FAST PENUMBRA CALCULATION IN RAY TRACING

Arno Formella
Universitit des Saarlandes, FB 14 Informatik, 66041 Saarbriicken, Germany
e-mail: formella@cs.uni-sb.de

Andrzej Lukaszewski
University of Wroctaw, Institute of Computer Science,
ul. Przesmyckiego 20, 51-151 Wroctaw, Poland
e-mail: anl@ii.uni.wroc.pl

ABSTRACT
Penumbras, or soft shadows, are an important means to enhance the realistic appearance of computer gener-
ated images. We present a fast method based on Minkowski operators to reduce the run time for penumbra
calculation with stochastic ray tracing. Detailed run time analysis on some examples shows that the new
method is significantly faster than the conventional approach. Moreover, it adapts to the environment so
that small penumbras are calculated faster than larger ones. The algorithm needs at most twice as much

memory as the underlying ray tracing algorithm.

Keywords: shadow calculation, stochastic ray tracing, bounding volumes, Minkowski operators, offsets.

1 INTRODUCTION

Realistic shadow generation plays an important role
when producing computer generated images. The hu-
man observer is accustomed to seeing shadows in an
illuminated scenario in the real world, so they should
be present in a computer generated image, too. More-
over, shadows enhance the perception of the third di-
mension in the two-dimensional image [Wange92].

The computation of shadows is a very expensive task
for every rendering algorithm. Adding penumbras or
so-called soft shadows makes the problem even more
complex. A survey of different techniques is gath-
ered e. g. in [W0090]. Ray tracing is a powerful ren-
dering algorithm well suited for shadow generation
when multiple light sources and reflective surfaces are
present.

Stochastic ray tracing [Cook84] is a method where
more than one ray is traced per shadow calculation.
For each point to be shaded, a certain number of rays
is “fired” towards each of the light sources. The target
points on the surface of a light source are distributed
randomly implementing a kind of Monte Carlo inte-
gration method to estimate the correct size of the visi-
ble solid angle.

We present a fast method to generate penumbras which
is based on stochastic ray tracing. There are no se-
vere restrictions on the shape of the objects or the light
sources. However, certain types of objects and light
sources will allow for faster rendering times. The main
idea is to detect possible regions where penumbra oc-
curs and to confine the expensive process of stochastic
ray tracing to those regions.

The next section reviews penumbra calculation from
the point of view of ray tracing. Section 3 gives a
brief overview of our algorithm. Section 4 introduces
Minkowski operators and gives a more formal back-
ground of the method for non-spherical shaped objects
and light sources. Section 5 presents example images
and summarizes some performance results.

2 PENUMBRA
CALCULATION

Many simple rendering programs model light sources
as mathematical points without any three-dimensional
extension. Such light sources cause sharp shadows,
because the shadow calculation reflects a step func-
tion: a point to be displayed is either in shade or in
light.

-238-

In real environments, however, the transition from illu-
minated to non-illuminated regions is smooth. A point
is in shade respective to a certain light source when
an obstacle totally occludes the light source. In other
words, if any ray starting at the point and going to-
wards the light source intersects an opaque surface be-
fore it reaches the surface of the light source. Con-
versely, a point is in light respective to a certain light
source when the light source is entirely visible from
the point. Penumbra occurs when an obstacle partially
occludes the light source, allowing only a subset of the
rays to reach the light source.

If we employ stochastic ray tracing to sample the vis-
ible solid angle of a light source with d rays per point
without any enhancement, the run time to trace the
shadow rays is roughly d times larger than the run time
in ordinary ray tracing that generates sharp shadows.
To achieve good image quality, the value of d should
depend on the size of the light source; values of d > 50
may bécome necessary.

Two ideas to speedup tracing rays towards linear or
area light sources, e. g., [Pouli90, Bao93], have been
described in [Wo093]. To decrease the amount of work
to be done, the candidate list of objects possibly inter-
sected by the shadow rays is confined to the objects ac-
tually intersecting the cone from the point toward the
area light source. The candidate list is generated dy-
namically. The approach can be seen as a special form
of cone tracing [Amana84] with shadow caching.

