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ABSTRACT

The use of minimal energy spline (MES) curves in shape design produces smooth geometry. This paper de-
scribes a prototype system implementing such a technology for solids design. The section curves of three-
dimensional solids is designed using the MES curves incorporating constraint management technology for both
unilateral and bilateral geometric constraints. A new shape design method, the mold cavity deformation, is de-
veloped to mimic the force-based deformation process inside a mold cavity. It is conjectured that this suite of
intuitive (reality mimicking) and interactive design tools would allow stylists to work more effectively on the

creative aspects of the design.
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1. INTRODUCTION

A good shape design environment enables the designers
to realize the product concept with minimum effort.
Shape design systems are usually evaluated from the
perspectives of the geometric coverage, the data ex-
changeability, and the effectiveness of design methods.
Although quantitative study of design method effective-
ness is difficult, a general consensus is that the less the
designers need to know about the (mathematical) details
of the system, the better the designer can concentrate on
the creative job.

Contemporary shape design systems still fail to com-
pletely satisfy the stylists, especially in the aspects of
human-computer interface [Dekker92]. Traditional
model making is a tactile process, where a form is
gradually evolved from an amorphous mass of deform-
able or carvable material. The development of tactile
interface and more intuitive design method and meta-
phors has been an important research topic in com-
puter-aided styling recently.

Splines have been used in enginecring drafting for
decades in the industry. In particular, the section curves
of ship hull are usvally drafted with the aid of splines
and ducks. Minimal-energy geometric representation
has been proposed in the literature for creating free-
form fair shapes since the late 1980s. Minimal energy
spline (MES) [Celniker91, Brunnett94, Veltkamp95] is
a computer representation that models the physics of a
physical spline. By incorporating appropriate physical
laws (e.g., the beam theory) with an underlying mathe-
matical shape representation, the computer artifact
mimics the behavior of a physical beam. Similar smooth

curves can be obtained by bending the virtual spline
tool. Graphical user interface replaces the clumsy
ducking devices. More importantly, the resulting
geometry is captured electronically in a data format
suitable for subsequent data exchange.

This paper summarizes a recent research effort of shape
design environment by the CAD Laboratory of Tatung
Institute of Technology. In the proposed shape design
system, the MES is chosen to be the geometric repre-
sentation for smooth shapes. The rationale of this choice
is due to the concern of intuitive design media. It is our
belief that a reality-mimicking design interface offers
the designers a familiar working environment. It is
conjectured that by alleviating the burden of learning
new tools (and its associated mathematical back-
ground), the designers can concentrate more on the
creative aspects of their work and produce better design.

A new shape design method, which we called the mold
cavity deformation, is also developed to mimic a physi-
cal deformation process in a shaping mold. This method
formulizes the shape design process as a constraint
satisfaction problem and utilizes a contact-based con-
straint solver.

2. RELATED WORKS

Smoothness of the geometry has always been a concern
for stylists. It has been pointed out that the shape ob-
tained by direct manipulation of control points is not as
smooth as desired. Fairing algorithms should be applied
if the fairness of the geometry is critical [Farin93].
Smoothness of physical splines is guaranteed by its
nature of deformation. The behavior of these physical
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splines can be computer-simulated by implementing the
theories of elasticity [Terzopoulos87]. Terzopoulos and
Fleischer [Terzopoulos88] present the physics based
models implementing the principles of the viscoelastic-
ity, plasticity and fractures. Celniker and Gossard [Cel-
niker91] present a shape design system based on the
elastic model. Their implementation is based on finite
elements. Triangular shape elements are used for repre-
senting surface patches. Szeliski and Tonnesen [Sze-
liski92] present an oriented particle system for surface
modeling. Various types of potential energy are created
for the unstructured particles in three space. The final
configuration is obtained by minimizing a weighted
sum of the potential energy. The final geometry can be
obtained by interpolating the particle configuration.
Instead of using a fixed mesh of control points, Welch
and Witkin [Welch92] present a geometric arrangement
of hierarchical B-splines. As the geometry deforms
elastically, the underlying geometry automatically sub-
divides to satisfy pre-defined geometric criteria such as
smoothness. Qin and Terzopoulos [Qin95] summarize
the progress of physics-based deformation and propose a
physics model based on the NURBS (non-uniform ra-
tional B-spline). Wesselink and Veltkamp [Wes-
selink95] present an interactive MES design method.
They classify the potential energy into internal and
external components, representing the elasticity of the
curve and the “design-operators” respectively. The
shape of the geometry is obtained by solving a con-
strained quadratic programming problem.

