A

B
X

AY

() ()
MKY

B
AKY

B
X

AY
B
X

B
X

AY 2
441212

1 2
22

22
22

022
22

2
2

2
222

3 −−=−−=
++

−=

 +
−−=

Generically, it may be affirmed that

() 0;12
1

2 >∀−−−= − NMNKYY NN

If () 0;*1' >∀−−= NMNKKN , in

a incremental algorithm, 0;'2
1

2 >∀−= − NKYY NNN ,
where 0;'' 1 >∀+= − NMKK NN

being

2' 2

2

0
M

B
AK ==

and

2

22
B
A

M =

Similarly, when drawing the second area, P0

= (X0,Y0) = (B,0). 0;'2
1

2 >∀−= − NKXX NNN ,

where 0;'' 1 >∀+= − NMKK NN
being

2'
2

2

0
M

A
BK ==

and 2

22

A
B

M =

That is to say, the squared coordinates of all
the ellipse points may be obtained in a incremental
way using second order differences. The objective is
to obtain the pixel integer coordinate from its squared
value. So the algorithm works with the decimal point
squared position Pi

2 and the middle point squared
decimal position Pm

2. As soon as Pi
2 < Pm

2, the next
point to light on the screen will be the just below,
that is to say P(X,Y) = (X,Y-1).

That is to say, the squared coordinates can
be obtained from the previous values in a incremental
fashion. In the practice, the previous equations work
on the squared R2 space. The problem now is how to
deduce the integer value on the screen from its
corresponding squared real number. Given a discrete
drawing grid like the one that appears on the next
illustration, there is a primitive segment that pass
through a pixel which coordinates are Ps(X,Y).

K

P(X,Y-1)

Ps(X,Y)
Pi(X,Y+K)

Pm(X,Y-0.5)

Figure 2. Decimal line approximation on a discrete

grid
This primitive intersects on the vertical axis

of the pixel at the coordinate Pi(X, Y+K). If K >= 0.5,
then the cutting point is nearer the upper point
Ps(X,Y), rather than to the lower one P(X,Y-1), and

vice-versa. That is, the pixel Ps is lighted if and only if
Pm <= Pi <= Ps; or Y-0.5 <= Y+K <= Y, or -0.5 <= K <=
0

On the other hand, P is lighted only when P
<= Pi <= Pm; that is Y-1 <= Y+K <= Y-0.5, or what is
the same -1 <= K <= -0.5. If these inequations are
raised to the squared, Ps will be lighted if and only if
Pm

2 <= Pi
2 <= Ps

2; that is (Y-0.5)2 <= Pi
2 <= Y2. On the

contrary, P will be lighted when P2 <= Pi
2 <= Pm

2; that
is (Y-1)2 <= Pi

2 <= (Y-0.5)2. Starting the algorithm loop
from the ellipse intersection with the vertical axis,
P0(X,Y) = (0,A), then Pm0

2 = Y2 - Y + 0.25 = A2 - A +
0.25

While the ellipse points Pi are being drawn,
the squared Y coordinate of the calculated points will
get closer to Pm

2. For all those points, their screen Y
coordinate will have always the same value: A. As
soon as the condition Pi

2 < Pm
2 is met, the point to

draw will be just the lower one that is P(X,Y) = (X,A-
1). Going on the same X loop, the points Y
coordinate will get lower, so when Pi

2 < Pm1
2, the

coordinate A-2 will be lighted. So,
Pm1

2 = (Y –1.5)2 = Y2 – 3Y + 2.25 = A2 - A +
0.25 - 2(A - 1) = Pm0

2 - 2(A - 1), where whatever point
to draw will meet the condition P1 = (X,A-1), if and
only if Pi1

2 >= Pm1
2. Generalising, it may be affirmed

that PmN
2 = (Y –0.5 - N)2 = Y2 – (2N+1)Y + N2 + N +

0.25. In a similar way, Pm2
N-1 = (Y –0.5 – N + 1)2 = (Y –

(N - 0.5))2 = Y2 – (2N-1)Y + N2 - N + 0.25. So, PmN
2 =

Pm2
N-1 – 2Y + 2N = Pm2

N-1 – 2(Y - N) = Pm2
N-1 – 2(A -

N) , where all those screen points will meet the
condition PN = (XN,YN) = (XN,A-N), if and only if PiN

2
>= PmN

2. That is, PmN
2 = Pm2

N-1 – 2 YN.