The shadow buffer, as introduced in [Haine86] and
extended in [Pearc91], becomes very important in
stochastic ray tracing for penumbra. Because we send
several rays from the same point to the same light
source—<clearly, to different positions on the surface
of the light—a cached object likely serves as occlud-
ing object for many rays. However, the shadow buffer
does not exhibit such a large improvement as one
might expect at first sight. Many rays for penumbra
calculation pass close to the surfaces of the objects
but they do not hit the objects. The shadow buffer is
best to speedup tracing rays that actually hit objects.
Thus, roughly speaking, only half of the rays sent out
in a penumbra can profit from the shadow buffer. For
points outside of any shadow region, no advantage can
be taken of the shadow buffer.

3 OVERVIEW OF THE
ALGORITHM

Figure 1 depicts a scenario where a light source L cast
a shadow on the surface S because the light is oc-
cluded by the object Q. The umbra and the penumbra
compose the entire shadow. The basic idea of the al-
gorithm to speedup penumbra calculation is very sim-
ple. We detect penumbra regions and employ expen-

sive calculations only where it is necessary. The de-
tection is based on the following observation. If we
shrink the light source L to a point and, at the same
time, increase the occluding object @) by the radius of
L, then the true shadow volume is a subset of the ap-
proximate shadow volume. This depends neither on
the radius of L nor on the distance between L and @)
or L and S. Section 4 includes a more formal and gen-
eral explanation of this fact.

L - light source

\
v S - surface

\ penumbra ﬁ

shadow

confined region

Figure 1: Shadow classification.

Once we have confined the shadow, we can employ
stochastic ray tracing to sample the solid angle under
which the light source is seen. Outside of the confined
region we can skip this step.

If more than one light source is present, we increase
all objects by the maximum amount required by all the
light sources. We perform ray tracing in two different
data sets. The “geometric” data set contains the envi-
ronment as usual; the “shadow” data set contains the
shrunken light sources and the increased objects. We
determine in the shadow data set whether a given point
belongs to a shadow region or not, i.e., shadow rays
are initially traced in the shadow data set. If the point
is found to be in shade, we start stochastic ray tracing
in the geometric data set. As a further optimization,
we detect umbra regions with a similar approach con-
fining further the penumbra region.

4 PENUMBRA DETECTION
USING MINKOWSKI
OPERATORS

We define both the objects and the light sources
as compact and connected sets of points in three-
dimensional Euclidean space. We write the distance
between two points p and ¢ as d(p,q). We denote

-239-

by r(p,q) the set of points that defines the ray seg-
ment which starts at p and ends at g. Let us define
Minkowski operators (e.g., as in [Latom91]) which
provide a convenient way to express set operations.

Definition 1 (Minkowski Operators) For two sub-
sets A and B of Euclidean vector space, Minkowski
sum and difference are defined as:

A®B = {a+bla€Abe B},)
AeoB = {a-blacAbeB}.)

We will use the Minkowski operators for expanding
original objects casting shadows. In the special case
of spherical light sources this will simplify to the
operation of solid offsetting as defined in [Farou85,
Rossi86]. Let B(p, d) denote the ball located at p with
radius d. If the light source is such a ball then the solid
offset is the required expansion of the obstacle Q

04(Q) = Q@ © B(0,d) . 3

The more frequently used equivalent definition of solid
offset is as follows.

Definition 2 (Solid Offset) For an object Q@ and a
distance d, a solid d-offset Oq(Q) is defined as the
set of points that are not farther than d from Q), i. e.,

04Q)={p|3¢€Q:d(p,q) <d} . @)

We will also need the following property which is
weaker than convexity. We say a subset A of the Eu-
clidean space is star-convex respective to a pointc € A
if for any point p € A the segment r(c, p) is totally in-
cludedin A, i. e., we can reach with a straight line from
the so-called center c any other point in the set without
leaving it.

4.1 Basic Lemma

For a star-convex light source L with center c. We can
derive the following simple lemma which is illustrated
in Figures 2 and 3.

Lemma 1 Let L be a star-convex set respective to a
point ¢ € L. If the ray r(c,p) does not intersect
Q © (L © {c}) then the point p is not in shade of Q
respective to the light source L.

Proof (by contradiction): Let C = J, ¢y, 7(,p) de-
note the visibility cone of the light source L as seen
from point p. The point p is in shade of @ if and only
if C N Q # B but since the set L is star-convex respec-
tive to the point ¢ we have C C r(c,p) ® (L © {c}).
Thus, we have (r(c,p) ® (L © {c})) N Q # @ which
means that there are points r € r(c,p), | € L and
g € Q such that r + (I — ¢) = ¢. But this is
equivalent to r = ¢ — (I — ¢) which means that

- _ L - light source
~

-

solid offset of -,
the obstacle I’

solid offset of
the ray segment

Figure 2: Not-in-shade condition for spheres.

r(c,p) N (Q © (L& {c})) # 0. Hence, the ray does
intersects the expanded object.