Another class of methods in the literature concerns with
using intuitive design metaphor to achieve global de-
formation of geometry. Sederberg and Parry [Seder-
berg86] propose a free-form deformation method.
Utilizing a trivariate parametric volume and mapping
the control pints to the lattice, the geometry can be
changed by manipulating on the controlling lattice.
Extended free-form deformation by Coquillart [Coquil-
1art90] extends the idea to incorporate non-prismatic
lattice. Axial deform by Lazarus et al. [Lazarus94] util-
izes a similar idea but changing the controlling entity to
be a controlling axis.

3. MINIMUM-ENERGY SPLINE

The strain energy of a (planar) parametric curve 7(u)
can be modeled as follows [Celniker91]:

$¢@)= [lelr?+ BaF ) 0

The first and second terms correspond to the strain
energy induced by axial deformation and in-plane
bending respectively. Two parametric functions o/(u)
and f(u) are used to represent curves with non-
homogeneous material properties. The vector g in the
left-hand side of Eq. 1 is composed by the concatenation
of characteristic points of the geometry of the entity. For

B-spline entities, g represents a concatenated vector of
control points.

The potential energy of the system under external loads
is defined as the strain energy minus the work done by
the external loads:

E(9)=5@)-w@) )
The external work by concentrated load on a particular

point on the curve Fu') is:

W =766 )5l ®
The notation 7, refers to the geometry before the ap-
plication of f .

The external work by distributed load acting in the
parametric interval [ug,u, ] of the curve is:

W= [ Gl & = Pl Wi @

Note that the notion of 7 differs from the normal vec-
tor of the Frenet frame. It is a unit normal vector always
pointing to “right-hand-side” of the curve, That is,
positive p(u) denotes a “left-hand-side” loading.
Hence, the definition of 7 is

;.‘

i = Rot(z,~90°) ] ©)

where Rot(z,~90°) denotes a rotation matrix along the
global z-axis. Combining Eqgs. 4 and 5, we get

W =" pw[Rot2907 }Fw~Fo@pdu  ©
]

The equilibrium state of an MES under force is obtained
by minimizing the above potential energy (Eq. 2). In
gradient-based minimization methods, the state vector
moves in the gradient direction with appropriate step
size. At equilibrium, the gradient of potential energy
vanishes and the potential energy reaches a local mini-
mum:

% = %[S(a)—W(q‘)]= 0 Q)

The state vector g is the concatenation of characteristic
points. The gradient vector collectively updates g as
the minimizer proceeds. An alternative interpretation is
that each characteristic point (the component in g ) is
driven to their due position by their corresponding
driving force (the components in the gradient vector). It
is clear from Eq. 7 that the driving force consists of two
components, induced by strain energy and external
work respectively. When the two components balance,
the gradient vector vanishes and the system reaches
equilibrium.
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The aforementioned interpretation enables an imple-
mentation using the particle systems. Each particle in
the system represents a component in the state variable
G . The net force acting on the particle relates to the
gradient component of the state variable. The mass of
these particles is set to unity. The behavior of these
particles is governed by some physical laws, such as the
laws of Aristotelian dynamics, f =mv. This law is

preferred over the Newtonian dynamics (f =ma)

because it does not produce undesired oscillations once
the net force vanishes.

The problem then becomes a typical computer anima-
tion problem, with forces on the particles specified by
the gradient of the potential energy. The iterations of
minimization thus become the iterates from the initial
value problem of an ordinary differential equation,
Mg = f , where M is the mass matrix of the 2D particle

system, M = diag(my,mq, --,m,,m,) .

