
ROBUST INCREMENTAL POLYGON TRIANGULATION FOR
SURFACE RENDERING

Subodh Kumar1

Center for Geometric Computing
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218, USA

subodh@cs.jhu.edu http://www.cs.jhu.edu/~subodh

ABSTRACT

This paper presents a simple, robust and practical, yet fast algorithm for triangulation of points on the
domain of trimmed Bézier surfaces. These R2 points are input to this algorithm by a surface sampler. A set
of polygons is formed from these samples, which are then triangulated. We also show how to update the
triangulation when the samples, and hence the polygons, are updated. The output is a set of triangle strips.
The algorithm includes heuristics to avoid long and thin triangles. In addition, it also detects if the
sampling of the trimming curve forms any non-simple polygons and corrects the triangulation by adding
more samples. The triangulation algorithm is more generally applicable to polygons in a plane. We report
an implementation of the algorithm and its performance on extensive surface-model walkthrough.

Keywords: Surface rendering, CAD, Triangulation, Polygon, PSLG, Computational geometry.

1 Supported in part by NSF Career grant 9733827, ARO grant DAAH04-96-1-0013 and NSF ERC grant
9731748.

1. INTRODUCTION

View-dependent surface triangulation is a popular
technique for interactive display and walkthrough of
large geometric models like those of ships and
submarines. Such real-time inspection in a virtual
environment provides the sense of space and is
crucial for simulation based design. It can reduce the
time and cost of manufacturing by eliminating the
need for full-scale mockups. Such view-dependent
techniques enable fast rendering by generating more
polygons the region close to the viewer and less
elsewhere. However, such schemes require fast re-
sampling and re-tessellation of surfaces. To
efficiently perform such updates, we devise an
incremental triangulation algorithm for parametric
surfaces that allows addition and deletion of samples.
The re-sampling algorithm is presented elsewhere
[KML96,Kum96].

Our system uses the Bézier representation as its core
primitive. A number of techniques have been
proposed for sampling and tessellation of trimmed
Bézier patches [RHD89,AES94,PR95,KML96]. Our
algorithm performs triangulation by factoring the

domain into a set of rectangles and a planar straight
line graph (PSLG), and then triangulating the PSLG.
For our purpose, a PSLG is a planar polygon with
additional vertices and edges enclosed. Fig. 1(c)
shows an example in thick lines. (Note that
triangulation of such PSLGs is equivalent to that of
general PSLGs.) Our algorithm allows incremental
updates and is more efficient. Additionally, we have
incorporated polygon simplicity detection at little extra
cost. Consequently, our implementation is robust. We
also produce few long and thin (‘skinny’) triangles.
Skinny triangles have a small internal angle.
Furthermore, unlike most recent algorithms, we
directly generate triangle strips, which are more
efficient to render on current graphics systems than
are triangles. Algorithms to generate long strips from
triangles exist [EAV99], but they are intended for
static models and are rather slow. Several
asymptotically efficient polygon triangulation
algorithms [FM84,Cha91] are known but most are
difficult to implement and they produce generally
skinny triangles. It is possible to ensure triangle
‘fatness’ using additional (Steiner) points
[BDE92,Mit93,KU99]. For example, in two

dimensions, a polygon may be tiled using triangles
with angles at most 7/8π using O(n2 log n) Steiner
points in time O(n2 log2n) [Mit93]. Unfortunately,
these Steiner points greatly increase the number of
triangles generated. Moreover, Steiner points are
added on polygon edges. In our application such on-
edge Steiner points can result in cracks [KML96] and
cannot be used. The rest of this paper is organized as
follows. In section 2, we describe the application and

the problem. Section 3 presents the polygon-tracing
step that is used to construct a set of polygons. Section
4 discusses polygonal triangulation. In section 5, we
describe our data structures for efficient point location
and present the incremental algorithm. Finally, we
provide the implementation results in section 6 and
conclude in section 7.