4. IMPLEMENTATION
The algorithm code is provided in C

language. The algorithm requires to calculate
internally a squared value. Since the algorithm
parameters are 32 bits Q15 fixed point arithmetic
numbers [Marven94], their squared values can reach
to 264. So these amounts cannot be supported by 32
bits fixed point numbers. That is the reason why 64
bits mantissas were used. So, the algorithm support
ellipses with radii up to 215 pixels, that is, enough to
draw primitives on A0 papers using 600 ppi
resolutions. These formats may be understood also
as two signed and unsigned chained numbers with
half the length (16 or 32 bits). The implementation is
showed at the appendix A.

The drawing functions used in the algorithm
are based on the 4 points algorithm in order to take
advantage from the ellipse symmetry in a very similar
way as the circle algorithm does with the eight points
algorithm. In this way, the algorithm uses a 2 point
array to draw a primitive in whatever screen position
with the same computational cost. The increment
routines only touches two points also as seen in the
Appendix A.

INITIALISATION

The algorithm performs in the first stage the
squared radii calculation and some format
conversions from integer to fixed point formats. The
next operations try to calculate the squared
difference between the initial decimal height and the
nearest middle point. The incremental constants K
and M are also calculated. They are the second order
differences and they will be used later in the loop
phase. It is also very important to calculate the break
point where change the swept direction. That is,
where the first loop (X swept) is finished and the
second one (Y swept) starts. The four points are
initialised and drawn.

X AXIS SWEPT

The X loop starts at P0 = (X0,Y0) = (0,A).
This is the area one as seen in Figure 1. While the
primitive tangent is higher than -1, X is incremented
in one unit, the gradient is recalculated and the
squared of this coordinate. If this squared value is
lower than the squared decimal low limit, then the
coordinate is decreased in one unit, the gradient is
recalculated again and the new squared low limit.
Using the four point symmetry, four points are
drawn.

Y AXIS INITIALISATION

In a first place the second order differences
are calculated. It is also calculated the squared
difference between the initial point and the nearest
middle point. The break point reached in the first
loop is now the one used to determine the end of this
one. The four points are initialised again and drawn.

Y AXIS SWEPT

The Y loop starts at P0 = (X0,Y0) = (B,0). This
is the area two as seen in Figure 1. The last point Y
coordinate obtained in the previous loop determines
the last point height in this second loop. The same K
and M constants are calculated symmetrically for this
loop. The four starting points are initialised and
drawn. In the same way as the first loop, while the
point Y coordinate is lower than the last point Y
coordinate, it is increased in one unit. The X2 is
recalculated incrementally. When X2 surpasses (X –
0.5)2, X is decreased one unit and (X –1.5)2 is
recalculated. For every step, four points are drawn.

5. COMPUTATIONAL COST
The aim in this point is to compare the cost

given by this fixed point based algorithm to a
paradigm like the Middle Point (MP) algorithm
[Foley92]. In order to avoid original the MP
implementation penalties, an optimised incremental
second order differences version was used. This
version used temporal variables to avoid redundant
calculations and fixed-point arithmetic in order to
diminish even more the computational cost and to
allow the best possible comparison, since the original
algorithm implementation is clearly worse. Both
algorithms has two symmetrical loops with a similar
computational cost. The point of change is reached
when

