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Abstract

Usually, the segmentation algorithms implementing the split and merge opera-
tions are restricted to a split stage followed by a merge stage. In this paper, we
present a new split and merge algorithm combining alternatively split and merge
operations at each recursive step. This algorithm is based on a data structure
called discrete map [BD96a]. This data structure provides an efficient framework to
implement split and merge operations.
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1 Introduction

According to Horowitz [HP76] a segmentation of an image X for an uniformity predicate
P is a partition of X into disjoint nonempty subsets X;, Xs,...,X, such that :

1. X =8 X;

2. X; is connected for alliin { 1,...,n}

3. Vie{1,...,n} P(X;)=true

4. Vi # jP(X; U X;) = false where X; and X are connected.

The conditions (1) and (2) insure that the image is partitioned into a set of regions. The
condition (3) insures that each region is homogeneous according to the homogeneity cri-
terion P. The condition (4) insures that all regions are maximal, thus that every merge
of two regions will produce a non-homogeneous region. If we split a non-homogeneous
region we obtain more homogeneous sub-regions. Conversely the merge of two regions
produces a less homogeneous region than the two merged regions. The region-based seg-
mentation methods can be classified into three main approaches : The top-down methods
begin with an under-partition of the image and split all regions which do not respect con-
dition (3). The bottom-up methods start with an over partition of the image and merge
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all regions which do not respect condition (4). The mized methods alternate the split of
regions which do not respect condition (3) and the merge of regions which do not respect
condition (4) until all regions respect both conditions (3) and (4).

The top-down methods use hierarchical representations of the image as pyramids [Bro82,
PRW82] or quadtrees [DRH80, Sam80]. These approaches are based on a recursive de-
composition of a square image domain into square sub-domains. The split of a region can
be efficiently performed by a refinement of the subdivision while the computation of the
adjacency-regions on a tree structure involves complex and costly processing. In order to
preserve the tree structure, the mixed approach is restricted to the merging of adjacency
regions having a same father, this kind of merger is called a restricted merge [HP76].

The usual data structure to implement the merge algorithm is an array of labels [Nic95]
combined with a region adjacency graph (RAG) [CMVM86, BF70]. An array of labels
associates to each pixel a label such that all the pixels of a given region have a same label.
The vertices of the adjacency graph represent the regions of the image and there exists
one edge between two regions if they are adjacent. The merge of two regions consists
in contracting the edges which link them and suppressing the induced multiply edges.
The update of a RAG induced by the split of a region into sub-regions involves many
computations. Indeed, the split region must be suppressed from the RAG and all the new
sub-regions must be traversed in order to insert their corresponding node and adjacency
edges.

Due to the incompatibility between the structures used by the split and the merge
algorithms, the mixed approach consists in a first part to alternate splits and restricted
merges. In a last part, a RAG is generated in order to allow unrestricted merges of any
adjacent regions (also called grouping [HP76]). An important drawback of this approach
is that the incoherent regions created during the splits may remain in the partitioning
because their existence is only reconsidered after a sequence of split operations.

In this paper, we present a split and merge algorithm where the split and the merge op-
erations may be iterated to any step of the algorithm. The model of discrete map [BD96a)]
used by this algorithm allows us to combine the split and grouping operations without
over cost. Moreover, the regions considered in this work are 4-connected set of pixels
having any size or form.

We present in section 2, the data structure encoding the regions of the image. The
section 3 presents the homogeneity criterion used by our split and merge algorithm. The
section 4 is devoted to the description of the split and merge algorithm.

2 Discrete maps encoding image regions.

An efficient framework to implement split and merge algorithms is provided by the model
of discrete map [BD96a)]. Discrete map is a mixed model combining a discrete description
of the geometry of region boundaries with an Euclidean description of the topology of the
image. The advantages of this model are : a correct discrete boundary definition of regions
having a free geometry and its ability to express the usual split and merge operations in
terms of graph modifications. The region splitting can be summed up to the insertion of
new edges and the region merging to the suppression of existing edges [BD96b}.
Implicit description of regions is given using an inter-pizel boundary representation [AAC95,

Fio95]. If the points of regions are encoded in the plane Z?, the set of region boundaries is
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encoded in an alternative discrete plane, the boundary plane. Its elements are the points
of the Euclidean plane with coordinates of the form :

2k +1 2k'+1
( 2 7 2
Intuitively, the points of the boundary plane correspond to the pixels corners. A point
p = (2p,Yp) of the image plane and a point p’ = (z3,,y,) of the boundary plane are called
half-neighboring points if |z, — | = |yp — y,| = 3- Each point of the image plane has four
half-neighboring points in the boundary plane and conversely. The set of boundary points
is made of boundary points having two half-neighboring points belonging to two different
regions of the image. The boundary of an image region r is the subset of boundary points
having at least one half-neighboring point in the region r.
As a direct result from the Khalimsky topology [KKM90, KKM91], the following
properties have been established by Braquelaire and al. [BD96a}:

), where (k, k') € Z2.