2. PROBLEM DESCRIPTION

A tensor product parametric surface, S (u,v), is defined
by a vector function over the domain (u,v) = [0,1] ×
[0,1]. Optionally, a closed sequence of trimming
curve, Ci(t), each defined over the domain t = [0,1]
may be defined on the domain of S (see Fig. 1). For
brevity, we will refer to the sequence as a single
trimming curve, C. The trimming curve restricts the
domain of S. By convention, we say a trimming curve
retains the part of the domain locally to its right. This
retained part is what we triangulate. In this paper, we
only consider the trimming curves that comprise a
single connected component (other than the regular 0-
1 domain boundary). A method to reduce multiple
components to this case is described in [KM95]. First,
sample points on the domain of the surface (forming a
grid) and the trimming curve (forming a polygonal
chain) are chosen [KML96]. The sampling is
performed for every frame in an interactive graphics
simulation. Since the sampling density for a surface
does not change much in consecutive frames, it is
more efficient to modify the triangulation of the
previous frame than to re-generate the whole
triangulation anew. Triangulation of these samples is
the subject of this paper. Thus, we have –

Initial Input: a grid of points and a closed polygonal
chain (Fig. 1(b)) on the 2D u-v domain. These input
points are uniformly distributed on the domain and the
screen-space distance between adjacent points is

bounded. In addition, surface re-sampling results in –

Update Input: add or delete a grid-line or a polygon
vertex. While multiple changes on a surface can be

simultaneously handled, it is easier to describe the
algorithm in terms of a single update at a time.

Output: a triangulation such that no triangles lie
outside the domain restricted by the trimming curve’s
tessellation. In addition, no edge of the triangles
generated may be greater than twice the maximum
distance between adjacent input samples. Bounded
edge length ensures small tessellation-error [Kum96].

Skinny triangles are undesirable for smooth shading.
Using simple heuristics, we are able to obtain fat
triangles in practice. Furthermore, our algorithm
directly produces OpenGL compliant triangle strips,
which can be displayed more efficiently than a list of
triangles. We avoid triangle fans: we keep the degree
of a vertex in the triangulation small in order to lower
the cost of incremental updates to the triangulation.
Steiner points are not added on the edge of the
trimming polygon , since that can lead to cracks in the
tessellation.

Note that trimming curves are non self-intersecting.
However, a sparse sampling of the trimming curve can
still produce self-intersecting polygons. While
uncommon, such non-simple polygons do occur and
can cause most triangulation algorithms to fail.
Instead of assuming that the input polygon is simple,
which can require very high sampling density, we
check for such cases at little additional cost and thence
make the polygon simple by increasing the sampling
only when necessary.

In our application domain, a significant number of

instances of the algorithm are executed every frame.
The size of each instance is relatively small. (We ran
several experiments to characterize sampling sizes in
typical surface-model walkthroughs. Thousands of

(a) (b) (c)
Figure 1: Trimming curve, samples, grids and PSLG on the planar surface domain

v

u

u-line

v-line

cell

surface
domain

trimming
 curve

surfaces are re-triangulated per frame. The number of
surface samples average about 21, the number of
curve samples average about 45 and the number of
points in a non-empty cell is around 2.5.) Hence, in
addition to simplicity and robustness, the constants of
complexity of the triangulation algorithm are crucial
to interactive performance. The space requirement per
surface is not quite critical, but it is prohibitive to
maintain a large data structure for each surface across
all frames. To speed up point location operations
(required for incremental updates), we use the natural
partitioning provided by the grid sampling of the
surfaces domain and discard all other auxiliary data
structures, which are re-constructed every time they

are needed. Before we describe the construction of this
data structure, we introduce some notation. Without

loss of generality, assume that the curve is specified
clock-wise and the part of the domain to be
triangulated is enclosed by the trimming curve.

Definitons: The polygon corresponding to the
tessellated trimming curve consists of points pi (see
Fig. 1). The surface grid points are denoted by gij . We
also denote a vertical grid line (a sequence of sample
points) by ui and horizontal lines by vi. i and j range
from 0 to the corresponding sampling sizes. We also
refer to the u and v coordinates of a point, p, on the
domain as its u-value or u(p) and v-value or v(p),
respectively. Each rectangle formed by four adjacent
grid points is called a cell. The part of the domain
between two consecutive grid lines is called a strip.