22

2

AB

A
 Y

+
== yK and

22

2

AB

B
 X

+
== xK

that is to say, the first loop is performed Kx

iterations and the second one Ky. Adding both
constants,

22

22

22

2

22

2

AB

BA

AB

B

AB

A

+

+
=

+
+

+
=+ xy KK

() ()
CKK xy =+=

+

++
=+ 22

22

2222

AB
AB

AB*AB

This means that the ellipse algorithms

always draw as many points as the hypotenuse that
links the axis ends. The total initialisation cost (both
loops) for the FPE, MP and McIlroy algorithms is
Operation FPE MP McIlroy
Division 3 0 0
Product 5 12 5
Add/Subs Inc/Dec Comp 12 10 13
Binary shift 54 7 10

Without taking into account the pixel

operations that are common for all the algorithms and
adding both main loops, the exact FPE algorithm cost
is showed in the next table. All the operations use
integer arithmetic

Opertion 1st loop 2nd loop Total
Comp. 2Kx 2Ky 2C
Add/Sub 3Kx+A-Ky 2Ky+B-Kx C+A+B+Kx
Inc/Dec 2(A-Ky) B-Kx +Ky 2A+B-C

The next table shows the computational

cost comparison for the three algorithms

Opertion FPE McIlroy MP
Add/Sub C+A+B+Kx 10C+A Kx+3A-Ky+2B
Comp 2C 6C+A 2C
Logical 3C
Product 2C+A
Inc 2A+B-C A+B

Notice that if the fixed-point arithmetic
should be hardware supported, almost all binary
shifts could be avoided, reducing even more the cost
for the FPE algorithm. In this situation, McIlroy’s
algorithm has the fastest initialisation phase,
followed by the FPE and finally the MP.
Nevertheless, these costs are very similar. Notice
that we have avoided the original floating point
arithmetic implementation of the MP algorithm and
we have improved it using second order differences.
Even though, the loop cost is clearly better for the
FPE algorithm.

ERROR ANALYSIS

This point compares the brute force
algorithm based on floating-point arithmetic to the
MP [Foley92] and FPE algorithms. It has been
chosen the MP algorithm because it is well know by
the scientific community and it is representative
(error and performance) of most traditional
algorithms. The test drew all possible ellipses with X
and Y radius in the range [1,1023] using a double
nested loop from 1 pixel to 1023. The amount of
primitives drawn was over half a million. The brute
force algorithm calculated the points giving a
floating-point result (without rounding). There were
taken into account integer radii and centres or
decimal radii and integer centres. This comparison
took into account the vertical difference (height)
between the value provided by the brute force
algorithm and the ones given by the algorithms
analysed. When comparing the rounded integer
results when using integer radii and centres, all the
algorithms provided practically the same values. No
visual difference was detected. The absolute error
value provided by both algorithms can be seen in
Figure 3 compared to the radii aspect ratio and
compared to the number of pixel drawn in a quadrant
in Figure 5. The absolute difference between both
algorithms can be seen in Figure 4 and in Figure 6.

0,18

0,19

0,2

0,21

0,22

0,23

0,24

0,25

0 0,
03

0,
06

0,
09

0,
12

0,
15

0,
18

0,
21

0,
24

0,
27

0,
3

0,
33

0,
36

0,
39

0,
42

0,
45

0,
48

0,
51

0,
54

0,
57

0,
6

0,
63

0,
66

0,
69

0,
72

0,
75

0,
78

0,
81

0,
84

0,
87

0,
9

0,
93

0,
96

0,
99

Elipse axes ratio

A
ve

ra
ge

 e
rr

or
 (

pi
xe

ls
)

Figure 3. Average error distribution depending on the

radii aspect ratio
The absolute average error presented by

both algorithms was 0.2420 pixels. The FPE increased
the error scarcely 0,00015 units. The error difference

is normally between one thousandth and one ten
thousandth for almost all the studied cases.