With the notion of solid offsets, we obtain: a point p is
not in shade of an object () respective to a light source
B(c, d) if the ray r(c,p) does not intersect the solid
offset 04(Q).

Minkowski operators and offsets are hard or costly
to evaluate in the general case. However, the not-in-
shade condition is the base for many ideas to calcu-
late bounding boxes or approximations of expanded
objects.

Solid offsets are useful for several reasons. First, they
are easy to evaluate for spheres (offsets of spheres are
spheres with bigger radius). Second, for other simple
geometric objects like cylinders and cones they can be
easily bounded within a grown object by changing few
parameters. Third, there are specialized algorithms for
calculating offsets of parametric surfaces which can be
used.

The usage of Minkowski operators is more effective
for arbitrary shaped light sources than the usage of
simple offsets. If we enclose a linear or planar light
source in a bounding sphere, we can handle the light
with solid offsetting as described above. However,
the approximate shadow volume is unnecessary large.
Figure 3 depicts the scenario for a linear light source.
If we used just solid offsets, we would have to put the
light source into a ball and expand all the bounding
boxes of the objects equally in all directions.

4.2 Optimizations

Lemma 1 is a good criterion to detect possible shadow
regions. However, there are points in full light which
we do not detect since the visibility cone is smaller
than the set we are checking (expressed in terms of

-240 -

L - light source

N expanded Q

boundary of \

expanded 1(c,p) =
AY

S - surface p

Figure 3: Linear light source causes smaller
extended object.

Minkowski operators). We can further confine the
possible shadow regions if we construct the shadow
data set with smaller offsets (or with scaled sets and
Minkowski operators). The idea is depicted in Fig. 4.
We start with spherical light sources and offsets and
will present obvious generalizations.

PN N L - light source

original offset

decreased offset

Figure 4: Radius optimization.

As we see in Fig. 4, instead of taking the solid offset of
object Q at distance d(c,!) for a shadow intersection
test, we can use the offset at distance d(s, q) for these
points. We can calculate the ratio ¢ in which we can
shrink the offset distance with simple geometry:

— d(qu) — d(P, Q) — d(P, Q)
dle,l) — d(p,l) d(p,q) +d(g,l)

t 5

If we choose the maximum value of ¢ for all points p €
S,l e L,andq € Q, withr(c,p)N(Q & (L & {c})) #
@, we can shrink the offset distance still detecting the
region containing both umbra and penumbra:

d(p, q) }

d(p,q) +d(g,1)
max{d(p, q)}

max{d(p,q)} + min{d(g,!)}

lmez = mMax {

If we denote the scaling of the set A by a real number
tast- A= {t-a|a€ A}, then we can formulate the
following result.

Lemma 2 Let L be a star-convex set respective to a
pointc € L and let t 4, be defined as above (for S, L
and Q). If the ray r(c, p) does not intersect the set

QO tmer - (LO{c}) Q)

then a point p is not in shade of Q) respective to L.

The improvement is significant if the distance to the
light source is not too small compared to the diameter
of the scene. Since it depends on the placement of the
object and the light source, it is much more effective
to-calculate the ratio t,,,, for each object and light
source than to do it globally.

In the case of several light sources we take for a given
object the maximum shrinking ratio ¢4, for all light
sources and calculate only one expanded object. tyaz
is a lower bound for the shrinking ratio and may be
difficult to be calculated. However, any value ¢ with
1>t > t;as can be used.

4.3 Umbra detection

The previous discussion allowed us to distinguish be-
tween the region in full light and the region in shadow.
However, there might exist an umbra where we need
not to use stochastic ray tracing, either. In the follow-
ing, we will denote set completion as A = {z|z ¢ A}.
The following lemma can be used to detect umbra.

Lemma 3 Let L be a star-convex set respective to
a point ¢ € L. If the ray r(c,p) intersects
Qo (Lo {c)}) then a point p is in the umbra of Q
respective to the light source L.