3. POLYGON-TRACING

The grid provides a natural partition of the domain.
We trace the trimming polygon, i.e. process pis in
polygon order, assigning to each point pi the grid cell
it lies in, cell(pi). The tracing step generates a set of
quads (rectangles) and a PSLG that we must then
triangulate. During tracing, we also construct auxiliary
data useful for triangulation. In addition, we store all
intersections of the polygon with u-lines. For each
cell, we keep a list of intersections of the polygon with
its left boundary in increasing order of their (unique)
v-values. We discard all degenerate intersections, i.e.
if a polygon segment is collinear with a u-line or a v-
line, we remove all corresponding grid points from
consideration. We store the following information
during polygon-tracing:

For each intersection, I, of the polygon segment, pi-
pi+1, with a u-line, uj:

Mark I as MIN , if u(pi) > u(pi+1). Mark as MAX
otherwise. (u(pi) ≠ u(pi+1) as degenerate intersections
are not allowed — only grid points and lines that lie
strictly inside the trimming polygon are included in
the PSLG.)

Store v(I), the v-value of the intersection. (Keep
multiple intersection with a cell boundary sorted by v-
value.)

Store Maximum(v(I)) and minimum(v(I)) attained by
the polygon in the u-strip containing pi. These bound
the quads (rectangles on the domain, Fig. 2).

Store a pointer to pi+1. For each cell’s left and right u-
boundaries we maintain a linked list of all
intersections with that boundary. Note that in the
worst case a cell could have O(n) intersections with a
polygon with n vertices. However, since the cells and
polygons follow the same sampling rule and highly
winding trimming curves are tough to generate, the
number of intersections of most cell boundaries is
small, if not 0 or 1.

If the entire trimming polygon lies within the same
cell, no intersections are detected. This case does
occur in practice, especially for surfaces with small
area on-screen or of degree 1×1. It means the polygon
is contained in one cell. Such (low detail) surfaces
need only few samples, hence the number of points on
the polygon is small as well. If that is not the case,
additional grid lines may be included solely for
polygon-tracing, thus ensuring that the number of
points in a cell remains small.

(a) (b) (c)
Figure 2: Polygon-Tracing (PSLG Segments inside the polygon are indicated by dots. Hatched shading indicate

the side of the polygon that is to be triangulated. Dotted shading indicates quads.)

Flagged:
MAX

Flagged:
MIN

Stored min
v-value

Stored max
v-value

max

min

quad

ui ui

We generate the quads and the PSLG using what
amounts to a modified sweep line algorithm. We find
MIN-MAX pairs on each u-line and a corresponding
MIN-MAX pair on its adjacent u-line. (see Fig. 2(a)).
The pairs on each line are available in the sorted order.
Note that adjacent MIN-MIN or MAX-MAX pairs
indicate non-simple polygon. The matching of pairs
on adjacent line (to obtain a strip of quads) is as
simple as matching the ith pair on both lines, except
the two cases shown in Figs. 2(b) and 2(c), when
polygon chain turns back to intersect the current line

instead of the adjacent line. For case (b), we discard
(for matching purposes only) the extra pair on the u-
line ui,. For case (c), we insert an extra MIN-MAX
pair on ui (for matching).

4. PSLG TRIANGULATION

Our triangulation scheme is based on trapezoidation
[ZC99,Sei91]. The basic idea of this technique is
demonstrated in Figure 3. Trapezoidation of a PSLG
(shown in thick solid lines) is obtained by drawing
horizontal rays (i.e. dashed lines parallel to the u axis)
at each vertex of the graph limited in both directions
by the first segment (or vertex) the ray intersects. The
PSLG segments and horizontal lines form a set of
trapezoids. The diagonals (shown in thin solid lines)
of the trapezoids that connect two vertices of the
PSLG partition the PSLG into a set of uni-monotone
polygons. Uni-monotone polygons consist of a single
v-monotone chain and another line-segment. For a
discussion and proofs, we refer the reader to
[Sei91,FM84]. It can be shown (we omit the proof
here) that the line-segments mentioned above, call
them monotone segments, are all PSLG segments, and
thus small in length for our application. We will
exploit this fact while triangulating these monotone
polygons.