1. the boundary of a region is made of closed Jordan curves defined in the boundary
plane, each of these curves validates the discrete Jordan theorem;

2. the boundaries of two 4-adjacent regions share a set of Jordan arcs having at least
two boundary points.

The first property allows the reconstruction of the region using scan-line or seed-fill
algorithms [BD96a]. Therefore an homogeneity criterion can be evaluated on a region.

The both previous properties imply that if the image is subdivided into simply 4-
connected regions then the set of region boundaries forms a discrete map which is the
drawing of a topological map [Tut63] in the Khalimsky topological plane. The drawing of
a face of a discrete map is a region. The drawing of a vertez, called a node, is a boundary
point belonging at least to the boundaries of three different regions. The drawing of an
edge called a segment, is a 4-connected path of boundary points shared by two different
regions. One discrete map defines only image partition into simply connected regions. In
order to represent image with holed region an inclusion relation between a face and its
included discrete map is considered. Hence, the topology of an image is encoded by a set
of discrete maps augmented with an inclusion relation.

e2

v1

€1
(a) Discrete maps in the boundary plane {b) Topological maps (c) Dual topological map

Figure 1: The part (a) shows the image and its region-boundary set. The big circles are
the nodes and the black circles are segment points. The part (b) shows the topological
maps. The part (c) displays the dual topological maps of the image. The exterior of the
image is represented by the region L. The edge e; drawn by a dashed line corresponds to
the link induced by the inclusion relation.

The topological maps provide a more powerful framework than a RAG. Indeed, if we
consider the dual of topological maps completed by the inclusion relation, each edge of
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the dual graph connects two adjacent regions. Moreover, each of these edges identifies
one segment. Note, that the contraction of the multiple edges of the dual topological
map produces the associated RAG. In figure 1, an image and its dual topological map
are displayed. For instance, the merge of the region r3 and r,4 is done by suppressing the
edge ez and the vertex vs.

Now, we present briefly an estimation of the memory requirements of discrete maps
(a complete estimation is given in [BD96a]). The geometry of region boundaries can
be efficiently encoded by an array B. This array encodes for each boundary points the
links which connect it with its neighboring boundary points. Since a boundary points
of a segment is linked with exactly two other boundary points, four bites are sufficient
to encode the links. Thus, if the geometrical size of the image is H X W then the size
of this array is (H + 1) x (W +1)/2 bytes. Topological maps can be efficiently encoded
using combinatorial map [Cor75, GHPV89]. The memory requirements of the dual
topological map, expressed in integer size, is E + 4 * V where E is the number of edges
and V the number of vertices of the dual topological maps.

Let r be an image region, we denote by V(r) the set of regions adjacent to r, by 9(r)
the boundary of r and by d°(r) the degree of the vertex associated with r. Let s be a
segment of the discrete map, we denote by |s|, the number of points belonging to s.

For the merge part, the required operations and their time complexity are:

1. Computation of V(r) : the time complezity is linear in function of d°(r).

2. Selection of r' € V(r) : according to the evaluation of an homogeneity criterion
he(r,r').

3. Computation of 9(r) N d(r') : the time complexity is mean linear in do(r)+d°(') ;do ),

4. Suppression of 9(r) N d(r') :  the time complexity is linear in |3(r) N 9(r')|
(see [BDI6b]).

5. Updating of the inclusion relation : the time complezity is 1 because it consists
to merge two lists of included regions.

If we expect the evaluation of hc(r,r’), the most expensive operation is the fourth one.
Thus, the complexity of the merge problematic is in O(|8(r) N (r')|)
For the split part, the required operations and their time complexity are:

1. Computation of the splitting segments S = {s1,...,3,} : the time complezity
is |r| because we have to traverse the region r.

2. For each s; € S.

(a) Creation of two nodes respectively located to the extremities of s; :
the time complezity is equal to |s;|.

(b) Effective insertion of s; : same time complezity than segment suppression.

3. Updating of the inclusion relation, the time complezity is lower than d* f where
f is the number of discrete maps previously included in r, and d is the diameter r.