Proof: We can state the in-umbra condition as well
in the following form (see Fig. 5 for an illustration).
There exists a point 7 € r(c,p) such that r ¢ Q ©
(L © {c}) which is equivalent to Vg ¢ Q VI € L

r # §—(I—c). With simple transformations, we obtain
Vi¢ QVleL : g#r+(l—c) This means that
the set {r} & (L © {c}) is totally included in the set Q.
But this is nothing else but the set L translated by r —c
which is star-convex respective to point 7. Hence, for
an arbitrary point [€ L the ray r(p,l) intersects the
set {r} & (L © {c}) and so the ray intersects object
what means that the point p is in the umbra.

We can re-formulate the in-umbra condition especially
for spherical light sources using negative solid off-
sets (see [Rossi86] for their definition). The same
optimization considerations for the distance as stated
above apply, so we may use the bigger set as well:

QO tmas - (L {c}) - (8)

-241 -

[| Cylinders | Balls4 | Rings | Molecule | Bust
a) | simple ray tracing 0.91 542 1.83 1.34 3.15
b) | stochastic ray tracing 12.05 | 64.21 | 3235 8.25 | 3747
fast penumbra
¢) | standard 6.10 [43.48 [15.11 5.66 | 32.46
d) | optimized detection 572 | 26.81 | 10.54 5.02 | 24.02
e) | with umbra detection 522 | 2539 | 11.04 495

Table 1: Run times in seconds for different images and algorithms.

Remarks: a) Traditional ray tracing which produces sharp shadows. b) Penumbra with classical stochastic ray
tracing. ¢) Our method with shadow data sets. d) Optimized method with reduced extended objects according to the
tmas ratio. ¢) Additional umbra detection. (We still did not implement inner offsets for meshes.)

/ ¢\ L-light source

the ball responsible
that p is in umbra

/
; negative
1 solid offset
]
1

~

Q-

-

obstacle

S - surface p

Figure 5: Negative offset.

The umbra detection is done after having detected an
object possibly casting shadow which is a good candi-
date to pass the test. Making the full test in a whole
third data set holding only the shrunken objects re-
quires more memory and more time. The gain is not
sufficient since most of the tests fail. The experiments
have shown that in almost all cases testing all the ob-
jects for umbra is slower than testing only one object
which passed the penumbra detection test already.

5 PERFORMANCE
RESULTS

We have incorporated our algorithm into a ray tracer
implemented by one of the authors [Forme95]. Ba-
sically, it does not matter which classical method to
enhance the intersection finding process is used. It can
be incorporated into any ray tracing kernel.

We compare the run times of the new method to the
run times of traditional ray tracing without penumbra
and classical stochastic ray tracing. More details are

added as remarks in Table 1. We present several exam-
ples of geometric data sets: a simple scene with cylin-
ders and spheres (Fig. 9), a complex molecule (Fig. 10)
transformed from the Brookhaven Protein Data Bank,
a bust (Fig. 11) modeled as a mesh of triangles, and
the fractal balls (Fig. 12) and the rings (Fig. 13) from
the SPD-benchmark [Haine87]. All measurements are
done on a Sun SparcEnterprise 4000, 168 MHz, 1.125
GByte RAM and reflect real time of the ray tracing
loop without preprocessing. The test have been done
being a single user so that the real time has been es-
sentially equal to the user time.

Table 2 characterizes the different images. The resolu-
tion for the tests has been set to 128 x 128 pixel. For
larger images, the run times scale almost linearly with
the resolution. The number d of distributed rays was
always set to 32. We enhanced the tracing of shadow
rays with a shadow buffer. For each node of the ray
tree a queue of up to two objects is buffered. A miss in
the buffer enforces a delete of the last element in the
queue, a hit of an object initiates an insertion as the
first element of the queue.

The following trade-off can be observed (Table 2):
Our fast method significantly reduces the number of
shadow rays to be traced, especially when decreased
offsets and umbra region detection are employed. On
the other side, the number of intersection tests per ray
is increased. The increment is larger using decreased
offsets. The umbra detection may not always pay-off,
€. g., in the rings example, because the inner offset ob-
jects become too small. Additionally, we observed that
the light cache hit rate has slightly improved for the
more complex data sets.

Table 3 shows the memory requirements of the differ-
ent implementations. As long as the scene descrip-
tion is small (simple scene) the additional memory re-
quired for the fast penumbra calculation is negligible.
For the larger scenes at most twice as much memory is
required.