MONOTONE TRIANGULATION

Simple O(n) algorithms for triangulating monotone
polygons have been proposed [GJPT78,FM84] and
implemented [NM95]. However, all of them tend to
produce triangle fans and skinny triangles, both
undesirable properties for our purpose. We propose
another algorithm, equally efficient in practice that
produces better triangle strips. Our approach is
motivated partly by [HM83] and [RR94]. Designed
for uni-monotone polygons, our algorithm is much
simpler and more efficient. We use a u-tree: a u-tree

maintains all the local u-minima and can be
constructed in O(n). The invariant for a u-tree node is
as follows: it stores the vertex with the minimum u-
value of all its children. All vertices above it (i.e. with
higher v-value) are kept in its left sub-tree and all
vertices below it are kept in the right sub-tree. Fig.
4(a) illustrates the basic idea of tree construction. A u-
tree can be constructed incrementally in a single pass
over the n vertices of the polygon in O(n) + O(k2),
where k is the number of local u-minima. Processing
the minima in a random order reduces the expected
cost to O(n + k log k). However, k is small in practice
(around than 3-4) and processing the vertices in the
polygon order is usually sufficient.
Once the u-tree is constructed, we produce the triangle
strips in O(n) time as follows:

• Maintain pointers to the current root vm, current
top, vt, and bottom, vb, vertices of the chain

• While vt and vb both have lower u-value than vm

does:

� Add the one with lower u-value, say vt, to the
strip, Replace vt by the next vertex on the
polygon

polygon

Horizontal visibility v-line

Trapezoid
diagonal

Figure 3: Trapezoidation

(a) Our triangulation (b) Inevitable Fan (c) Unlikely Skinny Triangles
Figure 4: Triangulating Monotone Polygons

 Top monotone

Bottom monotone
vb

vt

• Otherwise,

� Add vt, vm and vb to the current strip and
output it.

� Diagonals vt -vm and vb - vm subdivide the
polygon into two v-monotone polygons, the
left sub-tree of the current u-tree corresponds
to the top polygon and the right sub-tree
corresponds to the bottom polygon. Proceed
recursively (Fig. 4(a)).

Note that the procedure above uses a diagonal
between vt and vb only if both lie to the left of the
minimum u-valued inflection vertex between them
and thus are visible to each other. Due to this
advancing front like technique, high degree triangles
are less likely to occur. Further, u(vt) – u(vb) is small,
as the corresponding monotone segment is short (see
Fig. 4(c) for an example). Hence skinny triangles of
the kind shown in Fig. 4(c) do not occur. However,
skinny triangles can be generated due to horizontal
trapezoidation, if two trapezoids vertically adjacent to
each other are both skinny (see Fig. 6(a)). This is a
general shortcoming of our scheme since we avoid
skinny triangles only during the second phase:
monotone polygon triangulation. While it may be
possible to devise an algorithm not based on
trapezoidation, we have found the trapezoidation
scheme to be very robust. It fails only if the input
polygon is non-simple or almost non-simple. Hence, it
is more appropriate to implement special cases for
such (rare) skinny monotone polygons generated by
trapezoidation. In practice, we avoid diagonalizing
trapezoids with small height and thus obtain more than
a single u-monotone chain. An extension of the
monotone triangulation algorithm described above
works for this case. Note also that sometimes fans are
inevitable as shown in Fig. 4(b) – no other
triangulations exist.

SIMPLICITY DETECTION

We call a polygon (or a PSLG) simple if no two edges
intersect, except possibly at a common vertex.
Although it is not common for a polygon input to the
triangulation algorithm to be non-simple, if left

undetected, it can cause the triangulation to fail and
display to become invalid. However, we pose the
simplicity detection in terms of horizontal visibility
lines used in the trapezoidation. Subsequently, a minor
modification to the trapezoidation algorithm helps us
to detect if edges pi-pi+1 and pj-pj+1 of the polygon
intersect. If they do, we compute extra samples on the
curve between parameter values t(pi) and t(pi+1) and
between t(pi+1) and t(pj+1) and retry. Since polygons
are rarely non-simple, the extra cost of re-sampling
and iterating is acceptable. Simplicity check is
straightforward after realizing that the horizontal line
corresponding to some vertex of a non-simple polygon
is inconsistent. We define inconsistency as follows:

Definitions: A point q is visible to point p if the line
segment pq does not intersect the given PSLG.
Segment s is visible to p if a point on s is visible from
p. Point p is on the interior with respect to an oriented
segment pi-pi+1 visible to p, if it lies on the right hand
side of pi-pi+1. Also on the interior are all points r on
the line segment pq, where q is the point on pi-pi+1

such that v(q) = v(p). A point is inconsistent if it is on
the interior with respect to some edge of the polygon
while on the exterior with respect to another. If a point
is not inconsistent we call it consistent. Clearly, each
non-simple polygon has inconsistent points on its
boundary. In fact:

Theorem: one of the polygon vertices, pi, must be
inconsistent, if the polygon is non-simple.

Proof: Note that a vertex is inconsistent if any point
on the horizontal line through it is inconsistent. To
sketch a proof, consider two edges pi-pi+1 and pj-pj+1

that intersect. There are four possible cases to
consider. Two are shown in Figs. 5(a) and 5(b). The
other two are symmetric. Locally interior points are
shown shaded for each edge. The black dots show

examples of inconsistent points.

CASE I: If either pj or pj+1 is horizontally visible from
the other edge, we have found an inconsistent vertex.
Otherwise, there must exist occluding edges and
vertices. The vertex with the minimum v-value greater
than v(p), p being the point of intersection, must be

pi

Pj+1

Pi+1

Pj

 p

Pk pi

Pj+1

Pi+1 Pj

 p

 Pk

 Pl

 s

(a: Case I) (b: Case II) (c)
Figure 5: Simplicity Verification

visible to both pi-pi+1 and pj-pj+1 and is hence
inconsistent.

CASE II : Consider the segment s, that is horizontally
visible from p. If both the end points of s are visible
from p, one of these must be inconsistent. Otherwise,
there must exist minima and maxima vertices pk and pl

on either side of the horizontal visibility line through
p. (One of these points may lie on s.) If s is oriented
upwards, pk is inconsistent, otherwise, pl is
inconsistent. Strictly speaking, the argument above
holds only if any given segment has only one
intersection with the rest of the polygon and if no
segments are horizontal. However, by using

transitivity, the first restriction may be removed and
by rotating the input (or topologically sorting it), the
second restriction may be removed.
Thus, simplicity detection can be performed while
constructing the horizontal visibility line for
trapezoidation. The only remaining operation is to
verify that the two ends of the visibility line are both
in the exterior or both in the interior. (As a special
case, for the minimum and maximum v-valued
vertices, if the visibility line is locally in the interior,
there must exist other segments visible along this
visibility line. Fig. 5(c) shows an example with the
corresponding smooth curve overlaid.)

5. INCREMENTAL UPDATE

Before we explain the incremental update, we need to
consider the data structure for triangulation. Since the
number of surface patches can be quite large, we keep
the size of cache per patch small. In addition to the
triangle strips, for each v-strip on the domain, we
maintain a list of triangle strips intersecting that v-
strip, i.e., we keep a pointer to the first vertex of each
entering triangle strip. In addition, if one of the strip-
edges is also an edge of the trimming polygon, we
mark it so. This structure is similar to the one
proposed in [MSZ96], which allows point locations, in
expected O(n1/3)) time. However, we do not maintain
adjacencies between strips and hence cannot “walk”
from a random triangle. We directly point to the
appropriate strips. It is possible for us to retain
pointers between adjacent strips as well, however
since the number of strips crossing a cell is typically
small, we do not lose much performance by explicitly
searching for adjacent strips in any cell.

The types of updates to our triangulation is limited for
our application (see [KM95,KML96] for details):

i) A segment pi-pi+1 may be replaced by piq and qpi+1

(and vice versa), call these update segments.
ii) A grid line ui (or vi) could be added or deleted:

call it the update line.

The incremental triangulation has the following main
steps:

• Re-trace to compute new PSLG

• Delete triangles intersected by the update features
(segment or line), thus creating a hole

• Re-triangulate the hole

The first two steps need some explanation. For each
update input, we first need to determine if any quads
are added or deleted. Thus, we need to re-trace the
polygon. However, we need only re-trace the new
segments in case (i). No other segments may change.
In case (ii), we must retrace all segments intersected
by the update line. we can determine the polygon
edges that bound the edges intersected by the line. We
only need to re-trace between these pairs of bounds.