0,0001

0,001

0,01

0 0,
03

0,
06

0,
09

0,
12

0,
15

0,
18

0,
21

0,
24

0,
27

0,
3

0,
33

0,
36

0,
39

0,
42

0,
45

0,
48

0,
51

0,
54

0,
57

0,
6

0,
63

0,
66

0,
69

0,
72

0,
75

0,
78

0,
81

0,
84

0,
87

0,
9

0,
93

0,
96

0,
99

Ellipse axes ratio

A
ve

ra
ge

 e
rr

or

Figure 4. Average error difference distributed by axis
ratio

0,18

0,19

0,2

0,21

0,22

0,23

0,24

0,25

1 61 12
1

18
1

24
1

30
1

36
1

42
1

48
1

54
1

60
1

66
1

72
1

78
1

84
1

90
1

96
1

10
21

10
81

11
41

12
01

12
61

13
21

13
81

14
41

Length in points in a quadrant

A
ve

ra
ge

 e
rr

or
 (

pi
xe

ls
)

Figure 5. Average error distribution depending on

perimeter length of a ellipse quadrant

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

1 65 12
9

19
3

25
7

32
1

38
5

44
9

51
3

57
7

64
1

70
5

76
9

83
3

89
7

96
1

10
25

10
89

11
53

12
17

12
81

13
45

14
09

Number of points drawn in a quadrant (Perimeter/4)

A
ve

ra
g

e
er

ro
r

in
 p

ix
el

s

Figure 6. Average error difference distribution

depending on perimeter length of a ellipse quadrant

0 , 2 4

0 , 2 6

0 , 2 8

0 ,3

0 , 3 2

0 , 3 4

0 , 3 6

0 , 3 8

0 ,4

16 64 11
2

16
0

20
8

25
6

30
4

35
2

40
0

44
8

49
6

54
4

59
2

64
0

68
8

73
6

78
4

83
2

88
0

92
8

97
6

10
24

Rad ius l eng th

A
ve

ra
g

e
er

ro
rs

M P

F P E

Figure 7. Average error when compared to the brute

force algorithm with decimal radii and integer centres

Although the error differences increase for
very flat ellipses or very small ones, the absolute
error diminishes in these cases.The average
difference between the integer algorithms, including
the FPC, and the brute force one, is always under
0.25 pixels. This means that the maximum difference
between the geometrical centre of a pixel and the real
point was never higher than 0.5 pixels. So, the
algorithms provide a very good approximation. This
behaviour is similar to the one presented by the
FDDA [Molla92] for line drawing. When the FPE
algorithm takes into account the decimal radii, the
average error provided by traditional algorithms
increase up to 0.35 while the FPE remains on 0.25. On
average, traditional integer algorithms for drawing
ellipses and conics in general, have accuracy error
around 45% higher than the FPE algorithm since they
use integer radii that lose the decimal part. It may be
proved empirically that:

• Independently from the error distribution
(length or axes ratio), the error average for the
considered algorithms is generally around
0.25 pixels.

• Only for very small radii or exaggerated radii
ratios the error goes down significantly.

• The error difference between both algorithms
is, in general, between a thousandth and a ten
thousandth of pixel for the majority of the
studied cases.

6. CONCLUSION
In this paper we have introduced a new

algorithm for ellipse drawing, an algorithm based on
fixed point arithmetic. We can affirm that

• The drawing loops are independent. So, the
drawing can be performed in parallel from the
extremes towards the break points.

• Additionally, it uses no floating-point
operations while still supporting decimal
numbers.

• The cost difference is always favourable to
the FPE algorithm.

• The errors incurred by this algorithm are small
enough to allow its use in a lot of applications
from digital laser controllers to graphic
coprocessors.

The fixed-point arithmetic may be applied to
whatever kind of problem where the variation range
of the input/output variables and the intermediate
results is very limited. These problems need a very
fast arithmetic although not a high precision. So
computer graphics is the candidate for this kind of
arithmetic. This arithmetic may be applied to line-
drawing algorithms [Molla92], circle-drawing
algorithms, ellipses, clipping, ray-tracing, simulation,
scene description languages and so on.