The speedup which is obtained with the new method
depends on the geometry, especially on the size of the
light sources and on the size of the visible penumbras.
Table 4 summarizes the run times for the balls3 data

242 -

Cylinders Balls4 Rings | Molecule Bust
objects 11 7383 62 1685 | 98506
spherical light sources 2 3 3 2 1
reflected rays 20167 10976 2962 7303 0
a) | # shadow rays 31592 51719 47415 4260 | 32136
Igeom 0.85 1.74 1.40 0.99 0.94
b) | # shadow rays 1027757 | 1397529 | 1459345 105153 | 496704
#Igeom 1.30 2.36 1.22 1.80 2.13
c) | # shadow rays 324911 430300 | 367355 34615 | 196667
Igeom 1.87 243 331 3.94 2.87
Lshadow 1.13 232 1.72 2.27 4.62
d) | # shadow rays 289054 | 215151 215155 26800 | 135324
Igeom 2.01 4.03 4.39 4.53 4.00
Lshadow 1.08 0.85 1.39 1.79 2.05
e) | # shadow rays 287481 213120 | 215155 26691
#Igeom 1.77 3.16 4.39 4.29
Ishadow 1.08 0.85 1.39 1.79

Table 2: Characteristics of the example scenes.

Remarks: In all scenes the number of primary rays was equal to 16384. The numbers Igeom and Ispadow denote
the number of intersection tests per ray in the geometry data set and in the shadow data set, respectively. For the
description of the different methods see remarks in Table 1.

Cylinders | Balls4 | Rings | Molecule Bust
b) | simple ray tracing 44 | 3064 82 670 | 58181
c) | stochastic ray tracing 45 3070 83 693 58181
fast penumbra
d) | standard 48 | 5535 114 1265 | 110176
d) | optimized detection 48 5991 117 1296 | 110197
e) | with umbra detection 49 5990 117 1296

Table 3: Memory requirements in KByte for different images and algorithms.

Remarks: The numbers reflect dynamically allocated memory. In additional to the given values, a frame buffer of
50 KByte was allocated. For the description of the different methods see remarks in Table 1.

set with 822 objects. The size of the light sources was
increased for the benchmark according to the sizes of
the spheres being present in the data set. Stochastic ray
tracing was performed with d = 32. The speedup for
the fast method ranges from 1.76 to 7.83 depending
on the size of the light sources: the smaller the light
sources, the better the improvement in run time.

[I fast | class. | speedup |
Balls3 3.29
a) 5.63 | 44.13 7.83
b) 088 | 44.33 4.48
c) 17.10 | 45.30 2.64
d) 27.21 | 48.10 1.76

Table 4; Run times for the Balls3 data set for
different sizes of the light sources.

Remarks: The sizes of the light sources were set
to the sizes of the spheres (@) smallest sphere, d)
largest sphere). The first line shows the run time
for simple ray tracing with no penumbra.

In Fig. 6-8 we compare the run time of classical

stochastic ray tracing with the run time of the version
of the improved penumbra calculation (decreased off-
sets included). The number d of stochastic rays per
point is increased (z-axis). The function plots can
be approximated with linear equations. Comparing
the slopes of the lines we obtain for large d that the
speedup for the simple scene is 2.1, for the molecule
scene 2.7 and for the bust scene 1.8, respectively.

6 CONCLUSION

We presented a new algorithm to speedup the cal-
culation of penumbra. The main idea is to detect
the shadow regions such that stochastic ray tracing
is confined to the penumbra. We used the notion of
Minkowski operators and solid offsets to provide the
means to handle a variety of differently shaped light
sources and objects. We proved formally that the
method works correctly and that it essentially renders
the same images as stochastic ray tracing.

We described and implemented an improvement of the

-243 -

140 T T T T T T

120 |+ cylinders fast —-— R
cylinders class. -+

real time in seconds

40 60 80 100 120
number of distributed rays per point

20

Figure 6: Run time comparison for an in-
creasing number of distributed rays per point
in the simple scene with cylinders.

140 T T T T T T

120 ¢ molecule fast -— b
molecule class. -+

100 4

real time in seconds

40 b 1

20 40 60 80 100 120
number of distributed rays per point

Figure 7: Run time comparison for an in-
creasing number of distributed rays per point
in the molecule scene.

20 40 60 80 100 120
number of distributed rays per point

Figure 8: Run time comparison for an in-

creasing number of distributed rays per point
in the bust scene.