Using the Euler’s method, the iterations are computed
by:

Gl +a)=g()+ M~ F A ®
Particle system implementation also provides a vivid
portrayal of the solution process by animating the
movements of the characteristic points. This facilitates a
visual verification of the solution.

The strain energy of the curve (Eq. 1) is quadratic in
terms of . The work by concentrated load (Eq. 3) is
linear in terms of g . The work by distributed pressure
(Eq. 6) is quadratic in terms of g, regardless of the
pressure distribution. Quadratic potential energy has
one stationary point. The local minimum corresponds to
the global minimum of the function. Hence, gradient
based methods are sufficient for finding the global

minimum.

4. GEOMETRIC CONSTRAINT SOLVERS

Geometric constraint solving refers to the techniques of
maintaining the constraint relationship while the system
is under user interaction. It is an active research topic in
the literature. The solution strategies can be roughly
categorized into logical [Bruderlin88], numerical
[Lin81], and graph-based approaches [Bouma95]. In
this work, the techniques of penalty energy, constraint
dynamics and a contact-based inequality solver are
employed. These techniques are briefly reviewed in the
following.

4.1 Penalty Energy Method

Assume the bilateral constraints to be satisfied are rep-
resented by the following canonical relation: C(§)=0.
Penalty methods add an penalty energy term,

-%—k ,C7C , into the potential energy of the system. This
energy is called the external energy operators in Wes-
selink’s work. If &, is large, then the minimizer tends

to reach a state that keeps the penalty small. From the
gradient force perspective, the penalty energy corre-
sponds a constraint spring with stiffness of &, attached
to corresponding particles.

This method is relatively simple to implement. But the
constraint relationship is never satisfied exactly since

the constraint spring always competes with other forces
in the system. Larger k, generally gives better match

of the constraints, but the system becomes stiffer. In the
context of shape modeling, further shape modification
of penalty-constrained MES entities is difficult. Never-
theless, with appropriately chosen parameters, this ap-
proach is a valid design tool.

4.2 Constraint Dynamics

Constraint dynamics is a widely used technique in in-
teractive computer graphics. This technique is
pioneered by the works of Witkin[Witkin90] and
Gleicher [Gleicher93]. This method assumes the meta-
phor of particle system. The key step of constraint dy-
namics is the computation of the constraint force. The
objective is that with the addition of the constraint
forces, the net force acting on the each particle should
be in the legal direction (where constraints are main-
tained). Hence, differential manipulation along the legal
force direction ensures that the system always satisfy the
constraints. The main idea of the method is reviewed
below.

Assume the state variables g are constrained by the
canonical expression: C(g )= 0. The equation of motion
(of Aristotelian dynamics) is F = M§ , or

da = A~ =

LemF=m (7, +7.) ©)

where fu is the applied force of the system and fc is
the unknown constraint force.

Assuming the equality is satisfied at +=0. For the
constraint relations to remain valid during the course of
simulation, the next expression has to be true:

dC dCdj . .\dG

—_—=—==] = 0
dt g dt (q)d—t

Plugging in the equation of motion (Eq. 9), we get,

M, +7.)=0 (10)
Employing the principle of virtual work, which states
that constraint force should not add energy to the sys-
tem, or fc-tf:O,weget,
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f.=JT2 (11)
The dimension of the factor 1, or the Lagrange multi-
plier, depends on the dimension of constraint vector C.

Substituting the resuit into Eq. 10, we get

M YT I=-1M7f, (12)
Solving the above linear system and substituting the
result to Eq. 10 gives the appropriate constraint force.

Adding it to the applied force, the state vector can be
solved by integrating the equation of motion.

The advantage of this approach (as compared to the
penalty methods) is that the constraints are exactly sat-
isfied. However, more efforts are spent on the derivation
of the Jacobian matrix and the computation of 1 . The
latter involves matrix multiplication and the solution of
linear simultaneous equations. The computation cost
increases with the dimension of the state vector and the
number of constraints.