The application of this arithmetic provides
fast algorithms. They require low resources like
registers, silicon surface on graphics coprocessors ,

lower operators’ complexity, etc. In many cases, they
allow hardware/software parallelisation [Molla93] and
they can use also the speed-up techniques used for
other algorithms. The algorithm presented in this
paper draw ellipses with integer centres and decimal
radii using the four points algorithm. It can be easily
upgraded to support decimal centres. In this case
there is only a two points symmetry. Nevertheless,
using a hardware operator, all these calculations may
be done in parallel, reducing the temporal cost to the
one provided by the algorithm that uses the eight
points algorithm. The accuracy provided by this
algorithm is worth this handicap.

7. REFERENCES

[Andres94] Andres E (1994) Discrete Circles, Rings

And Spheres. C&G 18(5):695-706
[Bresenham77] Bresenham, J.E., "A linear algorithm

for incremental digital display of circular
arcs", Communications of the ACM, Vol. 20,
No. 2, Pp.100-106, Febrero 1977

[Bresenham85] Bresenham , Jack E (1985) Algorithm
for circle arc generation, Fundamental
Algorithms for Computer Graphics, R.A.
Earnshaw, ed., NATO ASI Series, Vol. F17,
Springer Verlag, Berlin, Pp. 197-218

[Chengfu95] Chengfu Y, Rokne JG (1995) Hybrid
Scan-Conversion Of Circles. IEEE Trans
V&CG, 1(4):311-318, ISSN: 1077-2626

[daSilva89] Da Silva, D., "Raster algorithms for
2D Primitives", Master´s Thesis, Computer
Science Department, Brown University,
Providence, RI, 1989.

[Fellner93] Fellner DW, Helmberg C (1993)
Robust rendering of general ellipses and
elliptical arcs, ACM Transactions on
Graphics.12(3):251-276

[Fellner94] Fellner DW, Helmberg C (1994)
Best Approximate General Ellipses on Integer
Grids, C&G 18(2):143-151

[Foley92] Foley JD, van Dam A, Feiner SK,
Hughes JF (1992) Computer Graphics,
Principles And Practice. Addison-Wesley

[Hsu93] Hsu SY, Chow LR, Liu HC (1993) A New
Approach For The Generation Of Circles. CGF
12(2):105-109

[Kappel85] Kappel, Michael R., "An Ellipse-Drawing
Algorithm for Raster Displays", Earnshaw, R.,
ed. Fundamental Algorithms for Computer
Graphics, NATO ASI Series, Springer-Verlag,
Berlin, Vol. F17, Pp. 257-280, 1985

[Marven94] Marven, C and Ewers G (1994) a simple
approach to Digital Signal Processing, Texas
Instruments, Pag. 197-207, ISBN: 0-904-047-00-
8

[McIlroy83] McIlroy, MD (1983) Best Approximate
Circles on Integer Grids, ACM Trans. on
Graph., Vol. 2, No. 4, Pp. 237-263

[McIlroy92] McIlroy M. Douglas (1992) Getting
raster Ellipses Right. ACM Trans. On Graph.
11(3):259-275

[Molla92] Mollá R., Quirós R., Vivó R. "Fixed-point
Digital Differential Analyser" Proceedings of
Compugraphics 92. Pag. 1-5, 14-17, Dec. 1992.