Any quads introduced by this re-tracing are
diagonalized. A quad intersected by the new feature is
deleted, if it contains an intersection with the trimming
polygon, otherwise it is bisected. Similarly if the
deletion of a feature results in the deletion of an
intersection, a new quad is generated or two quads are
merged. The quads added or deleted in the previous
step are also included in the set of update features.
Parts of a grid line that result in a quad bisection are
deleted.

(a) Thin Trapezoids (b) Triangle Fan (skinny) (c) Our Triangle Strips
Figure 6

Skinny polygon
generated by

id i

To locate an update feature in the current
triangulation, we start randomly in each triangle-strip
crossing the corresponding v-strip and walk across
triangle boundaries until all triangles adjacent to the
feature are located. A strip intersected by an update

feature is split into two or more (disjoint) pieces. Each
intersected triangle is deleted from the strip. We re-
triangulate this hole (which is again a PSLG) using the
algorithm described in Section 4.

6. IMPLEMENTATION AND PERFORMANCE

We augmented the publicly available implementation
of Seidel’s triangulation algorithm [NM95] with our
algorithm and plugged it into a Bezier surface
rendering system. We performed a suite of tests on a
variety of Bezier surfaces on a Silicon Graphics
Indigo 2 system with Maximum Impact graphics. We
compared our results with those of [NM95] by
plugging that in. [NM95] uses the algorithm by
[FM84] for monotone triangulation. In practice, our
implementation results in less than 10% slow-down in
one-time triangulation. (Here we compare the times
for the first time triangulation performing no
incremental triangulation.) For the cost of this
slowdown, our system generates more uniform sided
triangles, and, more importantly, it never fails – the

code does not crash and the result is correct even for
non-simple curve approximations. Our triangulation is
of significantly better quality: the smallest angles goes
up from 11.3 degrees to 33.7 degrees on average. The
degree of our triangulation is better as well (see Table
1). Furthermore, we generate triangle strips obtaining
a rendering speed-up of more than 60% over triangles.
A surface-patch needs re-triangulation in less than
20% of the frames on average, and is just re-rendered
80% of the time. The speed-up in triangulation
obtained by using an incremental technique over one
triangulating from scratch every time sampling
changes is almost 90%. Also, note that our
implementation is more robust due to the simplicity
check. We have performed millions of triangulations
without any failure using our implementation.

7. CONCLUSION

We have presented a simple, robust, efficient and
incremental algorithm for triangulating points on a
surface. This includes both the generation of the
polygons and their triangulation. To contrast our
method of polygon generation with that of [KM95],
that approach is cell based and attempts to find
polygons around each cell. In spite of the higher
overhead of this search, [KM95]’s method results in
similar sized polygons. Furthermore, we do not need
to handle a large number of special cases, nor do we
need the clean-up stage, which can be quite slow. In
addition to being more efficient, our algorithm directly
produces triangle strips and generates better quality
triangles. However, due to strip splitting procedure,
the strips tend to become fragmented after a while.
Currently we perform complete re-triangulation
periodically. A slightly more complicated approach
could avoid splitting strips by adding extra vertices in

the middle. Our algorithm also verifies that a polygon
is simple at little additional cost. While infrequent, if
left undetected, a non-simple polygon can cause a
system to crash. While it is possible to extend our
incremental algorithm to perform constrained
Delaunay triangulation, we believe the cost does not
justify the minor benefit. One limitation of our system
is its independence from the surface parameterization.
We only guarantee triangle quality in the domain.
Thus, our triangulations may still be skinny for
severely skewed parameterizations. In our experience,
most surface models do not suffer from such skews.
Our algorithm works well in the common cases.

Table 1: Performance of our Triangulation algorithm on an SGI Octane with 195MHz R10k. (Statistics are per
frame averaged over more than 5,000 frames. Time is in milliseconds, angle is in degrees.)