-244 -

Figure 9: Penumbra in a simple scene.

Figure 10: Penumbra for a compact molecule.

Figure 11: Penumbra in the bust scene.

basic algorithm which used decreased offsets. The ef-
fectiveness of the algorithm depends on the particular
geometric data set. On average, the presented sample
scenes could be rendered two times faster compared to
the run time of classical stochastic ray tracing. How-
ever, if the penumbra regions are small respective to
the visible regions in the scene, much higher speedups
can be obtained. The additional memory requirements
never exceeded in our experiments a factor of two.

The method seems to be very appropriate to be incor-
porated into the radiance system [Ward94] to improve
further the run time of the penumbra calculation. Fur-
ther research might investigate the calculation of com-
bined convex bounded volumes that would allow to
detect the umbra more precisely (for instance for CSG-
models). A single bounded volume might be calcu-
lated for a number of joined objects (meshes).

Figure 12: Penumbra in the balls scene.

Figure 13: Penumbra in the rings scene.

Acknowledgment

We want to thank Stefan Karbacher, University of Er-
langen, (Courtesy by RSI GmbH, Germany) for pro-
viding the mesh data of the bust.

References

[Amana84] Amanatides, J.: Ray Tracing with Cones, Com-
puter Graphics (SIGGRAPH '84 Proceedings), ACM
Press, Vol.18, No.3, pp.129-135, 1984

[Bao93] Bao, H., Peng, Q.: Shading Models for Linear and
Area Light Sources, Computers and Graphics, North-
Holland, Vol.17, No.2, pp.137-145, 1993

[Cook84] Cook, R.L., Porter, Th., Carpenter, L.: Dis-
tributed Ray Tracing, Computer Graphics (SIG-
GRAPH '84 Proceedings), ACM Press, Vol.18, No.3,
pp.137-145, 1984

[Farou85] Farouki, R.: Exact Offset Procedures for Sim-
ple Solids, Computer Aided Geometric Design, North-
Holland, Vol.2, No.4, pp.257-279, 1985

[Forme95] Formella, A., Gill, Ch.: Ray Tracing: A Quanti-
tative Analysis and a New Practical Algorithm, The Vi-
sual Computer, Springer Verlag, Vol.11, No.9, pp.465—
476, 1995

[Haine86] Haines, E.A., Greenberg, D.P.: The light buffer:
A Ray Tracer Shadow Testing Accelerator, IEEE Com-
puter Graphics and Applications, IEEE Computer So-
ciety, Vol.6, No.9, pp.6-16, 1986

[Haine87] Haines, E.A.: A Proposal for Standard Graphics
Environments, I[EEE Computer Graphics and Applica-
tions, IEEE Computer Society, Vol.7, No.11, pp.3-5,
1987

[Latom91] Latombe, J.C.: Robot Motion Planning, Kluwer
Academic Publishers, 1991

[Pearc91] Pearce, A., Jevans D.: Exploiting shadow coher-
ence in ray tracing, Proceedings of Graphics Interface
'9], Morgan Kaufmann, pp.109-116, 1991

[Pouli90] Poulin, P., Amanatides, J.: Shading and Shad-
owing with Linear Light Sources, Eurographics '90,
North-Holland, pp.377-386, 1990

[RossiB6] Rossignac, J.R., Requicha, A.A.G.: Offsetting
Operations in Solid Modelling, Computer Aided Ge-
ometric Design, North-Holland, Vol.3, pp.129-148,
1986

[Wange92] Wanger, L.:. The Effect of Shadow Quality
on the Perception of Spatial Relationships in Com-
puter Generated Imagery, Computer Graphics ((1992
Symposium on Interactive 3D Graphics), ACM Press,
Vol.25, No.2, pp.39-42, 1992

[Ward94] Ward, G.J.: The RADIANCE Lighting Simu-
lation and Rendering System, Proceedings of SIG-
GRAPH 94, ACM Press, pp.459-472, 1994

[Wo0090] Woo, A., Poulin, P., Fournier, A.: A Survey of
Shadow Algorithms, [EEE Computer Graphics and
Applications, IEEE Computer Society, Vol.10, No.6,
pp.13-32, 1990

[Wo093] Woo, A.: Efficient Shadow Computations in Ray
Tracing, IEEE Computer Graphics and Applications,
IEEE Computer Society, Vol.13, No.5, pp.78-83, 1993

-245-