4.3 Contact-based Inequality Constraint Solver

Assume the unilateral constraints to be satisfied are
represented by the canonical relation: C(3)>0. Each
scalar constraint in C(§) defines a halfspace. The
halfspace constraint is “inactive” if the relation is

strictly greater than(>). Otherwise, the constraint is
called “active.”

Active constraints are equality constraints. Hence, the
constraints can be solved using a strategy similar to
constraint dynamics. However, because of the unilateral
nature, when the state particle is pushed back to the
legal side, the constraint force should vanish. A differ-
ent solution strategy has to be devised to take this into
account. Harada et al.[Harada95] presents a method
which transforms the inequality constraint problem into
the contact problem of rigid body simulation, which is
solved by an iterative procedure developed by Baraff
[Baraff94].

In the following, we will first summarize Harada’s
procedures. A modification to the procedure will be
proposed to deal with equality and inequality constraints
simultaneously in Sec. 5.3.

The Contact Problem

Rigid body simulation is an active research area in
computer animation. The derivation of contact forces
between bodies is the critical part of the simulation. The
governing conditions of the rigid body contact problem
are the normal force condition [Baraff94]. This conditi-
on can be represented by the following three inequali-
ties: 20, f20,and f7a=0,where G and f
represent the concatenated vector of the contact force
and acceleration at each contact point.

It can be shown that [Baraff95] the relative acceleration
and contact forces are related by the following equation:
@=Af +b , where A (a symmetric matrix) and b are
related to the contact geometry (moment of inertia, etc.).
The resulting problem can be reformulated as follows:

FT(Af +b)=0, f=20 (13)

where the contact forces f are the only unknown

variables. Baraff has derived an efficient solver, taking
advantage of the normal force conditions. The details of
the solver will be explained next.

QPSOLVE: the Iterative Solver for Contact Prob-
lem

QPSOLVE, as refereed to in [Baraff94], is an iterative
procedure. The basic idea is as follows. The set of con-
tact points is subdivided into two groups: contact and
non-contact. The contact group (GC) contains the
points with zero acceleration (and positive contact
force); the non-contact group (GNC) contains the ones
with zero contact force (and positive relative accelera-
tion). The computation procedure is based on the nor-
mal force condition. A pivoting procedure is employed
to maintain the validity of the two sets (GC and GNC).
For details of the computation, please refer to [Bar-
aff94], in which a pseudo-code implementation is also
given.

Inequality constraints and contact problem

Recall that the inequality constraints of the system are
C(7)20. Assume that only k of the m constraints are
active at the moment. Reorganizing the constraint vec-
tor, we use a different vector C, representing all active
constraints at this instant.

We require that the first (time) derivative of the active
constraints be non-negative or, él(q) >0, for the fol-
lowing reasons. For active constraints to stay active, the
constraint value should be zero, or (':", =0. Should the

constraint value become inactive due to the external
forces, it can only move to the legal (positive) side,
according to the requirement of uni-lateral constraints.

The expressions for C, is

dC; dCyd§ . .\dg
d dj dt @ dt 9

Combining the results from Eqgs. 9 and 11, we get

M YUTI+IM7If, >0and 120 (15)

Notice that the results are of the same format as the
contact problem: The Lagrange multiplier A is analo-
gous to the contact force; the first derivative of active

constraints is analogous to the relative acceleration; and
the matrix and vector in Eq. 13 become
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A=M YT, b=uM"lf, (16)

The active constraints (the ones with positive A and
zero 6’1) correspond to the GC points. The remaining

constraints (the ones with zero A1 and positive C‘l)

correspond to the GNC points. Using QPSOLVE, the
unknown Lagrange multipliers can be obtained. It
should be pointed out that the solver needs to re-
evaluate the sets of active constraints after each itera-
tion, as the status of each (scalar) constraint may
change.

5. DESIGN METAPHORS

Metaphoric design using geometric constraints has been
studied extensively in the literature. The use of bilateral
constraints and some form of penalty energy methods is
the prevailing methodology. In this work, the incorpo-
ration of unilateral constraints is proposed. This new
addition facilitates a cavity mold-like deformation proc-
ess.