Model Num.
Patches

Triangulation
time1

Minimum
angle1

Avg.
Degree1

Triang.
time2,3

Triang.
Time2,4

Min.
angle2

Avg.
Degree2

Tot. frame
time2

Brakehub 560 32 10.5 9.2 33 14 33.5 1.8 24

Torpedo 1201 59 16.1 11.1 62 28 34.2 2.1 42

Pivot 4101 61 14.9 10.8 68 38 31.1 2.2 66

TorpRoom 17032 131 8.4 14.4 143 81 25.3 3.9 110

1. [NM95] implementation: No simplicity check, skinny polygons, generated triangles
2. Includes simplicity check, fat polygons, triangle strip generation
3. First instance of the triangulation
4. Subsequent updates

REFERENCES

 [AES94]S. Abi-Ezzi and S. Subramaniam, Fast
Dynamic Tessellation of Trimmed NURB
Surfaces, Computer Graphics Forum, 13(3),
107—126, 1994. (Eurographics ’94.)

[BDE92] M. Bern, D. Dobkin and D. Eppstein.
Triangulating polygons without large angles.
Proc. 8th Annual ACM Symp. Comput. Geom.,
pages 222—231, 1992.

 [Cha91]B. Chazelle. Triangulating a simple polygon
in linear time. Discrete Comput. Geom. ,
6:485—524, 1991.

 [EAV99] J. El-Sana, J, E. Azanli and A. Varshney.
Skip Strips: maintaining triangle strips for
view-dependent rendering. Proc. Visualization,
1999.

 [FM84] A. Fournier and D. Montuno. Triangulating
simple polygons and equivalent problems.
ACM Transactions on Graphics , 3:153—174,
1984.

[GJPT78] M. R. Garey, D. S. Johnson, F. P. Preparata,
and R. E. Tarjan. Triangulating a simple
polygon. Inform. Process. Lett. , 7:175—179,
1978.

[HM83] S. Hertel and K. Mehlhorn. Fast
triangulation of simple polygons. Proc. 4th

Internat. Conf. Found. Comput. Theory, 207—
218, 1983.

[KM95] S. Kumar and D. Manocha. Efficient
rendering of trimmed NURBS surfaces.
Computer-Aided Design, 27(7): 509—
521,1995.

[KML96] S. Kumar, D. Manocha, and A. Lastra.
Interactive display of large NURBS models.
IEEE Transactions on Visualization and
Computer Graphics , 2(4): 323—336, 1996.

[Kum96] S. Kumar. Interactive Display of Parametric
Spline Surfaces. Ph.D. Thesis, University of
North Carolina, 1996.

 [KU99] E. Kranakis, and J. Urrutia. Isomorphic
triangulations with small number of Steiner
points. International Journal of Computational
Geometry&Applications, 9(2):171—180, 1999.

 [Mit93] S. Mitchell. Refining a triangulation of a
planar straight-line graph to eliminate large
angles. Proc. 34th Annual IEEE Symposium on
Foundation of Computer Science (FOCS).
Pages 583—591, 1993.

 [MSZ96] E. M”ucke, I. Saias, and B. Zhu. Fast
randomized point location without
preprocessing in two- and three-dimensional
Delaunay triangulations. In Proc. 12th Annual
ACM Symp. Comput. Geom. , pages 274—283,
1996.

[NM95] A. Narkhede and D. Manocha. Fast polygon
triangulation based on Seidel’s algorithm. In
A. Paeth, editor, Graphics Gems V, Academic
Press, 1995.

[PR95] L. Piegl and A. Richard. Tessellating
trimmed NURBS surfaces. Computer Aided
Geometric Design , 27(1):16—26, 1995.

[RHD89] A. Rockwood, K. Heaton, and T. Davis.
Real-time rendering of trimmed surfaces. ACM
Computer Graphics, 23(3):107—117, 1989.
(SIGGRAPH Proceedings).

[RR94] R. Ronfard and J. Rossignac. Triangulating
multiply-connected polygons: A simple, yet
efficient algorithm. Comput. Graphics Forum ,
13(3):C281—C292, 1994.

[Sei91] R. Seidel. A simple and fast randomized
algorithm for computing trapezoidal
decompositions and for triangulating polygons.
Computational Geometry Theory &
Applications , 1(1):51—64, 1991.

 [ZC99] B. Zalik and G. Clapworthy. A universal
trapezoidation algorithm for planar polygons.
Computers&Graphics, 23(3): 353—363, 1999.