Since the sum of time complexity of stage 3 and 4 is lower than |r|, then the complexity
of the split problematic is in O(|r|).
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3 Parameters attached to regions

Our model may be useful for segmentation algorithms only if it can provide efficiently
information which allows to decide if a region is too or not enough homogeneous. We
measure the homogeneity of a region r with the squared error defined by:

SE(C;) = }_ g(z)llz — u(r)|? (1)

z€Cr

where C, denotes the feature space associated to region r, this feature space may be a set
of values between {0,...,255} for grayscale images or a three dimensional set for color
images. The value g(z) is the number of pixels with color z in region r and u(r) is the
mean of the set C,. In the following we will denote SE(r) for SE(C,).

The squared error of a region computes the sum of squared distance of each color to
the mean color of a region. In other words the squared error represents the error produced
by the approximation of C, by its mean u(r). Thus, a low squared error corresponds to an
homogeneous region while a high squared error corresponds to a non-homogeneous region.
The definition of the squared error given by equation 1 does not allow an efficient update
of the squared error of regions during merge operations. A better approach consists in
defining the squared error from moments of order 0, 1 and 2 of a region.

Definition 1 Let r be a region, the moments or order 0, 1 and 2 of r respectively denoted
by Mo(r), Myi(r) and My(r) are defined by the following equations:

Mo(r) : number of pizels contained in region r
M1 (7‘) = Z(Ul,...,vn)ECr(vl’ ey Un) (2)
M2(T) = Z(ul,...,un)eCr(vlz7 cee ’vfb)

Where n denotes the dimension of the feature space (usually one or three) and (vy,...,v,)

denotes coordinates in the feature space.
If we merge two regions r; and r; to create the region r; Ur; the relation between the
moments of r; and r, and the moments of r; U r, is defined by :

Vie{0,1,2} M;(riUry) = M;(r1) + M;(rp) (3)
Using the moments My, M; and M,, the squared error, of a region r may be computed
by the following equations:
My (r)?,
1(7”) i (4)
Mo(T')

n
SE(r) =) My(r); —
i=1
where M(r); denotes the it* coordinate of the two-order moment of r. Note that the
moments My, M; and M, can also be used to compute the mean and the variances of a
region.

In our implementation we have attached to each region its moments of order 0, 1
and 2. We choose to compute by need the attributes of a region r and to mark them
as invalid when r is split. Due to the linearity of moments defined by equation (3),
moment updating does not require to traverse merged regions. These attributes can thus
be efficiently updated along merge operations. Moreover, using equation (4) the squared
error of a region can be deduced immediately from moments.

In order to allow users to design other efficient merge-score, we also attach and compute
by need the length and the mean gradient of each segment. Such parameters allow the
design of merge-score based on the common boundaries of two regions.
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4 The split and merge algorithm

Most of split and merge algorithms use hierarchical data structures [CP79, PRW382,
CMVMS6| such as quadtree [DRH80, Sam80] or pyramids [Bro82, PRW82]. These data

structures involve two main limitations in the split and merge algorithms :

e The split of a region is performed by subdividing one of the square associated with
this region into four sub-squares. This process creates a “square aspect” in the final
segmentation which is difficult to break (see [BCR90] for further details)

¢ Since the merge algorithm should not break the hierarchical data structure, the
merge has to be restricted so as to respect the tree-structure.

] .
(a) O BON

split split merge

Expected contours

)c

(b)

split merge split

Figure 2: Line (a) a sequence of splits and restricted merge followed by a grouping. Line (b)
a sequence of split and unrestricted merge.

Obviously, the restricted merge is less powerful than the unrestricted merge. This
lack of efficiency may create the same artifacts than the one created by a split algorithm
followed by a grouping step. For example the region formed by two half circles on Figure 2,
has been created by the first split algorithm. Let us suppose that this region is not
meaningful and can not be suppressed with a restricted merge. If we split further the
initial domain, this region may be considered as enough homogeneous, and will not be
split further (see figure 2-(a)). Thus, the expected contour will not be created and the
grouping algorithm following the split sequence will be unable to find the correct partition.
On the contrary, if we perform a merge operation after the first splitting step, the wrong
region will be removed and the split process following this merge step will be able to
find the expected contours (see figure 2-(b)). This unwanted behavior of split and merge
algorithms using a restricted merge is illustrated by a real world image in Figure 4.