5.1 Bilateral Constraints

In the prototype type system, the following set of design
tools based on bilateral constraints is implemented.
Except for the rubberband constraint, all bilateral con-
straints are solved by constraint dynamics.

Thumbnail Constraint

This constraint simulates the behavior of nailing a par-
ticular point on the curve to a fixed point. The con-

straint is stated as: C(§)=7 *)— 13* =0.
Position-Ring Constraint
This constraint is similar to the thumbnail constraint for

constraining the curve to pass through a fixed point, but
the parametric location is free to vary. The constraint is

stated as: C(§,u)=rF(u)- 13* =0.

Tangent Constraint

This constraint prescribes the tangent direction at a
") a=o0,
where 7 is a normal vector perpendicular to the tan-
gent direction.

Rubberband Constraint

particular point on the curve: C(G)=F ((4

This constraint implements the penalty methods and
pulls a particular point on the curve to a fixed point.
The penalty force added to each control point is:

(e u i)

This constraint is analogous to the point attractor men-
tioned in Wesselink and Veltkamp [Wesselink95].

5.2 Mold Cavity: a Design Metaphor Using Unilat-
eral Constraints

One major focus of this paper is the use of inequality
constraints in design, in particular, the use of inequality
relations to model a mold cavity. The shape is free to
deform inside the cavity under loads. Once the geometry
reaches the boundary of the cavity, constraint forces
start to act on the geometry to constrain the geometry in
bound.

Two issues need to be resolved in implementing such a
design paradigm: the determination of whether the
geometry is in the legal region (cavity); and the defor-
mation procedure of the geometry under the influence of
cavity boundary. The following discussion assumes a
polyline-boundary mold. We also assume that the con-
vex hull of the curve is free of contact from the
boundary in the initial configuration.

A mold cavity is termed convex is the region is convex.
Otherwise, it is a concave mold cavity. Convex molds
are relatively easy to deal with. If all control points of
the B-spline curve stay in the same halfspace defined by
a line, the curve will not have intersection with the line,
according to the variation diminishing property of B-
spline. As the convex mold cavity is defined by the
intersection of all halfspaces of the boundary line (seg-
ments), constraining all control points to stay in the
mold ensures that the curve has no intersection with the
mold boundary. Therefore, the following inequality
constraint set is used during simulation: H;(g;)20,

where H; refers to the halfspace defined by each (ex-
tended) polyline and g; refers to the control points.

It should be pointed out though that this method im-
plements a sufficient condition of constraining a curve
in convex region. It is possible that some control points
are outside of the mold yet the curve stays inside of the
mold.

5.2.1 Handling Concave Molds

Concave molds are a lot more difficult to deal with.
Since the cavity does not correspond to the intersection
of all boundary halfspaces, activating all boundary half-
space constraints yields an incorrect mold cavity. Let us
first analyze how a curve might intersect with a piece-
wise linear boundary. As shown in Fig. 1, the curve-
boundary intersection can be classified into two cases:
the intersection contains no intruding vertex (type-1),
and the one with at least one intruding vertex (type-2).

It is clear that if we impose a constraint that the mold
boundary and the convex hull of the curve should not
intersect, then the curve is guaranteed to free of inter-
section from the boundary (by the variation diminishing
property). However, this imposes a strict limitation on
the allowable configurations of the curve in the mold.
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Fig. 1 Curve-Mold Intersection Analysis: (a) Type-1 (no in-
truding vertex) and (b)Type-2 (at least one vertices).

The approach we choose allows more freedom for shape
variation in the mold. The curve-mold intersection is
prevented by explicitly checking the above two types of
intersection during the simulation. The details are de-
scribed as follows.

Type-1 intersection can be detected as follows. For each
line intersecting the convex hull of the curve, search the
farthermost paralle]l tangent points on the curve. If this
point is either in the mold cavity, or the line segment
connecting this point and its projection on the line inter-
sects the mold cavity more than once, a type-1 intersec-
tion has occurred.