[Molla93] Mollá R., Vivó R. “Parallel Fixed-point
Digital Differential Analyser with
Antialiasing”, Parallel and Distributed
Computing Practices,

[Pitteway67] Pitteway ML.V (1967) Algorithm for
Drawing Ellipses or Hiperbolae with a Digital
Plotter, Computer Journal, 10(3):282–289

[vanAken84] Van Aken, J.R., "An efficient Ellipse-
Drawing Algorithm.", IEEE Comput. Graph. &
Appl., Vol. 4, No. 9, Pp. 24-35, Sept. 1984

[Wu87] Wu X, Rokne JG (1987) Double-step
Incremental Generation of Lines and Circles,
Comp. Graphics & Image Procc. 37(4):331-344

[Wu89] Wu X, Rokne JG (1989) Double-step
Generation of Ellipses, IEEE CG&A, May:56-
69

[Skala94a] Skala,V.: O(lg N) Line Clipping Algorithm

in E2, Computers & Graphics, Pergamon
Press, Vol.18, No.4, pp.517-524, 1994.

8. APPENDIX A
Some definitions

#define DecrX4Points() {P[0].X --;P[1].X ++;}
#define IncrY4Points() {P[0].Y ++;P[1].Y --;}
#define IncrX4Points() {P[0].X ++; P[1].X --;}
#define DecrY4Points() {P[0].Y --;P[1].Y ++;}

Ellipse algorithm source code. Data types.

typedef union {
 __int64 V; // 64 bits integer
 struct {
 unsigned long Dec;

 long Int;
 };
 struct {
 short int DecLow;
 long Q15; //FPQ15
 short int IntHigh;
 };
}FPQ31;
union {
 long V; //32 bits integer
 struct {
 unsigned short int Dec;
 short int Int;
 };
} FPQ15 ;

The main algorithm for drawing ellipses is

this following one:

Elipse1516 (int CX, int CY, FPQ15 A, FPQ15 B)
{
FPQ31 A2fp3132, //A*A

B2fp3132, //B*B
A2mB2, //A*A + B*B

 Aux;
FPQ15 Dif2, K, M, Rint,

Xx2, //2X
Yx2, //2Y

__int64 A2fp4716, B2fp4716, DifH24716; //64b
int Y;

B2fp3132.V = B.V;
B2fp3132.V *= B.V;
B2fp4716= B2fp3132.V >> 16; //16 lsb not signf.

A2fp3132.V = A.V;
A2fp3132.V *= A.V;
A2fp4716= A2fp3132.V >> 16;
Rint = A.Round(); //The closest integer radius
Aux.V = Rint.V - 16384; //int(A) – 0.5 fixed point
Aux.V *= Aux.V;
Aux.V -= A2fp3132.V;
Dif2.V = Aux.Q15;
M.V = (A2fp3132.V << 1) / B2fp4716;

K.V = (M.V + 1) >> 1;
Aux.V = A2fp3132.V / (A2fp4716 + B2fp4716);
Aux.V *= A2fp4716;
Aux.V = A2fp3132.V - Aux.V;
DifH24716 = Aux.V >> 16;
Y = Rint.Int;
Yx2.V = Rint.V << 1;
Init4Points (CX, CY, 0, Y);
while (DifH24716 >= 0) //First swept on the X axis
{

IncX4Points();
DifH24716 -= K.V;
Dif2.V += K.V;
K.V += M.V;
if ((0 < Dif2.V) && Y)
{
 Y--;
 DecY4Points();
 Yx2.V -=131072L;
 Dif2.V-= Yx2.V;
}
Draw4Points ();

}
M.V = (B2fp3132.V << 1) / A2fp4716; //2nd swept
K.V = (M.V + 1) >> 1;
Rint = B.Round();
Aux.V = Rint.V - 16384; //int(B) – 0.5 fixed point
Aux.V *= Aux.V;
Aux.V -= B2fp3132.V;
Dif2.V = Aux.Q15;
Xx2.V = Rint.V << 1;
Init4Points (CX, CY, Rint.Int, 0);
while (--Y >= 0)
{

IncY4Points();
Dif2.V += K.V;
K.V += M.V;
if (0 < Dif2.V)
{
 DecX4Points();
 Xx2.V -= 131072L;
 Dif2.V -= Xx2.V;
};
Draw4Points ();

}
}