The data structure defined in section 2 allows us to overcome the limitations imposed
by a hierarchical data structure. First, our data structure allows us to encode free-
geometry regions. This property induce a better behavior of our split algorithm which will
split further more homogeneous regions. Moreover, the free geometry of our regions allows
us to avoid computation burden to break the initial partition into squares. Finally our
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data structure allows us to merge any region r with a region belonging to its neighborhood
V(r). This last point allows us to remove the distinction between the restricted and the
unrestricted merge operations.

We saw in last section that the squared error provides an efficient tool to measure the
homogeneity of a region. We have used this homogeneity criterion to design a new split
algorithm. This algorithm described in [Bru96] splits the cluster C, corresponding to the
region r into a set of clusters Cy,...,C,. Each cluster C; will produce a set of regions
Tiyy- - .,Ti, such that all pixels of regions r;,,...,r;, have feature coordinates which belong
to cluster C;. The homogeneity of regions produced by the split algorithm are controlled
by the following requirements on clusters C; :

fj SE(C;) < aSE(C) (5)
Vi,je{1,...,p} SE(C.- uc;) > BSE(C) (6)

The condition (5) ensures that all regions are homogeneous enough with respect to the
initial region. The condition (6) ensures that the split algorithm will not produce two
adjacent regions with too closed features. The symbols o and § denote two thresholds
which may be parameterized by users.

Once the set C; is split into a set of clusters C1, ..., C, we have an implicit partition of
the region. As a matter of fact, two adjacent pixels belong to different regions if and only
if their features do not belong to a same cluster. A functionality of our implementation
inserts edges in the data structure according to this implicit partition. Thus segmentation
algorithms only have to provide a function which decides if two pixels belong to a same
region or not.

Parameters used by segmentation algorithms to decide if a region has to be split further
or not may also be used to decide if two given regions has to be merged. We have designed
a merge algorithm using the squared error as homogeneity criteria. This algorithm scans
a list of region L and merges at each step the two adjacent regions r and r’ defined by :

(r,r') = ArgMing,eLrev()SE(ri Ura) (7)

The merge of the two selected regions is repeated until all merges will produce a region
with a squared error greater than a given threshold. Note that the algorithm may merge
two regions with one of them which do not belong to L. The region resulting from the
merge will be added to L. This property allows us to correct regions created by previous
iterations of the split algorithm.

The split and merge algorithm displayed in figure 3 alternates split steps and merge
steps. We have slightly restricted the merge algorithm to the regions created by the split
and merge algorithm. This restriction allows us to modify only regions which form a
partition of the domain to be segmented. Thus, we avoid modifications of regions created
by previous segmentation algorithms, these regions being supposed correct.
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split_merge(region r,;)
{
list of regions L’,L = @
region Tmaz = Tini
do
{
split (7 ,qz)
L' — regions created by the split algorithm
merge(L’)
update L and add L' to L
Tmazr = ArgMaz,e SE(r)
while( SE(rmas > €)
(Tim')
}

Figure 3: Our split and merge algorithm

5 Conclusion

The split and merge method has first been introduced by Horowitz and Pavlidis [HP76].
This method was implemented with a quadtree data structure which involves many limita-
tions to the method. We have presented a set of algorithms built on a new data structure.
This data structure allows us to overcome all limitations imposed by quadtrees. This
model uses the same data structure to implement the split and the merge operations.
Therefore, we can alternate splits and unrestricted merges at any steps of the algorithm
without overcost. The memory requirements of this structure is | D | +E + 4V, where
| D | is the size of the image, E the number of edges and V the number of vertices. Note,
that these memory requirements are in the same order than the ones required by the
merger using an array of labels and a RAG. The time requirement for splitting a region
r is proportional to the size | r | of the region. Using quadtree this time requirement is
also | r | because the homogeneity criterion must be computed on each new node. The
time requirement for merging a set of adjacent regions is proportional to the length of
theirs common boundaries. This time is slightly greater than the time required by the
merge algorithm using RAG because the boundary set must be updated. Our segmenta-
tion algorithms are enough efficient to allow interactive segmentation. This new ability
allows users to guide the segmentation process and thus to obtain the desired partition.
Finally, the flexibility of our data structure allows searchers to implement quickly new
segmentation algorithm based for example on other criteria than the squared error.
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(@) (b)

Figure 4: A restriction of the merge algorithm to the faces generated by the preceding split
algorithm has involved the remaining of the two faces on the left arm of the girl (see Part a).
Our split and merge algorithm avoids such artifacts (see Part b).

Figure 5: (a) Original image. (b) to (d) Three iterations of our split and merge algorithm.
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