When this happens, the curve is subdivided at the par-
allel tangent point. The simulation is backtracked to the
previous step where the parallel tangent point is still in
bound. An inequality relation constraining this point
and the intersecting boundary is activated for subse-
quent simulation.

For type-2 intersection, each mold vertex that falls into
the curve hull is tested. The orthogonal projection of the
vertex on the curve is computed. If the projection point
is in the mold, or the line segment connecting the pro-
jection and the vertex intersects the mold more than
once, or the distance between the two points is less than
a threshold, then type-2 intersection cither has occurred
or is likely to happen soon.

A position ring (described in Sec. 5.1) will be added to
constrain the curve to pass through the intruding vertex.
If between simulation steps, more than one intruding
vertices occur, bisection is employed to find the first
intruding one. Position ring is applied to the vertex and
simulation is backtracked to the time where the first
oontact occurs.

Discussion
As curve-mold intersection is exhaustively considered
by the previous two measures, the curve is guaranteed to

free of intersection. Two more issues need to be ad-
dressed:

Firstly, the control points of the curve are heuristically
constrained to stay in the mold cavity. Although this
does not guarantee the curve to be free of intersection,
but it helps to reduce the computations required by the
previous two steps.

Point-in-mold task is done by activating the appropriate
halfspaces during user interaction. The point inclusion

test discussed in this paper (Sec. 5.2.2) is capable of
determining the in/out status of a point and finding out
the boundary closest to this point. Once a point moves
out, one can backtrack to the time stamp where status
changes occur and trigger the associated halfspace con-
straints with the “violating” entity.

If the violating entity is an edge, the halfspace defining
the line segment is added. If the violating entity is a
vertex, two halfspaces of two neighboring edges are
added. It should be pointed out that during the simula-
tion, the active constraint set might change. The point
inclusion test is done each step to account for such a
variation.

Secondly, the position ring on a mold vertex is actually
uni-lateral in nature. That is, if the force is reduced, the
curve may retract from the mold contact. The exact
inequality constraint should be: The closest point to the
vertex on the curve stays in the legal region. However,
implementing such a constraint involves procedural
computation (finding the closest point; testing in/out)
and is difficult to integrate in the current constraint
management scheme.

To account for the inequality nature of this constraint,
we find the “pseudo-contact” force at the point. By (ar-
tificially) subdividing the curve at the contact point
(q.), we can evaluate the force corresponding to the

vertex as f, =aS /33, . If the direction of the force

points to the cavity, the curve is about to retract the
mold vertex. The simulation should be backtracked with
the position ring removed.

5.2.2 Point Inclusion Test for Polygonal Regions

The mold cavity design procedure requires a good point
inclusion test. This test should reliably return both the
Boolean results and the violating entities if the point is
classified as out.

Point inclusion test is one of the most discussed prob-
lems in computational geometry. Popular solution
strategies include [Haines94] crossing test and slab
methods. The former determines the point status by
counting the number of crossing of a ray fired from the
point to the exterior of the polygon. The latter is more
efficient for repetitive testing by preprocessing the test
domain to a sorted grid (or slabs). Both methods fail to
provide the information of violating boundary elements.
In the slab method, the boundary of the innermost slab
is not necessarily the closest line. In the shooting
method, the first encountered entity depends on the
direction of the ray.

The method we employ has been used internally in a
geometric modeling kernel [Gursoz91]. It is briefly
summarized as follows. It assumes that the boundary of
a polygon is properly oriented. For each edge in the
boundary, determine whether the point is in its region
of responsibility (defined below). If so, compute the
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signed distance. The sign of the distance is used to de-
termine the in/out status of a point. The entity with the
smallest (in magnitude) distance is the one to determine
the status of the test point. Hence, the computation
complexity is proportional to the sides of the polygon.

Fig. 2 shows a polygon marked with the region of re-
sponsibility. The region of responsibility of an edge is a
“question-mark” shaped entity. It consists of a sector
around the starting vertex of the edge and a parallel slab
around the edge itself.

% ‘ >
A
\ 1’
‘%'

Fig. 2 A Polygon and Its Region of Responsibility.

The region of responsibility also matches with the con-
straint activation scheme nicely. Fig. 3 shows that con-
straint activation scheme associated with the infout test
for both concave and convex corners.

Fig. 3 Constraint Activation Based on the Point Inclusion
Test. Bracketed labels are the activated constraints.

5.3 Mixing Equality and Inequality Constraints

The mold cavity design method illustrated in the previ-
ous section shows the need for solving equality (position
ring at mold vertices) and inequality constraints (control
points to stay in mold) simultaneously. One can replace
the equality by two inequality constraints and use the
inequality solver exclusively. However, this increases
the system size (increase the dimensions of the Jaco-
bian) and the computation time. This section shows a
more efficient modification to QPSOLVE for handling
both types of constraints.

Modified QPSOLVE

Two constraints are termed decoupled if the sets of
independent variables involved do not have intersection.
Unless the equality constraints and inequality con-
straints are completely decoupled, the two types of con-
straints need to be solved simultaneously to insure the
correctness of the Lagrange multipliers.

The equality constraint is analogous to a hinge at the
contact point: the acceleration must be zero and the
contact force can be positive or negative. Therefore, we
can combine two types of constraints, inequality and
equality constraints, into one “system” and record the
types of each scalar constraint. The equality constraint
is of group hinge (GH). The conditions in GH allow
negative contact force and the relative acceleration
should be zero at all time.

5.4 Results

Fig. 4 shows simple square mold with a triangular “ob-
stacle”. The curve is initially linear. With force applied
to the curve, Type-2 intersection has occurred and a
position ring is added to the tip (Fig 4b). Fig 4c shows
that further editing is possible with a second force.

Fig. 5 shows a more complicated mold cavity. Fig. 6
shows a convex mold cavity. In both figures, only part
of the cavity is shown. (The walls of the rectangular
cavity are not shown.)

Fig. 6 Convex Mold Cavity.

6. SYSTEM IMPLEMENTATIONS

A prototype design system has been implemented on an
SGI (Indigo* Extreme) workstation. The design inter-
face is implemented using Open Inventor and Tk/Tcl
[Ousterhout94]. The section geometry is designed using
the MES curves. The underlying mathematical repre-
sentation of the MES curve is a uniform cubic B-spline
curve with six control points. Surface models are con-
structed by extrusion, sweeping, and lofting. The three
dimensional solids are constructed by applying enclo-
sure operators to the enclosed volume. Shapes [X0x96],
a non-manifold geometric modeling kemel is used for
the Boolean operation.

In this project, a force feedback arm is integrated into
the shape design system. The two degree-of-freedom
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arm (developed by the mechanical engineering depart-
ment of Tatung Institute of Technology) operates in two
modes:

® In the contouring mode, the designer cannot alter
the shape of the curve, but can feel the contour of
the curve by manipulating the arm.

® In the design mode, the force sensor picks up the
force exerted by the user and the point of action is
determined by the arm configuration. The defor-
mation of the curve is computed and the deformed
location at the point of action is fed back to the ro-
bot controller for position control.

7.CONCLUSIONS

This paper presents a set of constraint-based tools for
two-dimensional parametric curves. The prototypical
implementation shows the aspects depicted in the intro-
duction: intuitive control interface, data exchangeabil-
ity, and broad geometric coverage.

Various aspects of this interface still require improve-
ment. In particular, the computation time of constraint
management should be reduced. Although this kind of
styling system is aimed at the conceptual design stage
when the shape is rather simplified, the computation
speed is critical for real-time feedback. Baraff [Bar-
aff96] recently present a new constraint dynamics pro-
cedure. By rearranging the constraints into primary and
secondary types, he claims that a linear complexity can
be achieved. However, since this model differs signifi-
cantly from the articulated models, (and variables may-
be highly coupled), the effectiveness of this method
reward further research.
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